Simulink® 7

Reference

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

X L9

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Reference
© COPYRIGHT 2002-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002

April 2003
April 2004

June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Simulink 5 (Release 13)
Revised for Simulink 5.1 (Release 13SP1)
Revised for Simulink 5.1.1 (Release 13SP1+)
Revised for Simulink 6 (Release 14)
Revised for Simulink 6.1 (Release 14SP1)
Revised for Simulink 6.2 (Release 14SP2)
Revised for Simulink 6.3 (Release 14SP3)
Revised for Simulink 6.4 (Release 2006a)
Revised for Simulink 6.5 (Release 2006b)
Revised for Simulink 6.6 (Release 2007a)
Revised for Simulink 7.0 (Release 2007b)
Revised for Simulink 7.1 (Release 2008a)
Revised for Simulink 7.2 (Release 2008b)
Revised for Simulink 7.3 (Release 2009a)

Block Reference

Commonly Usedcc i, 1-2
Continuous 1-3
Discontinuities o il 1-3
Discrete 1-4
Logic and Bit Operations 1-5
Lookup Tables 1-7
Math Operationscciititiiinnnnnnnnn.. 1-7
Model Verification 1-9
Model-Wide Utilities 1-10
Ports & Subsystems 1-11
Signal Attributes 1-12
Signal Routing 0 ... 1-13
Sinks ... 1-14
SOUICES ...ttt e 1-15
User-Defined Functions 1-16

vi

Contents

Additional Math & Discrete 1-17
Additional Discretec.iiiiiii e 1-17
Additional Math: Increment — Decrement 1-18

Blocks — Alphabetical List

2|

Function Reference

3

Model Construction 3-2
Simulation 3-6
Linearization and Trimming 3-8
DataType ... i i e 3-9

Functions — Alphabetical List

q |

Mask Icon Drawing Commands

5

Simulink Debugger Commands

6

Simulink Classes

7

Model and Block Parameters

8|

Model Parametersiiiiiiiniinnnneon. 8-2
About Model Parameters 8-2
Examples of Setting Model Parameters 8-82

Common Block Parameters 8-83
About Common Block Parameters 8-83
Examples of Setting Block Parameters 8-94

Block-Specific Parameters 8-96

Mask Parameters0 i, 8-218
About Mask Parameters 8-218
Notes on Mask Parameter Storage 8-223

vii

viii

10

Contents

Model File Format

2

Model File Contentscc0iiiiiinnnn... 9-2
About Model File Formats 9-2
Model Section i 9-4
Simulink.ConfigSet Section 9-5
BlockDefaults Sectionctiiiiiiinnn.... 9-6
BlockParameterDefaults Section 9-6
AnnotationDefaults Section 9-7
LineDefaults Sectionc.coiiiiiieeeennnnnn. 9-7
System Section i 9-8

Simulink Checks 10-2
Simulink Check Overviewccoiiiuuee... 10-4
Check model, local libraries, and referenced models for

known upgrade ISSUeSovvvvne e eennnnnnnns 10-5
Identify unconnected lines, input ports, and output

010 o 1= 10-6
Check root model Inport block specifications 10-7
Check optimization settingsccuvuuueeeee... 10-8
Check for parameter tunability information ignored for

referencedmodels 10-11
Check for implicit signal resolution 10-12
Check for optimal bus virtuality 10-13
Check for Discrete-Time Integrator blocks with initial

condition uncertaintyiiiiiiiaaan. 10-14
Identify disabled library links 10-15
Identify parameterized library links 10-16
Identify unresolved library links 10-17
Check for proper usage of Data Store Memory blocks 10-18
Check for proper bus usageccoiiuineeeen... 10-20
Check for potentially delayed function-call subsystem

returnvalues i e 10-22
Identify block output signals with continuous sample time

and non-floating point data type 10-23
Check for proper Merge block usage 10-24

Check consistency of initialization parameters for Outport

and Merge blocks 10-25
Check sample times of Data Store blocks 10-38
Check for non-continuous signals driving derivative

010 1= 10-39
Runtime diagnostics for Data Store blocks 10-40
Runtime diagnostics for S-functions 10-41

Simulink Limits

Index

ix

X Contents

Block Reference

Commonly Used (p. 1-2)
Continuous (p. 1-3)
Discontinuities (p. 1-3)

Discrete (p. 1-4)

Logic and Bit Operations (p. 1-5)
Lookup Tables (p. 1-7)

Math Operations (p. 1-7)

Model Verification (p. 1-9)
Model-Wide Utilities (p. 1-10)
Ports & Subsystems (p. 1-11)
Signal Attributes (p. 1-12)
Signal Routing (p. 1-13)

Sinks (p. 1-14)

Sources (p. 1-15)

User-Defined Functions (p. 1-16)
Additional Math & Discrete (p. 1-17)

Commonly used blocks

Define continuous states

Define discontinuous states
Define discrete states

Perform logic and bit operations
Support lookup tables

Perform math operations
Perform model verification
Support model-wide operations
Support ports and subsystems
Support signal attributes
Support signal routing

Receive output from other blocks
Input to other blocks

Support custom functions

Provide additional math and discrete
support

1 Block Reference

1-2

Commonly Used

Bus Creator
Bus Selector
Constant

Data Type Conversion

Demux

Discrete-Time Integrator

Gain
Ground
Inport

Integrator

Logical Operator

Mux

Outport

Product

Relational Operator

Saturation

Scope and Floating Scope

Create signal bus
Select signals from incoming bus
Generate constant value

Convert input signal to specified
data type

Extract and output elements of
vector signal

Perform discrete-time integration or
accumulation of signal

Multiply input by constant
Ground unconnected input port

Create input port for subsystem or
external input

Integrate signal

Perform specified logical operation
on input

Combine several input signals into
vector

Create output port for subsystem or
external output

Multiply and divide scalars and
nonscalars or multiply and invert
matrices

Perform specified relational
operation on inputs

Limit range of signal

Display signals generated during
simulation

Continuous

Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse
Subsystem

Sum, Add, Subtract, Sum of
Elements

Switch

Terminator

Unit Delay

Continuous

Derivative
Integrator
State-Space

Transfer Fcen

Transport Delay

Variable Time Delay, Variable
Transport Delay

Zero-Pole

Discontinuities

Backlash

Coulomb and Viscous Friction

Represent system within another
system

Add or subtract inputs

Switch output between first input
and third input based on value of
second input

Terminate unconnected output port

Delay signal one sample period

Output time derivative of input
Integrate signal
Implement linear state-space system

Model linear system by transfer
function

Delay input by given amount of time

Delay input by variable amount of
time

Model system by zero-pole-gain
transfer function

Model behavior of system with play

Model discontinuity at zero, with
linear gain elsewhere

1-3

1 Block Reference

1-4

Discrete

Dead Zone

Dead Zone Dynamic
Hit Crossing
Quantizer

Rate Limiter

Rate Limiter Dynamic

Relay

Saturation
Saturation Dynamic
Wrap To Zero

Difference

Discrete Derivative
Discrete Filter
Discrete FIR Filter
Discrete State-Space

Discrete Transfer Fen

Discrete Zero-Pole

Discrete-Time Integrator

First-Order Hold

Provide region of zero output

Set inputs within bounds to zero
Detect crossing point

Discretize input at specified interval
Limit rate of change of signal

Limit rising and falling rates of
signal

Switch output between two constants
Limit range of signal
Bound range of input

Set output to zero if input is above
threshold

Calculate change in signal over one
time step

Compute discrete time derivative
Model IIR direct form II filters
Model FIR filters

Implement discrete state-space
system

Implement discrete transfer function

Model system defined by zeros and
poles of discrete transfer function

Perform discrete-time integration or
accumulation of signal

Implement first-order
sample-and-hold

Logic and Bit Operations

Integer Delay Delay signal N sample periods

Memory Output input from previous time
step

Tapped Delay Delay scalar signal multiple sample
periods and output all delayed
versions

Transfer Fen First Order Implement discrete-time first order
transfer function

Transfer Fcn Lead or Lag Implement discrete-time lead or lag
compensator

Transfer Fen Real Zero Implement discrete-time transfer
function that has real zero and no
pole

Unit Delay Delay signal one sample period

Weighted Moving Average (Obsolete) Implement weighted moving average
(obsolete)

Zero-Order Hold Implement zero-order hold of one

sample period

Logic and Bit Operations

Bit Clear Set specified bit of stored integer to
Zero

Bit Set Set specified bit of stored integer to
one

Bitwise Operator Perform specified bitwise operation
on inputs

Combinatorial Logic Implement truth table

Compare To Constant Determine how signal compares to

specified constant

1-5

1 Block Reference

1-6

Compare To Zero

Detect Change
Detect Decrease

Detect Fall Negative

Detect Fall Nonpositive

Detect Increase

Detect Rise Nonnegative

Detect Rise Positive

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

Determine how signal compares to
Zero

Detect change in signal’s value
Detect decrease in signal’s value

Detect falling edge when signal’s
value decreases to strictly negative
value, and its previous value was
nonnegative

Detect falling edge when signal’s
value decreases to nonpositive value,
and its previous value was strictly
positive

Detect increase in signal’s value

Detect rising edge when signal’s
value increases to nonnegative
value, and its previous value was
strictly negative

Detect rising edge when signal’s
value increases to strictly positive
value, and its previous value was
nonpositive

Output selection of contiguous bits
from input signal

Determine if signal is in specified
interval

Determine if signal is in specified
interval

Perform specified logical operation
on input

Perform specified relational
operation on inputs

Shift bits or binary point of signal

Lookup Tables

Lookup Tables

Direct Lookup Table (n-D)

Interpolation Using Prelookup

Lookup Table

Lookup Table (2-D)

Lookup Table (n-D)

Lookup Table Dynamic

Prelookup

Sine, Cosine

Math Operations

Abs
Algebraic Constraint

Assignment

Bias

Index into N-dimensional table to
retrieve element, column, or 2-D

matrix

Use output of Prelookup block
to accelerate approximation of
N-dimensional function

Approximate one-dimensional
function

Approximate two-dimensional
function

Approximate N-dimensional function

Approximate one-dimensional

function using dynamically specified

table

Compute index and fraction for

Interpolation Using Prelookup block

Implement sine and/or cosine wave
in fixed point using lookup table
approach that exploits quarter wave

symmetry

Output absolute value of input

Constrain input signal to zero

Assign values to specified elements

of signal

Add bias to input

1 Block Reference

1-8

Complex to Magnitude-Angle
Complex to Real-Imag
Divide

Dot Product

Gain

Magnitude-Angle to Complex
Math Function

Matrix Concatenate, Vector
Concatenate

MinMax

MinMax Running Resettable
Permute Dimensions

Polynomial

Product

Product of Elements

Real-Imag to Complex

Reshape
Rounding Function

Sign

Compute magnitude and/or phase
angle of complex signal

Output real and imaginary parts of
complex input signal

Divide one input by another
Generate dot product of two vectors
Multiply input by constant

Convert magnitude and/or a phase
angle signal to complex signal

Perform mathematical function

Concatenate input signals of same
data type to create contiguous output
signal

Output minimum or maximum input
value

Determine minimum or maximum of
signal over time

Rearrange dimensions of
multidimensional array dimensions

Perform evaluation of polynomial
coefficients on input values

Multiply and divide scalars and
nonscalars or multiply and invert
matrices

Copy or invert one scalar input, or
collapse one nonscalar input

Convert real and/or imaginary
inputs to complex signal

Change dimensionality of signal
Apply rounding function to signal

Indicate sign of input

Model Verification

Sine Wave Function Generate sine wave, using external
signal as time source

Slider Gain Vary scalar gain using slider

Squeeze Remove singleton dimensions from
multidimensional signal

Sum, Add, Subtract, Sum of Add or subtract inputs

Elements

Trigonometric Function Perform trigonometric function

Unary Minus Negate input

Weighted Sample Time Math Support calculations involving

sample time

Model Verification

Assertion Check whether signal is nonzero

Check Discrete Gradient Check that absolute value of
difference between successive
samples of discrete signal is less
than upper bound

Check Dynamic Gap Check that gap of possibly varying
width occurs in range of signal’s
amplitudes

Check Dynamic Lower Bound Check that one signal is always less

than another signal

Check Dynamic Range Check that signal falls inside range
of amplitudes that varies from time
step to time step

Check Dynamic Upper Bound Check that one signal is always
greater than another signal

Check Input Resolution Check that input signal has specified
resolution

1 Block Reference

1-10

Model-Wide

Check Static Gap

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

Utilities

Block Support Table
DocBlock

Model Info

Time-Based Linearization

Trigger-Based Linearization

Check that gap exists in signal’s
range of amplitudes

Check that signal is greater than
(or optionally equal to) static lower
bound

Check that signal falls inside fixed
range of amplitudes

Check that signal is less than (or
optionally equal to) static upper
bound

View data type support for Simulink®
blocks

Create text that documents model
and save text with model

Display revision control information
in model

Generate linear models in base
workspace at specific times

Generate linear models in base
workspace when triggered

Ports & Subsystems

Ports & Subsystems

Action Port

Configurable Subsystem

Enable

Enabled and Triggered Subsystem
Enabled Subsystem

For Iterator Subsystem

Function-Call Generator

Function-Call Subsystem

If
If Action Subsystem

Inport
Model

Outport

Implement Action subsystems used
by if and switch control flow
statements in Simulink software.

Represent any block selected from
user-specified library of blocks

Add enabling port to subsystem

Represent subsystem whose
execution is enabled and triggered
by external input

Represent subsystem whose
execution is enabled by external
input

Represent subsystem that executes
repeatedly during simulation time
step

Execute function-call subsystem
specified number of times at specified
rate

Represent subsystem that can be
invoked as function by another block

Model if-else control flow

Represent subsystem whose
execution is triggered by If block

Create input port for subsystem or
external input

Include model as block in another
model

Create output port for subsystem or
external output

1-11

1 Block Reference

1-12

Subsystem, Atomic Subsystem,
Nonvirtual Subsystem, CodeReuse
Subsystem

Switch Case

Switch Case Action Subsystem

Trigger

Triggered Subsystem

While Iterator Subsystem

Signal Attributes

Bus to Vector

Data Type Conversion

Data Type Conversion Inherited

Data Type Duplicate
Data Type Propagation

Data Type Scaling Strip

Represent system within another
system

Implement C-like switch control
flow statement

Represent subsystem whose
execution is triggered by Switch
Case block

Add trigger port to subsystem or
function-call model

Represent subsystem whose
execution is triggered by external
input

Represent subsystem that executes
repeatedly while condition is
satisfied during simulation time step

Convert virtual bus to vector

Convert input signal to specified
data type

Convert from one data type to
another using inherited data type
and scaling

Force all inputs to same data type

Set data type and scaling of
propagated signal based on
information from reference signals

Remove scaling and map to built in
integer

Signal Routing

1C Set initial value of signal

Probe Output signal’s attributes, including
width, dimensionality, sample time,
and/or complex signal flag

Rate Transition Handle transfer of data between
blocks operating at different rates

Signal Conversion Convert signal to new type without
altering signal values

Signal Specification Specify desired dimensions, sample
time, data type, numeric type, and
other attributes of signal

Weighted Sample Time Support calculations involving
sample time
Width Output width of input vector

Signal Routing

Bus Assignment Replace specified bus elements
Bus Creator Create signal bus

Bus Selector Select signals from incoming bus
Data Store Memory Define data store

Data Store Read Read data from data store

Data Store Write Write data to data store

Demux Extract and output elements of

vector signal

Environment Controller Create branches of block diagram
that apply only to simulation or only
to code generation

From Accept input from Goto block
Goto Pass block input to From blocks

1-13

1 Block Reference

1-14

Sinks

Goto Tag Visibility

Index Vector

Manual Switch
Merge

Multiport Switch

Mux

Selector

Switch

Display
Outport

Scope and Floating Scope

Stop Simulation

Terminator
To File

To Workspace
XY Graph

Define scope of Goto block tag

Switch output between different
inputs based on value of first input

Switch between two inputs

Combine multiple signals into single
signal

Choose between multiple block
inputs

Combine several input signals into
vector

Select input elements from vector,
matrix, or multidimensional signal

Switch output between first input
and third input based on value of
second input

Show value of input

Create output port for subsystem or
external output

Display signals generated during
simulation

Stop simulation when input is
nonzero

Terminate unconnected output port
Write data to file
Write data to MATLAB® workspace

Display X-Y plot of signals using
MATLAB figure window

Sources

Sources

Band-Limited White Noise

Chirp Signal

Clock

Constant

Counter Free-Running
Counter Limited

Digital Clock

From File
From Workspace
Ground

Inport

Pulse Generator

Ramp

Random Number

Repeating Sequence

Repeating Sequence Interpolated

Introduce white noise into
continuous system

Generate sine wave with increasing
frequency

Display and provide simulation time
Generate constant value

Count up and overflow back to zero
after maximum value possible is
reached for specified number of bits

Count up and wrap back to zero after
outputting specified upper limit

Output simulation time at specified
sampling interval

Read data from MAT-file
Read data from workspace
Ground unconnected input port

Create input port for subsystem or
external input

Generate square wave pulses at
regular intervals

Generate constantly increasing or
decreasing signal

Generate normally distributed
random numbers

Generate arbitrarily shaped periodic
signal

Output discrete-time sequence and
repeat, interpolating between data
points

1-15

1 Block Reference

Repeating Sequence Stair Output and repeat discrete time
sequence
Signal Builder Create and generate interchangeable

groups of signals whose waveforms
are piecewise linear

Signal Generator Generate various waveforms
Sine Wave Generate sine wave

Step Generate step function
Uniform Random Number Generate uniformly distributed

random numbers

User-Defined Functions

Embedded MATLAB Function Include MATLAB code in models
that generate embeddable C code

Fen Apply specified expression to input

Level-2 M-File S-Function Use Level-2 M-file S-function in
model

MATLAB Fen Apply MATLAB function or
expression to input

S-Function Include S-function in model

S-Function Builder Create S-function from C code that

you provide

1-16

Additional Math & Discrete

Additional Math & Discrete

Additional Discrete (p. 1-17) Provide additional discrete math
support

Additional Math: Increment — Increment or decrement value of

Decrement (p. 1-18) signal by one

Additional Discrete

Fixed-Point State-Space Implement discrete-time state space

Transfer Fen Direct Form I1 Implement Direct Form Il realization
of transfer function

Transfer Fen Direct Form IT Time Implement time varying Direct Form

Varying IT realization of transfer function

Unit Delay Enabled Delay signal one sample period, if

external enable signal is on

Unit Delay Enabled External IC Delay signal one sample period, if
external enable signal is on, with
external initial condition

Unit Delay Enabled Resettable Delay signal one sample period, if
external enable signal is on, with
external Boolean reset

Unit Delay Enabled Resettable Delay signal one sample period, if

External IC external enable signal is on, with
external Boolean reset and initial
condition

Unit Delay External IC Delay signal one sample period, with

external initial condition

Unit Delay Resettable Delay signal one sample period, with
external Boolean reset

Unit Delay Resettable External IC Delay signal one sample period, with
external Boolean reset and initial
condition

1-17

1 Block Reference

1-18

Unit Delay With Preview Enabled

Unit Delay With Preview Enabled
Resettable

Unit Delay With Preview Enabled
Resettable External RV

Unit Delay With Preview Resettable

Unit Delay With Preview Resettable
External RV

Output signal and signal delayed by
one sample period, if external enable
signal 1s on

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external reset

Output signal and signal delayed by
one sample period, if external enable
signal is on, with external RV reset

Output signal and signal delayed
by one sample period, with external
reset

Output signal and signal delayed by
one sample period, with external RV
reset

Additional Math: Increment — Decrement

Blocks — Alphabetical List

Abs

Purpose
Library

Description

A U P

Data Type
Support

Output absolute value of input
Math Operations

The Abs block outputs the absolute value of the input.

For signed data types, the absolute value of the most negative value is
problematic since it is not representable by the data type. In this case,
the behavior of the block is controlled by the Saturate on integer
overflow check box. If selected, the absolute value of the data type
saturates to the most positive representable value. If not selected, the
absolute value of the most negative value represented by the data type
has no effect.

For example, suppose the block input is an 8-bit signed integer. The
range of this data type is from -128 to 127, and the absolute value

of -128 is not representable. If you select the Saturate on integer
overflow check box, then the absolute value of -128 is 127. If it is not
selected, then the absolute value of -128 remains at -128.

The Abs block accepts real signals of any numeric data type supported
by Simulink software, except Boolean. The Abs block supports real
fixed-point data types. The block also accepts complex floating-point
inputs.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

Abs

Parameters
and

Dialog

Box

The Main pane of the Abs block dialog box appears as follows:

=1 Function Block Parameters: Abs x|

Abs
’1« = u]

Main | signal Attributes |

¥ Enable zero-crossing detection
Sample time (-1 for inherited):

[-1

K Cancel Help Apply

Enable zero-crossing detection
Select to enable zero-crossing detection. For more information,
see “How Blocks Work with Zero-Crossing Detection” in the “How
Simulink Works” chapter of the Simulink documentation.

Sample time (-1 for inherited)
Enter the time interval between sample time hits or specify
another appropriate sample time such as continuous. By default,
the block inherits its sample time based upon its context within
the model. See “Working with Sample Times” in the Simulink
documentation.

The Signal Attributes pane of the Abs block dialog box appears as
follows:

2-3

Abs

=] Function Block Parameters: Abs x|

Abs
’1« = u]

Main Signal Attributes |

Output maximurm:

I

Cutput data type: I Inherit: Same as input j gy |
Integer rounding mode: IFI-:u:ur ;l

™ saturate on integer overflow

K, Cancel Help | Apply

Output maximum

Specify the maximum value that the block should output. The
default value, [], is equivalent to Inf. Simulink software uses
this value to perform:

¢ Simulation range checking (see “Checking Signal Ranges”)

¢ Automatic scaling of fixed-point data types

Output data type
Specify the output data type. You can set it to:

¢ A rule that inherits a data type, for example, Inherit:
Inherit via back propagation

¢ The name of a built-in data type, for example, single

¢ The name of a data type object, for example, a
Simulink.NumericType object

2-4

Abs

® An expression that evaluates to a data type, for example,
fixdt(1,16,0)

Click the Show data type assistant button LI to

display the Data Type Assistant, which helps you set the
Output data type parameter.

See “Specifying Block Output Data Types” in Simulink User’s
Guide for more information.

Lock output scaling against changes by the autoscaling tool
Select to lock scaling of outputs. This parameter is visible only if
you enter an expression for the OQutput data type parameter.

Integer rounding mode
Select the rounding mode for fixed-point operations. For more
information, see “Rounding” in the Simulink® Fixed Point™
User’s Guide.

Saturate on integer overflow
Select to have overflows saturate. If selected, the block maps
signed integer input elements corresponding to the most negative
value of that data type to the most positive value of that data type:

¢ For 8-bit integers, -128 maps to 127.

¢ For 16-bit integers, -32768 maps to 32767.

¢ For 32-bit integers, -2147483648 maps to 2147483647.
Otherwise, the block does not act on signed integer input elements
corresponding to the most negative value of that data type:

¢ For 8-bit integers, -128 remains -128.

¢ For 16-bit integers, -32768 remains -32768.

e For 32-bit integers, -2147483648 remains -2147483648.

When you select this check box, saturation applies to every
internal operation on the block, not just the output or result. In

2-5

Abs

general, the code generation process can detect when overflow is
not possible, in which case, no saturation code is generated.

Characteristics Direct Feedthrough

Yes

Sample Time

Specified in the Sample time parameter

Dimensionalized

Yes

Multidimensionalized

Yes

Zero-Crossing Detection

Yes, if enabled

2-6

Action Port

Purpose

Library

Description

Action

Implement Action subsystems used by if and switch control flow
statements in Simulink software.

Ports & Subsystems

Action Port blocks implement Action subsystems used in if and switch
control flow statements. The Action Port block is available in the If
Action Subsystem and the Switch Case Action Subsystem. See the
references for the If and Switch Case blocks for examples using Action
Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case
block.

You can use an ordinary subsystem or an atomic subsystem. In
either case, the resulting Action subsystem is atomic.

2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is
now an Action subsystem.

Action subsystems execute their programming in response to the
conditional outputs of an If or Switch Case block. Use Action
subsystems as follows:

1 Create an Action subsystem for each output port configured for an
If or Switch Case block.

2 Connect each output port (if, else, or elseif ports for the If block; case
or default ports for the Switch Case block) to the Action port on an
Action subsystem.

When the connection is made, the icon for the subsystem and the
Action Port block it contains are changed to the name of the output

2-7

Action Port

port for the If or Switch Case block (i.e., if{ }, else{ }, elseif{ },
case{ }, or default{ }).

3 Open the new subsystem and add the diagram that you want to
execute in response to the condition this subsystem covers.

The Action Port block has only the States when execution is
resumed parameter in its parameters dialog. If you set this field to
held (the default value) for an Action Port block, the states of its Action
subsystem are retained between calls even if other member Action
subsystems of an if-else or switch control flow statement are called.
If you set the States when execution is resumed field to reset, the
states of a member Action subsystem are reset to initial values when

it is reenabled.

Note All blocks in an Action subsystem driven by an If or Switch Case
block must run at the same rate as the driving block.

Data Type There are no data inputs or outputs for Action Port blocks.
Support
Parameters x
and)

. — Action Port
Dialog
Box Flace thiz block in a subsystem ta link to a signal fram an I Block or a Switch-Caze block.

— Parareter
States when execution is resumed: [held ;I

Cancel Help | Apply

2-8

Action Port

States when execution is resumed
Specifies how to handle internal states when the subsystem of
this Action Port block is reenabled.

Set this field to held (the default value) to make sure that the
Action subsystem states retain their previous values when the
subsystem is reenabled. Otherwise, set this field to reset if you
want the states of the Action subsystem to be reinitialized when
the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the
condition of the call is true after having been previously false.
In the following example, the Action Port blocks for both Action
subsystems A and B have the States when execution is
resumed parameter set to reset.

case[1]:
—f Ul i
defaut:
case: §1
SwitchiGass
defadt: {} 4
E

If case[1] is true, Action subsystem A is called. This implies
that the default condition is false. When B is later called for the
default condition, its states are reset. In the same way, Action
subsystem A’s states are reset when it is called right after Action
subsystem B is called.

Repeated calls to a case’s Action subsystem do not reset its states.
If A is called again right after a previous call to A, this does not

2-9

Action Port

reset A’s states because its condition, case[1], was not previously
false. The same applies to B.

Characteristics Sample Time Inherited from driving If or Switch Case
block

2-10

Algebraic Constraint

Purpose
Library

Description

Solve
) =0

Algorithm

Data Type
Support

Parameters
and

Dialog

Box

Constrain input signal to zero
Math Operations

The Algebraic Constraint block constrains the input signal f(z) to

zero and outputs an algebraic state z. The block outputs the value
that produces a zero at the input. The output must affect the input
through a direct feedback path, that is, the feedback path contains only
blocks with direct feedthrough. For example, you can specify algebraic
equations for index 1 differential-algebraic systems (DAEs).

The Algebraic Constraint block uses a dogleg trust-region algorithm to
solve algebraic loops [1], [2].

The Algebraic Constraint block accepts and outputs real values of type
double.

1 Function Block Parameters: Algebraic Conskrain x|

— Algebraic Constraint [mazk] [link]

Congtraing input zignal f(z] to zero and outputs an aloebraic state 2. This block
outputs the walue neceszany to produce a zero at the input. The output must affect
the input through some feedback path. Provide an initial guess of the output o
improve algebraic loop zolver efficiency.

— Parameter

[ritial Quess:
]

] Cancel Help Smply

Initial guess
An initial guess for the solution value. The default is 0.

2-11

Algebraic Constraint

Example By default, the Initial guess parameter is zero. You can improve the
efficiency of the algebraic-loop solver by providing an Initial guess for
the algebraic state z that is close to the solution value.

For example, the following model solves these equations:

z2 + z1 =1
z2 - z1 1

The solution is z2 = 1, z1 = 0, as the Display blocks show.

22

——— = »i+
N N] C N By ey
- Algebraic Canstraint Lisplay =1
Sum
z1 >
2yl Lm foem T la
—..._ Algebraic Constraintd Lisplay =2
Constant Sum
Characteristics pirect Feedthrough Yes
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Zero Crossing No
References [1] Garbow, B. S., K. E. Hillstrom, and J. J. Moré. User Guide for

MINPACK-1. Argonne, IL: Argonne National Laboratory, 1980.

2-12

Algebraic Constraint

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic
Equations. New York, NY: Gordon and Breach, 1970.

2-13

Assertion

2-14

Purpose
Library

Description

o

Check whether signal is nonzero
Model Verification

The Assertion block checks whether any of the elements of the signal at
its input is nonzero. If all elements are nonzero, the block does nothing.
If any element is zero, the block halts the simulation, by default, and
displays an error message. Use the block parameter dialog box to:

¢ Specify that the block should display an error message when the
assertion fails but allow the simulation to continue.

® Specify an M-code expression to evaluate when the assertion fails.

e Enable or disable the assertion.

You can also use the Model Verification block enabling setting on
the Data Validity diagnostics pane of the Configuration Parameters
dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification
library are intended to facilitate creation of self-validating models. For
example, you can use model verification blocks to test that signals do
not exceed specified limits during simulation. When you are satisfied
that a model is correct, you can turn error checking off by disabling the
verification blocks. You do not have to physically remove them from the
model. If you need to modify a model, you can temporarily turn the
verification blocks back on to ensure that your changes do not break
the model.

Note For information about how Real-Time Workshop® generated code
handles Model Verification blocks, see “Enabling Model Verification
Blocks” in the Real-Time Workshop User’s Guide.

Assertion

Data Type
Support

Parameters
and

Dialog

Box

The Assertion block accepts input signals of any dimensions and
any numeric data type supported by Simulink software, including
fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

(1 sink Block Parameters; Assertion x|

— Azzertion

Azzert that the input gignal iz non-zero. The default behavior in the abzence of a
callback iz to output an error meszage when the assertion fails.

— Parameter

¥ Enable azzertion

Simulation callback when azzertion fails:

¥ Stop simulation when aszertion Fails

Sample time [-1 for inhented):

|-

k. Cancel Help Spply

Enable assertion
Clearing this check box disables the Assertion block, that is,
causes the model to behave as if the Assertion block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all Assertion blocks in a model regardless of the setting
of this option.

2-15

Assertion

2-16

Simulation callback when assertion fails
An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails
Selecting this check box causes the Assertion block to halt the
simulation when the block’s input is zero and display an error
message in the Simulation Diagnostics viewer. Otherwise, the
block displays a warning message in the MATLAB Command
Window and continues the simulation.

Sample time (-1 for inherited)
Enter the time interval between sample time hits or specify
another appropriate sample time such as continuous. By default,
the block inherits its sample time based upon its context within
the model. See “Working with Sample Times” in the Simulink

documentation.

Characteristics Direct Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

Assignment

Purpose Assign values to specified elements of signal
Librclry Math Operations
Description The Assignment block assigns values to specified elements of the signal.
You can specify the indices of the elements to be assigned values either
o A by entering the indices in the block’s dialog box or by connecting an
I TP external indices source or sources to the block. The signal at the block’s

data port, labeled U, specifies values to be assigned to Y. The block
replaces the specified elements of Y with elements from the data signal.

Based on the value you enter for the Number of output dimensions
parameter, a table of index options is displayed. Each row of the table
corresponds to one of the output dimensions in Number of output
dimensions. For each dimension, you can define the elements of the
signal to work with. Specify a vector signal as a 1-D signal and a matrix
signal as a 2-D signal. When you configure the Assignment block for
multidimensional signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The
table in the Assignment block dialog changes to include one row for
each dimension. If you define each dimension with the following entries:
o1

Index Option, select Assign all
° 2

Index Option, select Index vector (dialog)

Index, enter [1 3 5]
3

Index Option, select Starting index (dialog)

Index, enter 4
° 4

Index Option, select Starting index (port)

2-17

Assignment

5

Index Option, select Index vector (port)

The assigned values will be Y(1:end,[1 3
5]1,4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4
and Idx5 are the input ports for dimensions 4 and 5.

The Assignment block’s data port is labeled U. The rest of this section
refers to the data port as U to simplify the explanation of the block’s
usage.

You can use the block to assign values to vector, matrix, or
multidimensional signals.

Iterated Assignment

You can use the Assignment block to assign values computed in a

For or While Iterator loop to successive elements of a vector, matrix,
or multidimensional signal in a single time step. For example, the
following model uses a For Iterator block to create a vector signal each
of whose elements equals 3*1 where i is the index of the element.

00 0] double
ol
Constant oublE U A " double)

I-:I::<1I
ain Aszsignment
Far. | double Dizplay

Iterator

Far tarataor

Tterated assignment uses an iterator (For or While) block to generate
the indices required by the Assignment block. On the first iteration of
an iterated assignment, the Assignment block copies the first input
(Y0) to the output (Y) and assigns the second input (U) to the output
Y(E)). On successive iterations, the Assignment block simply assigns
the current value of U to Y(E,), i.e., without first copying YO to Y. All of
this occurs in a single time step.

2-18

Assignment

Data Type
Support

Parameters
and

Dialog

Box

The data and initialization ports of the Assignment block accept signals
of any data type supported by Simulink software, including fixed-point
and enumerated data types. The external indices port accepts any
built-in data type, except Boolean data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

[Z]Function Block Parameters: Assignment x|

— Azzignment

Azzign values to specified elements of a multidimensional output signal. The index to each element is identified
frarm an input port o this dialog. Y'ou can choose the indexing method for each dimenszion by using the “lndex
Option' parameter.

r— Parameter

Mumber of output dimensions: |1

Index mode: IDne-based LI
Index Option Index Output Size
1 Ilndex wector [port) ;I from port <lds1:
4| | &
Iritizlize autput [7]: ISpecif_l,l zize for each dimension in table LI
Action if any output element is not assigned: INDne LI

Sample time [-1 for inherited): I-'I

0K I Cancel | Help | Apply |

Number of output dimensions
Enter the number of dimensions of the output signal.

Index mode
Specifies the indexing mode: One-based or Zero-based. If
One-based is selected, an index of 1 specifies the first element of

2-19

Assignment

the input vector, 2, the second element, and so on. If Zero-based
1s selected, an index of 0 specifies the first element of the input
vector, 1, the second element, and so on.

Index Option
Define, by dimension, how the elements of the signal are to be
indexed. From the list, choose:

® Assign all

This is the default. All elements are assigned.
® Index vector (dialog)

Enables the Index column. Enter the indices of elements.
® Index vector (port)

Disables the Index column. The index port defines the indices
of elements.

® Starting index (dialog)

Enables the Index column. Enter the starting index of the
range of elements to be assigned values.

e Starting index (port)
Disables the Index column. The index port defines the starting

index of the range of elements to be assigned values.

If you choose Index vector (port) or Starting index (port)
for any dimension in the table, you can specify the value for the
Initialize output (Y) parameter to be one of the following:

® Initialize using input port <YO>

® Specify size for each dimension in table
Otherwise, YO always initializes output port Y.

The Index and Output Size columns are displayed as relevant.

2-20

Assignment

Index

If the Index Option is Index vector (dialog), enter the index
of each element you are interested in.

If the Index Option is Starting index (dialog), enter the
starting index of the range of elements to be selected. The number
of elements from the starting point is determined by the size of
this dimension at U.

Output Size
Enter the width of the block output signal. If you select Specify
size for each dimension in table for the Initialize output
(Y) parameter, this column is enabled.

Initialize output (Y)
Specify how to initialize the output signal. The Initialize output
parameter appears only if you select Index vector (port) or
Starting index (port) for the Index Option parameter.

® Initialize using input port <YO>
The signal at the input port YO initializes the output.
® Specify size for each dimension in table

The block requires you to specify the width of the block’s
output signal in the Output Size parameter. If the output has
unassigned elements, the value of those elements is undefined.

Action if any output element is not assigned
Specifies whether to produce a warning or error message if you
have not assigned all output elements. Options include:

® Error
® Warning
® None

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “How to Specify the Sample

2-21

Assignment

Time” in the “How Simulink Works” chapter of the Simulink

documentation.

Characteristics Direct Feedthrough

Yes

Sample Time

Specified by Sample time parameter

Scalar Expansion

Yes

Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-22

Backlash

Purpose
Library

Description

il

Model behavior of system with play
Discontinuities

The Backlash block implements a system in which a change in input
causes an equal change in output. However, when the input changes
direction, an initial change in input has no effect on the output. The
amount of side-to-side play in the system is referred to as the deadband.
The deadband is centered about the output. This figure shows the
block’s initial state, with the default deadband width of 1 and initial
output of 0.

o0y 9 05 10 oyt

‘¢ deadhand -
A system with play can be in one of three modes:

® Disengaged - In this mode, the input does not drive the output and
the output remains constant.

® Engaged in a positive direction - In this mode, the input is increasing
(has a positive slope) and the output is equal to the input minus half
the deadband width.

¢ Engaged in a negative direction - In this mode, the input is decreasing
(has a negative slope) and the output is equal to the input plus half
the deadband width.

If the initial input is outside the deadband, the Initial output
parameter value determines whether the block is engaged in a positive
or negative direction, and the output at the start of the simulation is
the input plus or minus half the deadband width.

For example, the Backlash block can be used to model the meshing of
two gears. The input and output are both shafts with a gear on one
end, and the output shaft is driven by the input shaft. Extra space

2-23

Backlash

2-24

between the gear teeth introduces play. The width of this spacing is the
Deadband width parameter. If the system is disengaged initially,
the output (the position of the driven gear) is defined by the Initial
output parameter.

The following figures illustrate the block’s operation when the initial
input is within the deadband. The first figure shows the relationship
between the input and the output while the system is in disengaged
mode (and the default parameter values are not changed).

-10 03 0 0.3 1.0

i Input within deadband

The next figure shows the state of the block when the input has reached
the end of the deadband and engaged the output. The output remains
at its previous value.

-10 05 0 0.5 1.0

i Input reaches end of deadband (engaged|

The final figure shows how a change in input affects the output while
they are engaged.

-10 05 0 0.5 1.0

i Input moves in positive direction.

Cutput = Input - (deadband width/2)

If the input reverses its direction, it disengages from the output. The
output remains constant until the input either reaches the opposite end
of the deadband or reverses its direction again and engages at the same
end of the deadband. Now, as before, movement in the input causes
equal movement in the output.

Backlash

For example, if the deadband width i1s 2 and the initial output is 5, the
output, y, at the start of the simulation 1is as follows:

e 5 if the input, u, is between 4 and 6

e yu+1lifu<4

e y-1ifu>6

This sample model and the plot that follows it show the effect of a sine
wave passing through a Backlash block.

Badklash
ST

Sine Wave hod iz To orepace

The Backlash block parameters are unchanged from their default
values (the deadband width is 1 and the initial output is 0). Notice in
the plotted output following that the Backlash block output is zero until
the input reaches the end of the deadband (at 0.5). Now the input and
output are engaged and the output moves as the input does until the
input changes direction (at 1.0). When the input reaches 0, it again
engages the output at the opposite end of the deadband.

2-25

Backlash

Data Type
Support

2-26

na

0.6

0.4

nz

-0.2

-0.4

-0.6

-08

Input

Output

Input engages in positive
direction. Change in input
causes equal change in
output.

Input disengages. Change
in input does not affect
output.

Input engages in negative
direction. Change in input
causes equal change in
output.

Input disengages. Change
in input does not affect
output.

The Backlash block accepts and outputs real values of single, double,
and built-in integer data types.

Backlash

Parameters
and

Dialog

Box

=1 Function Block Parameters: Backlash x|

—Backlash

Model backlash where the deadband width spedfies the amount of play in the
system.

—Parameters

Deadband width:
E

Initial output:

o
¥ Enable zero-crossing detection

Sample time (-1 for inherited):

[-1

(0]4 Cancel Help Apply

Deadband width
Specify the width of the deadband. The default is 1.

Initial output
Specify the initial output value. The default value is 0. This
parameter is tunable. Simulink software does not allow the initial
output of this block to be inf or NaN.

Enable zero-crossing detection
Select to enable use of zero-crossing detection to detect
engagement with lower and upper thresholds. For more
information, see “How Blocks Work with Zero-Crossing
Detection” in the “How Simulink Works” chapter of the Simulink
documentation.

2-27

Backlash

2-28

Sample time (-1 for inherited)
Specify the time interval between samples. To inherit the sample
time, set this parameter to -1. See “How to Specify the Sample
Time” in the “How Simulink Works” chapter of the Simulink

documentation.

Characteristics Direct Feedthrough

Yes

Sample Time

Specified in the Sample time parameter

Scalar Expansion

Yes

Dimensionalized

Yes

Zero-Crossing Detection

Yes, if you select Enable zero-crossing
detection

Bad Link
|

Purpose Indicate unresolved reference to library block

Description This block indicates an unresolved reference to a library block (see
“Creating a Reference Block”). You can use this block’s parameter dialog
L box to fix the reference to point to the actual location of the library block.

)I Bad Link

Parameters
and

Dialog

Box

=1 Function Block Parameters: LineA x|

—Reference

IInresalved libramy reference.

—Parameterz

Source block:
{mylib/Line

Source type:

k. Cancel Apply

Source block
Path of the library block that this link represents. To fix a bad
link, edit this field to reflect the actual path of the library block.
Then select Apply or OK to apply the fix and close the dialog box.

Source type
Type of library block that this link represents.

2-29

Band-Limited White Noise

2-30

Purpose
Library

Description

EY;

Algorithm

Introduce white noise into continuous system
Sources

The Band-Limited White Noise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

The primary difference between this block and the Random Number
block is that the Band-Limited White Noise block produces output at a
specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat
power spectral density (PSD), and a total energy of infinity. In practice,
physical systems are never disturbed by white noise, although white
noise is a useful theoretical approximation when the noise disturbance
has a correlation time that is very small relative to the natural
bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by
using a random sequence with a correlation time much smaller than the
shortest time constant of the system. The Band-Limited White Noise
block produces such a sequence. The correlation time of the noise is the
sample rate of the block. For accurate simulations, use a correlation
time much smaller than the fastest dynamics of the system. You can
get good results by specifying

¢ L L o
c ll:ll:lf.'?]ﬂ.'l.
where f,___is the bandwidth of the system in rad/sec.

To produce the correct intensity of this noise, the covariance of the noise
is scaled to reflect the implicit conversion from a continuous PSD to a
discrete noise covariance. The appropriate scale factor is 1/tc, where

tc is the correlation time of the noise. This scaling ensures that the
response of a continuous system to the approximate white noise has the
same covariance as the system would have to true white noise. Because
of this scaling, the covariance of the signal from the Band-Limited

Band-Limited White Noise

Data Type
Support

Parameters
and

Dialog

Box

White Noise block is not the same as the Noise power (intensity)
dialog box parameter. This parameter is actually the height of the PSD
of the white noise. This block approximates the covariance of white
noise as the Noise power divided by ic.

The Band-Limited White Noise block outputs real values of type double.

=1 source Block Parameters: Band-Limite x|

—Band-Limited White Moise. (mask) (ink)

The Band-Limited White Moise block generates normally distributed
random numbers that are suitable for use in continuous or hybrid
systems.

—Parameters

Moise power:
[[0.4]

Sample time:

0.1

Seed:

| [23341]

[w Interpret vector parameters as 1-D

oK Cancel Help

Opening this dialog box causes a running simulation to pause. See
“Changing Source Block Parameters During Simulation” in the
“Working with Blocks” chapter of the Simulink documentation.

2-31

Band-Limited White Noise

Noise power
The height of the PSD of the white noise. The default valueis 0.1.

Sample time
The correlation time of the noise. The default value is 0.1. See
“How to Specify the Sample Time” in the “How Simulink Works”
chapter of the Simulink documentation.

Seed
The starting seed for the random number generator. The default

value is 23341.

Interpret vector parameters as 1-D
Output a 1-D array if the block’s parameters are vectors.
Otherwise, output a 2-D array one of whose dimensions is 1. See
“Determining the Output Dimensions of Source Blocks” in the
“Working with Signals” chapter of the Simulink documentation.

Characteristics Sample Time Specified in the Sample time parameter
Scalar Expansion Yes, of Noise power and Seed
parameters and output
Dimensionalized Yes
Zero Crossing No

2-32

Bias

Purpose
Library

Description

oA u+0.0 p

Data Type
Support

Parameters
and

Dialog

Box

Add bias to input
Math Operations

The Bias block adds a bias, or offset, to the input signal according to

Y = U+ Bias
where U is the block input and Y is the output.

The Bias block accepts and outputs real or complex values of any
numeric data type supported by Simulink software, except Boolean.
The Bias block supports fixed-point data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

1 Function Block Parameters: Bias x|
— Bia

Add biaz ta input,
= +Biaz.

— Parameter

Bias:

[

[T Saturate on integer overflow

] Cancel Help Apply

Bias
Specify the value of the offset to add to the input signal.

2-33

Bias

2-34

Saturate on integer overflow
If the input (and hence the output) is an integer data type (for
example, int8) and the data type cannot accommodate the
output signal, selecting this option causes the block to output the
maximum value allowed by the data type. Otherwise, in this case,
the block outputs the result of using twos-complement arithmetic
to add the input to the output, i.e., the value is the result of
adding the bias to the input modulo the maximum representable
value of the data type.

Characteristics Direct Feedthrough Yes
Sample Time Inherited from the driving block
Scalar Expansion Yes
States 0
Dimensionalized Yes
Zero Crossing No

Bit Clear

Purpose
Library

Description

Clear
bit 0

b
W

Data Type
Support

Parameters
and

Dialog

Box

Examples

Set specified bit of stored integer to zero
Logic and Bit Operations
The Bit Clear block sets the specified bit, given by its index, of the

stored integer to zero. Scaling is ignored.

You can specify the bit to be set to zero with the Index of bit parameter,
where bit zero is the least significant bit.

The Bit Clear block supports Simulink integer, fixed-point, and Boolean
data types. The block does not support true floating-point data types
or enumerated data types.

=] Function Block Parameters: Bit Clear x|

— Bit Clear [mask] [link]

Clear ith bit of the stared integer to 0. Scaling iz ignored.

— Parameter

|ndex af bit [0 is leazt significant]:
]

] Cancel Help Apply

Index of bit
Index of bit where bit 0 is the least significant bit.

If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of
constants 2.2[0 1 2 3 4] is represented in binary as [00001 00010

2-35

Bit Clear

00100 01000 10000]. With bit 2 set to 0, the result is [00001 00010
00000 01000 10000], which is represented in decimal as [1 2 0 8 16].

Characteristics Direct Feedthrough Yes
Scalar Expansion Yes
See Also Bit Set

2-36

Bit Set

Purpose
Library

Description

Set
1 bito [

Data Type
Support

Parameters
and

Dialog

Box

Examples

Set specified bit of stored integer to one
Logic and Bit Operations
The Bit Set block sets the specified bit of the stored integer to one.

Scaling is ignored.

You can specify the bit to be set to one with the Index of bit parameter,
where bit zero is the least significant bit.

The Bit Set block supports Simulink integer, fixed-point, and Boolean
data types. The block does not support true floating-point data types
or enumerated data types.

=] Function Block Parameters: Bit Sek x|

— Bit Set [mazk] [link]

Set ith bit of the stared integer to 1. Scaling iz ignored.

— Parameter

|ndex af bit [0 is leazt significant]:
]

] Cancel Help Apply

Index of bit
Index of bit where bit 0 is the least significant bit.

If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of
constants 2.7[0 1 2 3 4] is represented in binary as [00001 00010

2-37

Bit Set

00100 01000 10000]. With bit 2 set to 1, the result is [00101 00110
00100 01100 10100], which 1s represented in decimal as [5 6 4 12 20].

Characteristics Direct Feedthrough Yes
Scalar Expansion Yes
See Also Bit Clear

2-38

Bitwise Operator

Purpose
Library

Description

Bitwise
3y AND p
OxDg

Restrictions
on Block
Operations

Perform specified bitwise operation on inputs

Logic and Bit Operations

The Bitwise Operator block performs the specified bitwise operation

on its operands.

Unlike the logic operations performed by the Logical Operator block,
bitwise operations treat the operands as a vector of bits rather than
a single number. You select the bitwise Boolean operation from the

Operator parameter list. The supported operations are given below.

Operation Description

AND TRUE if the corresponding bits are all TRUE

OR TRUE if at least one of the corresponding bits is
TRUE

NAND TRUE if at least one of the corresponding bits is
FALSE

NOR TRUE if no corresponding bits are TRUE

XOR TRUE if an odd number of corresponding bits are
TRUE

NOT TRUE if the input is FALSE (available only for

single input)

The Bitwise Operator block does not support shift operations. For shift
operations, use the Shift Arithmetic block.

When configured as a multi-input XOR gate, this block performs an
addition modulo-two operation as mandated by the IEEE® Standard
for Logic Elements.

2-39

Bitwise Operator

2-40

Restrictions
on Inputs
and
Outputs

The size of the output of the Bitwise Operator block depends on the
number of inputs, their vector size, and the selected operator:

® The NOT operator accepts only one input, which can be a scalar or
a vector. If the input is a vector, the output is a vector of the same
size containing the bitwise logical complements of the input vector
elements.

® For a single vector input, the block applies the operation (except the
NOT operator) to all elements of the vector. If a bit mask is not
specified, then the output is a scalar. If a bit mask is specified, then
the output is a vector.

® For two or more inputs, the block performs the operation between all
of the inputs. If the inputs are vectors, the operation is performed
between corresponding elements of the vectors to produce a vector
output.

Tip If you do not select the Use bit mask check box, then the block can
accept multiple inputs. You select the number of input ports from the
Number of input ports parameter. All inputs must have the same
base data type.

If you select the Use bit mask check box, then a single input is
associated with the bit mask you specify from the Bit Mask parameter.
You specify the bit mask using any valid MATLAB expression. For
example, you can specify the bit mask 00100101 as 2°5+272+2"0.
Alternatively, you can use strings to specify a hexadecimal bit mask
such as {'FE73"', '12AC'}. If the bit mask is larger than the input
signal data type, then it is ignored.

Tip The output data type, which is inherited from the driving block,
should represent zero exactly. Data types that satisfy this condition
include signed and unsigned integers and any floating-point data type.

Bitwise Operator

Bit Set

and Bit
Clear
Operations

Data Type
Support

You can use the bit mask to perform a bit set or a bit clear on the input.
To perform a bit set, set the Operator parameter list to OR and create
a bit mask with a 1 for each corresponding input bit that you want to
set to 1. To perform a bit clear, set the Operator parameter list to
AND and create a bit mask with a 0 for each corresponding input bit
that you want to set to 0.

Suppose you want to perform a bit set on the fourth bit of an 8-bit input
vector. The bit mask would be 00010000, which you can specify as 2°4
in the Bit mask parameter. To perform a bit clear, the bit mask would
be 11101111, which you can specify as 2°7+276+2°5+2°3+2°2+2°1+2"0
in the Bit mask parameter.

The Bitwise Operator block supports Simulink integer, fixed-point, and
Boolean data types. The block does not support true floating-point data
types or enumerated data types.

2-41

Bitwise Operator

Parameters
and

Dialog

Box

2-42

E! Function Block Parameters: Bitwise Dperator

— Bitwize Operatar [mask] (link]

Perfarm the specified bitwize operation on the inputz. The output data type
ghould represent zero exacty.

— Parameter

Dperator; I.-'l‘-.ND LI
¥ Usze bit mask ...

Murnber of input parts:;

|1

Bit Maszk
[bin2decr 1011001
Treat mazk az: IStu:ureu:I |nteger ;I
] Cancel Help | Apply
Operator
The bitwise logical operator associated with the specified
operands.

Use bit mask
Specify if the bit mask is used (single input only).

Number of input ports
The number of inputs.

Bitwise Operator

Bit Mask

The bit mask to associate with a single input. The Bit Mask
parameter is converted from a double to the input data type offline
using round-to-nearest and saturation.

Treat mask as

Treat the mask as a real-world value or a stored integer.

Based on the encoding scheme described in “Scaling” in the
Simulink Fixed Point documentation, Real World Value treats
the mask as V =S@ + B where S is the slope and B is the bias.
Stored Integer treats the mask as a stored integer, Q.

Examples The following fixed-point model shows how the Bitwise Operator block

works when inputs are unsigned.

105
01101001
Constant
- Bitwize
188 A =T = | R
10111100 [- :
Constant Bitwise Data Type Conversion Display
Orperator
45
a0101101
Constant2

Each Constant block outputs an 8-bit unsigned integer (uint8). The
results for all logic operations are shown below.

Operation Binary Value Decimal Value
AND 00101000 40
OR 11111101 253

2-43

Bitwise Operator

2-44

Operation Binary Value Decimal Value
NAND 11010111 215

NOR 00000010 2

XOR 11111000 248

NOT N/A N/A

The following fixed-point model shows how the Bitwise Operator block
works when inputs are signed.

105
01101001
Constant
- Bitwise
120 B AND |—p d‘f;ﬁ'e -
01111000 [- :
Constant Bitwisz Data Type Conversion Display
Operator
4R
11010011
Constant2

Each Constant block outputs an 8-bit signed integer (int8). The results

for all logic operations are shown below.

Operation Binary Value Decimal Value
AND 01000000 64

OR 11111011 -5

NAND 10111111 -65

NOR 00000100 4

XOR 11000010 -62

NOT N/A N/A

Bitwise Operator
|

Characteristics pirect Feedthrough Yes
Scalar Expansion Yes, of inputs
Multidimensionalized Yes

2-45

Block Support Table

2-46

Purpose
Library

Description

Block Support
Table

Data Type
Support

Parameters
and

Dialog

Box

Characteristics

View data type support for Simulink blocks

Model-Wide Utilities

The Block Support Table block enables you to access a table that
summarizes the data types supported by the blocks in the Simulink
libraries. Double-click the block to view the table.

Not applicable.

E! Block Parameters: Block Support Table

Block Suppart Table [mazk] [link]

Double-clicking the block will launch the Simulink Block Data Tepe Support

T able.

k. Cancel

Help

Apply

Not applicable.

Bus Assignment

Purpose
Library

Description

Bu=
Bus [
= zignal

Data Type
Support

Replace specified bus elements
Signal Routing

The Bus Assignment block assigns signals connected to its Assignment
input ports (:=) to specified elements of the bus connected to its Bus
input port, replacing the signals previously assigned to those elements.
The change does not affect the signals themselves, it affects only

the composition of the bus. Signals not replaced are unaffected by

the replacement of other signals. See “Using Composite Signals” for
information about buses.

Connect the bus to be changed to the first input port. Use the block’s
dialog box to specify the bus elements to be replaced. The block displays
an assignment input port for each such element. The signal connected
to the assignment port must have the same structure, data type, and
numeric type as the bus element to which it corresponds.

You cannot use the Bus Assignment block to replace a bus that is nested
within another bus. Thus no element selected in the dialog box for
replacement can be a bus, and no signal connected to an Assignment
port can be a bus.

All signals in a nonvirtual bus must have the same sample time, even if
the elements of the associated bus object specify inherited sample times.
Any bus operation that would result in a nonvirtual bus that violates
this requirement generates an error. All buses and signals input to a
Bus Assignment block that modifies a nonvirtual bus must therefore
have the same sample time. You can use a Rate Transition block to
change the sample time of an individual signal, or of all signals in a
bus, to allow the signal or bus to be included in a nonvirtual bus. See
“Virtual and Nonvirtual Buses” for more information.

The bus input port of the Bus Assignment block accepts and outputs
real or complex values of any data type supported by Simulink software,
including fixed-point and enumerated data types. The assignment
input ports accept the same data types as the bus elements to which
they correspond.

2-47

Bus Assignment

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

PCI ra mefel‘s E! Block Parameters: Bus Assignment : x|
a nd —Buzhzzighment
D- I Thiz block acceptz a bug az input and allows zignals in the buz to be assigned with new signal values. The left istbox

1a Og shows the zignalzs in the input bus, Use the Select button to select the signals that are to be assigned. The right listbox
Box shows the zelectionz. Usze the Up, Down, or Femove button to reorder the selections.

—Parameters

Sighals in the bus | B | Signals that are being assigned Up
zighall
Selects> | Bawn
Refresh | Remove

il

Ok I Lancel Help Apply

Signals in the bus
Displays the names of the signals contained by the bus at the
block’s Bus input port. Click any item in the list to select it. To
find the source of the selected signal, click the adjacent Find
button. Simulink software opens the subsystem containing the
signal source and highlights the source’s icon. Use the Select>>
button to move the currently selected signal into the adjacent
list of signals to be assigned values (see Signals that are
being assigned below). To refresh the display (e.g., to reflect
modifications to the bus connected to the block), click the adjacent
Refresh button.

Signals that are being assigned
Lists the names of bus elements to be assigned values. This block
displays an assignment input port for each bus element in this

2-48

Bus Assignment

list. The label of the corresponding input port contains the name
of the element. You can order the signals by using the Up, Down,
and Remove buttons. Port connectivity is maintained when the
signal order is changed.

Three question marks (???) before the name of a bus element
indicate that the input bus no longer contains an element of
that name, for example, because the bus has changed since the
last time you refreshed the Bus Assignment block’s input and
bus element assignment lists. You can fix the problem either by
modifying the bus to include a signal of the specified name or by
removing the name from the list of bus elements to be assigned
values.

Characteristics Multidimensionalized Yes

See Also

“Using Composite Signals”

“Using Buses”

Bus Creator

Bus Selector

Bus to Vector

Simulink.
Simulink.
Simulink.
Simulink.
Simulink.

Simulink.

Bus
Bus.cellToObject
Bus.createObject
BusElement
Bus.objectToCell

Bus.save

2-49

Bus Creator

Purpose Create signal bus

Librclry Signal Routing

Description The Bus Creator block combines a set of signals into a bus. To bundle
a group of signals with a Bus Creator block, set the block’s Number
of inputs parameter to the number of signals in the group. The block
displays the number of ports that you specify. Connect the signals to be

grouped to the resulting input ports. See “Using Composite Signals” for
information about buses.

The signals in the bus will be order from the top input port to the bottom
input port. See “How to Rotate a Block” in the Simulink documentation
for a description of the port order for various block orientations.

You can connect any type of signal to the inputs, including other bus
signals. To ungroup the signals, connect the block’s output port to
a Bus Selector port.

Note Simulink software hides the name of a Bus Creator block when
you copy it from the Simulink library to a model.

Naming Signals

The Bus Creator block assigns a name to each signal on the bus that
it creates. This allows you to refer to signals by name when searching
for their sources (see “Browsing Bus Signals” on page 2-51) or selecting
signals for connection to other blocks. The block offers two bus signal
naming options. You can specify that each signal on the bus inherits
the name of the signal connected to the bus (the default) or that each
input signal must have a specific name.

To specify that bus signals inherit their names from input ports, select
Inherit bus signal names from input ports from the list box on
the block’s parameter dialog box. The names of the inherited bus
signals appear in the Signals in bus list box.

2-50

Bus Creator

1

Constant

1

Constantl

1

Gain

Constanti

mmommmE T .
ammmmm="= Signals it bus:

Gain H

[

Eerame selecied sigmal; I

Creatorl

The Bus Creator block generates names for bus signals whose
corresponding inputs do not have names. The names are of the form
signaln, where n is the number of the port to which the input signal is
connected.

You can change the name of any signal by editing its name on the block
diagram or in the Signal Properties dialog box. If you change a name
in this way while the Bus Creator block’s dialog box is open, you must
close and reopen the dialog box or click the Refresh button next to the
Signals in bus list to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require
input signal names to match signals below from the list box in
the block’s parameter dialog box. The block’s parameter dialog box
displays the names of the signals currently connected to its inputs, or a
generated name (for example, signal2) for an anonymous input. You
can now use the parameter dialog box to change the required names

of the block’s inputs.

To change the required signal name, select the signal in the Signals in
bus list. The selected signal’s name appears in the Rename selected
signal field. Edit the name in the field and click Apply or OK.

Browsing Bus Signals

The Signals in bus list on a Bus Creator block’s parameter dialog box
displays a list of the signals entering the block. A plus sign (+) next to
a signal indicates that the signal is itself a bus. You can display its

2-51

Bus Creator

contents by clicking the plus sign. If the expanded input includes bus
signals, plus signs appear next to the names of those bus signals. You
can expand them as well. In this way, you can view all signals entering
the block, including those entering via buses. To find the source of
any signal entering the block, select the signal in the Signals in bus
list and click the adjacent Find button. Simulink software opens the
subsystem containing the signal source, if necessary, and highlights
the source’s icon.

Data Type The Bus Creator block accepts and outputs real or complex values of
Suppori‘ any data type supported by Simulink software, including fixed-point
and enumerated data types.

For a discussion on the data types supported by Simulink software,
refer to “Data Types Supported by Simulink” in the “Working with
Data” chapter of the Simulink documentation.

2-52

Bus Creator

Pa ra meters E! Function Block Parameters: Bus Creator x|
and ~BusCreator
M This block creates a bus signal from its inputs.
Dlalog is block creates a bus signal from its inputs
Box —Parameters
Inherit bus signal names from input ports ;I

MNumber of inputs: |2

Rename selected signal:

I~ Specify properties via bus object

Bus object: IBusObjec:t
I~ Output a5 nonvitual bus

0K Cancel

2-53

Bus Creator

2-54

Signal naming options
Assign input signal names to the corresponding bus signals.

Settings
Default: Inherit bus signal names from input ports

Inherit bus signal names from input ports
Assign input signal names to the corresponding bus signals.

Require input signal names to match signals below
Inputs must have the names listed in the Signals in bus list.

Dependencies

Selecting Require input signal names to match signals below
enables Rename selected signal.

Command-Line Information

See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

See the Bus Creator block reference page for more information.

Bus Creator

Number of inputs

Specify the number of input ports on this block.

Settings

Default: 2

To bundle a group of signals, enter the number of signals in the group.

Command-Line Information
See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also
See the Bus Creator block reference page for more information.

2-55

Bus Creator

2-56

Signals in bus

Show the signals in the output bus.

Settings

When you modify the Number of inputs parameter, click Refresh to

update the list of signals.

Tips

® A plus sign (+) next to a signal name indicates that the signal is itself
a bus. Click the plus sign to display the subsidiary bus signals.

® (Click the Refresh button to update the list after editing the name
of an input signal.

e (Click the Find button to highlight the source of the currently selected
signal.

Command-Line Information

See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

See the Bus Creator block reference page for more information.

Bus Creator

Rename selected signal

List the name of the signal currently selected in the Signals in bus list
when you select the Require input signal names to match signals
below option.

Settings

Default: '

Edit this field to change the name of the currently selected signal.

Dependencies

This parameter is enabled when you select Require input signal
names to match signals below as the Parameters; and signal1i or
signal?2 as the Signals in bus.

Command-Line Information

See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

See the Bus Creator block reference page for more information.

2-57

Bus Creator

2-58

Specify properties via bus object

Use a bus object to define the structure of the bus created by this block.
Settings
Default: Off

I7On

Use a bus object to define the structure of the bus created by
this block.

I off
Do not use a bus object to define the structure of the bus created
by this block.

Tips

Selecting this parameter is required when creating a nonvirtual bus,
and optional when creating a virtual bus.

Command-Line Information

See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

See the Bus Creator block reference page for more information.

Bus Creator

Bus object

Specify the name of the bus object used to define the structure of the
bus created by this block.

Settings

Default: BusObject

The default value is a dummy bus object name. Type in the name of the
bus object you want to use. If you need to create or change a bus object,
click Edit to the left of the Bus object field to open the Simulink Bus
Editor. See “Using the Bus Editor” for more information.

Tips

At the beginning of a simulation or when you update the model’s
diagram, Simulink software checks whether the signals connected to
this Bus Creator block have the specified structure. If not, Simulink
software displays an error message.

Dependencies

This parameter is enabled by Specify properties via bus object .

Command-Line Information
See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also
See the Bus Creator block reference page for more information.

2-59

Bus Creator

Output as nonvirtual bus

Output a nonvirtual bus.

Settings
Default: Off

I7On

Output a nonvirtual bus.

I off

Output a virtual bus.

Tips

Select this option if you want code generated from this model to use
a C structure to define the structure of the bus signal output by
this block.

All signals in a nonvirtual bus must have the same sample time, even
if the elements of the associated bus object specify inherited sample
times. Any bus operation that would result in a nonvirtual bus that
violates this requirement generates an error. Therefore, if you select
this option all signals entering the Bus Creator block must have the
same sample time. You can use a Rate Transition block to change the
sample time of an individual signal, or of all signals in a bus, to allow
the signal or bus to be included in a nonvirtual bus.

Dependencies
This parameter is enabled by Specify properties via bus object .

Command-Line Information
See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

2-60

See the Bus Creator block reference page for more information.

See “Virtual and Nonvirtual Buses” for more information.

Bus Creator

Characteristics Multidimensionalized Yes

See Also

e “Using Composite Signals”

“Using Buses”

Bus Assignment

Bus Selector

Bus to Vector

Simulink.
Simulink.
Simulink.
Simulink.
Simulink.

Simulink.

Bus
Bus.cellToObject
Bus.createObject
BusElement
Bus.objectToCell

Bus.save

2-61

Bus Selector

Purpose Select signals from incoming bus

Librclry Signal Routing

Description The Bus Selector block outputs a specified subset of the elements of
the bus at its input. The block can output the specified elements as
separate signals or as a new bus. See “Using Composite Signals” for
information about buses.

When the block outputs separate elements, it outputs each element
from a separate port from top to bottom of the block. See “How to Rotate
a Block”for a description of the port order for various block orientations.
See “Using Composite Signals” for information about buses.

Note Simulink software hides the name of a Bus Selector block when
you copy it from the Simulink library to a model.

Caution

The MathWorks recommends not using Bus Selector blocks in library
blocks, because such use complicates changing the library blocks and
increases the likelihood of errors. See “Buses and Libraries” for more

information.
Data Type A Bus Selector block accepts and outputs real or complex values of any
Suppart data type supported by Simulink software, including fixed-point and

enumerated data types.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-62

Bus Selector

Parameters
and

Dialog

Box

E! Function Block Parameters: Bus Selector

x|

—BuzSelectar

Thiz block accepts a bus as input which can be created from a Mus, Bus Creatar, Bus Selector or a block that defines its
output using a bus object. The left listhox shows the signalz in the input bus. Uze the Select button to select the output
signals. The right listbox shows the selections. Use the Up, Down, or Remove button to reorder the selections. Check M used
output’ to multiples the output.

—Parameters

Signals in the bus | Fitidl | Selected signals P

7 zignall

Select:> | 297 signal2 Dsiin
Refresh | e

d§

[~ Output as bus

aK I Cancel Help Spply

2-63

Bus Selector

2-64

Signals in the bus

Shows the signals in the input bus.

Settings

To refresh the display to reflect modifications to the bus connected to
the block, click Refresh.

Tips

e Use Select>> to select signals to output.

e To find the source of any signal entering the block, select the signal in
the list and click Find. The Simulink software opens the subsystem
containing the signal source, and highlights the source’s icon.

Command-Line Information

See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

See the Bus Selector block reference page for more information.

Bus Selector

Selected signals

Shows the signals to be output.

Settings

Default: signall,signal2

You can change the list by using the Up, Down, and Remove buttons.
Tips

® Port connectivity is maintained when the signal order is changed.

e [f an output signal listed in the Selected signals list box is not an
input to the Bus Selector block, the signal name is preceded by three
question marks (???).

Command-Line Information
See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also
See the Bus Selector block reference page for more information.

2-65

Bus Selector

2-66

Characteristics

See Also

Output as bus

Output the selected elements as a bus.
Settings
Default: Off

I7On

Output the selected elements as a bus.

I off
Output the selected elements as standalone signals, each from an
output port that is labeled with the corresponding element’s name.

Tips

The output bus is virtual if the input bus is virtual, or nonvirtual if
the input bus is nonvirtual.

Command-Line Information

See “Block-Specific Parameters” on page 8-96 for the command-line
information.

See Also

® See the Bus Selector block reference page for more information.

e See “Virtual and Nonvirtual Buses” for more information.

Multidimensionalized Yes

“Using Composite Signals”
e “Using Buses”

® Bus Assignment

® Bus Creator

® Bus to Vector

® Simulink.Bus

Bus Selector

Simulink.
Simulink.
Simulink.
Simulink.

Simulink.

Bus.cellToObject
Bus.createObject
BusElement

Bus.objectToCell

Bus.save

2-67

Bus to Vector

Purpose Convert virtual bus to vector

Librclry Signal Attributes

Description The Bus to Vector block converts a virtual bus signal to a vector signal.
The input bus signal must consist of scalar, 1-D, or either row or column

EI_ vectors having the same data type, signal type, and sampling mode. If
the input bus contains row or column vectors, this block outputs a row

or column vector, respectively; otherwise, it outputs a 1-D array.

Use the Bus to Vector block only to replace an implicit bus-to-vector
conversion with an equivalent explicit conversion. See “Bus signal
treated as vector” and “Correcting Buses Used as Muxes” for more
information.

Note Simulink software hides the name of a Bus to Vector block when
you copy it from the Simulink library to a model.

Data Type The Bus to Vector block accepts and outputs real or complex values of
Suppart any data type supported by Simulink software, including fixed-point
and enumerated data types.

For a discussion of the data types supported by Simulink software, refer
to “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-68

Bus to Vector

Parameters 1 Function Block Parametets: Bus to Yector x|
and
. Bug to Yector

Dialog

Box Corwert a wirtual bug zignal to a wector zignal. The input bus zignal must consigt of
zcalar, 1-0, or either row or column vectars having the zame data tupe, zignal tupe,
and zampling mode. If the input buz contains mw or column vectars, this block
outputz a row or column vector, respectively; othenwize, it outputz a 1-0 amay.

ok Cancel Help Apply
This block has no user-accessible parameters.
Characteristics \[yltidimensionalized Yes
See Also ¢ “Using Composite Signals”

¢ “Using Buses”

¢ Avoiding Mux/Bus Mixtures

¢ Bus Assignment

¢ Bus Creator

® Bus Selector

e Simulink.BlockDiagram.addBusToVector
e Simulink.Bus

® Simulink.Bus.cellToObject

® Simulink.Bus.createObject

e Simulink.BusElement

® Simulink.Bus.objectToCell

2-69

Bus to Vector

® Simulink.Bus.save

2-70

Check Discrete Gradient

Purpose

Library

Description

Y

Data Type
Support

Check that absolute value of difference between successive samples of
discrete signal is less than upper bound

Model Verification

The Check Discrete Gradient block checks each signal element at its
input to determine whether the absolute value of the difference between
successive samples of the element is less than an upper bound. Use the
block parameter dialog box to specify the value of the upper bound (1
by default). If the verification condition is true, the block does nothing.
Otherwise, the block halts the simulation, by default, and displays an
error message in the Simulation Diagnostics viewer.

The Model Verification block enabling setting under Debugging
on the Data Validity diagnostics pane of the Configuration Parameters
dialog box lets you enable or disable all model verification blocks,
including Check Discrete Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in

the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code
handles Model Verification blocks, see “Enabling Model Verification
Blocks” in the Real-Time Workshop User’s Guide.

The Check Discrete Gradient block accepts single, double, int8,
int16, and int32 input signals of any dimensions.

2-71

Check Discrete Gradient

Parameters [=1sink Block Parameters: Check Discrete Gradien x|

and Checks_Gradient [maszk)] [link]
Dialog ecks_Gradient [maszk] [link]
Box Azzert that the abzolute value of the difference bebween succeszsive zamples of a

dizcrete signal iz less than an upper bound.

— Parameter
b axirnum gradient:
[1
¥ Enable assertion

Simulation callback when azsertion fails [aptional];

¥ Stop simulation when assertion Fails

[T Output azzertion zignal

Select icon wpe: |araphic ;I

k. Cancel Help | Spply

Maximum gradient
Upper bound on the gradient of the discrete input signal.

Enable assertion

Clearing this check box disables the Check Discrete Gradient
block, that is, causes the model to behave as if the block did
not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Discrete Gradient blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-code expression to evaluate when the assertion fails.

2-72

Check Discrete Gradient

Stop simulation when assertion fails
Selecting this check box causes the Check Discrete Gradient block
to halt the simulation when the block’s output is zero and display
an error message in the Simulink Simulation Diagnostics viewer.
Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal
Selecting this check box causes the Check Discrete Gradient block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data check box on the
Optimization pane of the Configuration Parameters dialog box.
Otherwise the data type of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-73

Check Dynamic Gap

2-74

Purpose

Library

Description

Data Type
Support

Check that gap of possibly varying width occurs in range of signal’s
amplitudes

Model Verification

The Check Dynamic Gap block checks that a gap of possibly varying
width occurs in the range of a signal’s amplitudes. The test signal

is the signal connected to the input labeled sig. The inputs labeled
min and max specify the lower and upper bounds of the dynamic gap,
respectively. If the verification condition is true, the block does nothing.
If not, the block halts the simulation, by default, and displays an error
message.

The Check Dynamic Gap block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Note For information about how Real-Time Workshop generated code
handles Model Verification blocks, see “Enabling Model Verification
Blocks” in the Real-Time Workshop User’s Guide.

The Check Dynamic Gap block accepts input signals of any dimensions
and of any numeric data type supported by Simulink software. All three
input signals must have the same dimension and data type. If the
inputs are nonscalar, the block checks each element of the input test
signal to the corresponding elements of the reference signals.

Check Dynamic Gap

Parameters
and

Dialog

Box

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data
chapter of the Simulink documentation.

[1sink Block Parameters; Check Dynamic Gap x|

— Checks_DGap [maszk] [link]

”»

Azzert that the input signal ‘sig' iz always lezs than the lower bound 'min' or greater
than the upper bound ‘'max’. The first input is the upper-bound of the gap; the
gecond input, the lower-bound; the third input, the test signal.

— Parameter

¥ Enable aszertion

Simulation callback when azsertion fails [optional];

¥ Stop simulation when assertion Fails

[T Output assertion zignal

Select icon wpe: |araphic ;I

(] 4 Cancel Help | Apply

Enable assertion
Clearing this check box disables the Check Dynamic Gap block,
that is, causes the model to behave as if the block did not
exist. The Model Verification block enabling setting under
Debugging on the Data Validity diagnostics pane of the
Configuration Parameters dialog box allows you to enable or
disable all model verification blocks in a model, including Check
Dynamic Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails
An M-code expression to evaluate when the assertion fails.

2-75

Check Dynamic Gap

2-76

Characteristics

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Gap block to
halt the simulation when the block’s output is zero and display an
error message in the Simulation Diagnostics viewer. Otherwise,
the block displays a warning message in the MATLAB Command
Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Gap block
to output a Boolean signal that is true (1) at each time step if
the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data check box on the
Optimization pane of the Configuration Parameters dialog box.
Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents

the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Direct Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

Check Dynamic Lower Bound

Purpose Check that one signal is always less than another signal
Librclry Model Verification

Description The Check Dynamic Lower Bound block checks that the amplitude of a

reference signal is less than the amplitude of a test signal at the current

min time step. The test signal is the signal connected to the input labeled sig.
L:.ﬂ:f%h If the verification condition is true, the block does nothing. If not, the
block halts the simulation, by default, and displays an error message.

zig

The Check Dynamic Lower Bound block and its companion blocks in
the Model Verification library are intended to facilitate creation of
self-validating models. For example, you can use model verification
blocks to test that signals do not exceed specified limits during
simulation. When you are satisfied that a model is correct, you can
turn error checking off by disabling the verification blocks. You do not
have to physically remove them from the model. If you need to modify
a model, you can temporarily turn the verification blocks back on to
ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code
handles Model Verification blocks, see “Enabling Model Verification
Blocks” in the Real-Time Workshop User’s Guide.

Data Type The Check Dynamic Lower Bound block accepts input signals of any

Support numeric data type supported by Simulink software. The test and the
reference signals must have the same dimensions and data type. If the
inputs are nonscalar, the block checks each element of the input test
signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

2-77

Check Dynamic Lower Bound

2-78

Parameters
and

Dialog

Box

E! Sink Block Parameters: Check Dynamic Lower E x|

— Checks_DMin [mazk] [link]

Azzert that one zighal is alwavs lezs than anather zignal. The first input iz the
[ower-bound zignal. The zecond input iz the test zsignal.

— Parameter

¥ Enable assertion

Simulation callback when azsertion failz [optional);

W Stop zimulation when azsertion Fails

[T Output assertion zignal

Select icon wpe: |araphic ;I

] Cancel Help | Apply

Enable assertion
Clearing this check box disables the Check Dynamic Lower
Bound block, that is, causes the model to behave as if the block
did not exist. The Model Verification block enabling setting
under Debugging on the Data Validity diagnostics pane of
the Configuration Parameters dialog box allows you to enable or
disable all model verification blocks, including Check Dynamic
Lower Bound blocks, in a model regardless of the setting of this
option.

Simulation callback when assertion fails
An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails
Selecting this check box causes the Check Dynamic Lower Bound
block to halt the simulation when the block’s output is zero and
display an error message in the Simulation Diagnostics viewer.

Check Dynamic Lower Bound

Otherwise, the block displays a warning message in the MATLAB
Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Lower Bound
block to output a Boolean signal that is true (1) at each time step
if the assertion succeeds and false (0) if the assertion fails. The
data type of the output signal is Boolean if you have selected the
Implement logic signals as boolean data check box on the
Optimization pane of the Configuration Parameters dialog box.
Otherwise the data type of the output signal is double.

Select icon type
Type of icon used to display this block in a block diagram: either
graphic or text. The graphic option displays a graphical
representation of the assertion condition on the icon. The text
option displays a mathematical expression that represents
the assertion condition. If the icon is too small to display the
expression, the text icon displays an exclamation point. To see the
expression, enlarge the block.

Characteristics Direct Feedthrough No
Sample Time Inherited from driving block
Scalar Expansion No
Dimensionalized Yes
Multidimensionalized Yes
Zero Crossing No

2-79

Check Dynamic Range

2-80

Purpose

Library

Description

max
min \]
sig

Data Type
Support

Check that signal falls inside range of amplitudes that varies from time
step to time step

Model Verification

The Check Dynamic Range block checks that a test signal falls inside a
range of amplitudes at each time step. The width of the range can vary
from time step to time step. The input labeled sig is the test signal. The
inputs labeled min and max are the lower and upper bounds of the valid
range at the current time step. If the verification condition is true, the
block does nothing. If not, the block halts the simulation, by default,
and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model
Verification library are intended to facilitate creation of self-validating
models. For example, you can use model verification blocks to test
that signals do not exceed specified limits during simulation. When
you are satisfied that a model is correct, you can turn error checking
off by disabling the verification blocks. You do not have to physically
remove them from the model. If you need to modify a model, you can
temporarily turn the verification blocks back on to ensure that your
changes do not break the model.

Note For information about how Real-Time Workshop generated code
handles Model Verification blocks, see “Enabling Model Verification
Blocks” in the Real-Time Workshop User’s Guide.

The Check Dynamic Range block accepts input signals of any
dimensions and of any numeric data type supported by Simulink
software. All three input signals must have the same dimension and
data type. If the inputs are nonscalar, the block checks each element
of the input test signal to the corresponding elements of the reference
signals.

Check Dynamic Range

Parameters
and

Dialog

Box

For a discussion on the data types supported by Simulink software,
see “Data Types Supported by Simulink” in the “Working with Data”
chapter of the Simulink documentation.

E! Sink Block Parameters: Check Dynamic Range x|

— Checks DR ange [mask] [link)

Azzert that one signal always lies between bwo other signals. The f