Simulink[®] 7 Reference

MATLAB[®] SIMULINK[®]

How to Contact The MathWorks

(a)

www.mathworks.comWebcomp.soft-sys.matlabNewsgroupwww.mathworks.com/contact_TS.htmlTechnical Support

suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7001 (Fax)

508-647-7000 (Phone)

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Simulink[®] Reference

© COPYRIGHT 2002–2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

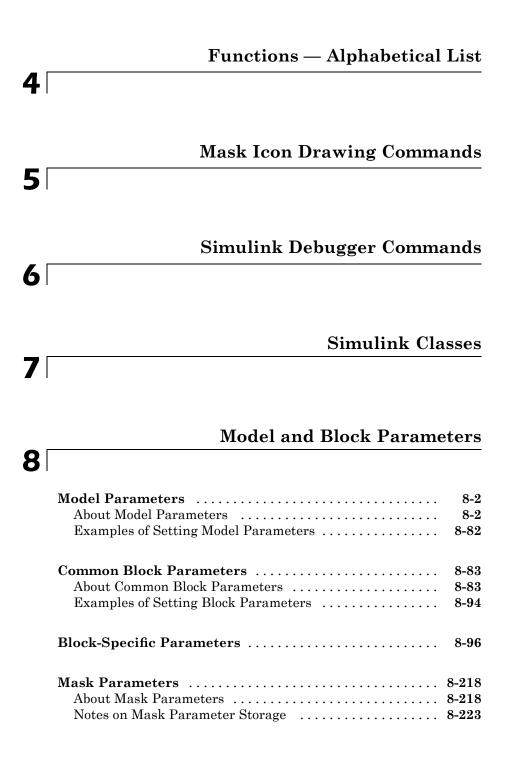
Revision History

April 2003Online onlyRevised for Simulink 5.1 (Release 13SP1)April 2004Online onlyRevised for Simulink 5.1.1 (Release 13SP1+)DeliverOnline onlyRevised for Simulink 5.1.1 (Release 13SP1+)
1 0
June 2004 Online only Revised for Simulink 6 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Online only Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)

Contents

Block Reference

Commonly Used	1-2
Continuous	1-3
Discontinuities	1-3
Discrete	1-4
Logic and Bit Operations	1-5
Lookup Tables	1-7
Math Operations	1-7
Model Verification	1-9
Model-Wide Utilities	1-10
Ports & Subsystems	1-11
Signal Attributes	1-12
Signal Routing	1-13
Sinks	1-14
Sources	1-15
User-Defined Functions	1-16


Additional Math & Discrete	1-17
Additional Discrete	1-17
Additional Math: Increment — Decrement	1-18

${\bf Blocks-Alphabetical\ List}$

Function Reference

2

Model Construction	3-2
Simulation	3-6
Linearization and Trimming	3-8
Data Type	3-9

Model File Contents
About Model File Formats
Model Section
Simulink.ConfigSet Section
BlockDefaults Section
BlockParameterDefaults Section
AnnotationDefaults Section
LineDefaults Section
System Section

10

Model Advisor Checks

Simulink Checks	10-2
Simulink Check Overview	10-4
Check model, local libraries, and referenced models for	
known upgrade issues	10-5
Identify unconnected lines, input ports, and output	
ports	10-6
Check root model Inport block specifications	10-7
Check optimization settings	10-8
Check for parameter tunability information ignored for	
referenced models	10-11
Check for implicit signal resolution	10-12
Check for optimal bus virtuality	10-13
Check for Discrete-Time Integrator blocks with initial	
condition uncertainty	10-14
Identify disabled library links	10 - 15
Identify parameterized library links	10-16
Identify unresolved library links	10-17
Check for proper usage of Data Store Memory blocks	10-18
Check for proper bus usage	10-20
Check for potentially delayed function-call subsystem	
return values	10-22
Identify block output signals with continuous sample time	
and non-floating point data type	10-23
Check for proper Merge block usage	10-24

10-25
10-38
10-39
10-40
10-41

Simulink Limits

11

Index

Block Reference

Commonly Used (p. 1-2) Continuous (p. 1-3) Discontinuities (p. 1-3) Discrete (p. 1-4) Logic and Bit Operations (p. 1-5) Lookup Tables (p. 1-7) Math Operations (p. 1-7) Model Verification (p. 1-9) Model-Wide Utilities (p. 1-10) Ports & Subsystems (p. 1-11) Signal Attributes (p. 1-12) Signal Routing (p. 1-13) Sinks (p. 1-14) Sources (p. 1-15) User-Defined Functions (p. 1-16) Additional Math & Discrete (p. 1-17)

Commonly used blocks Define continuous states Define discontinuous states Define discrete states Perform logic and bit operations Support lookup tables Perform math operations Perform model verification Support model-wide operations Support ports and subsystems Support signal attributes Support signal routing Receive output from other blocks Input to other blocks Support custom functions Provide additional math and discrete support

Commonly Used

Bus Creator	Create signal bus
Bus Selector	Select signals from incoming bus
Constant	Generate constant value
Data Type Conversion	Convert input signal to specified data type
Demux	Extract and output elements of vector signal
Discrete-Time Integrator	Perform discrete-time integration or accumulation of signal
Gain	Multiply input by constant
Ground	Ground unconnected input port
Inport	Create input port for subsystem or external input
Integrator	Integrate signal
Logical Operator	Perform specified logical operation on input
Mux	Combine several input signals into vector
Outport	Create output port for subsystem or external output
Product	Multiply and divide scalars and nonscalars or multiply and invert matrices
Relational Operator	Perform specified relational operation on inputs
Saturation	Limit range of signal
Scope and Floating Scope	Display signals generated during simulation

Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem	Represent system within another system
Sum, Add, Subtract, Sum of Elements	Add or subtract inputs
Switch	Switch output between first input and third input based on value of second input
Terminator	Terminate unconnected output port
Unit Delay	Delay signal one sample period

Continuous

Derivative	Output time derivative of input
Integrator	Integrate signal
State-Space	Implement linear state-space system
Transfer Fcn	Model linear system by transfer function
Transport Delay	Delay input by given amount of time
Variable Time Delay, Variable Transport Delay	Delay input by variable amount of time
Zero-Pole	Model system by zero-pole-gain transfer function

Discontinuities

Backlash	Model behavior of system with play
Coulomb and Viscous Friction	Model discontinuity at zero, with linear gain elsewhere

Dead Zone	Provide region of zero output
Dead Zone Dynamic	Set inputs within bounds to zero
Hit Crossing	Detect crossing point
Quantizer	Discretize input at specified interval
Rate Limiter	Limit rate of change of signal
Rate Limiter Dynamic	Limit rising and falling rates of signal
Relay	Switch output between two constants
Saturation	Limit range of signal
Saturation Dynamic	Bound range of input
Wrap To Zero	Set output to zero if input is above threshold

Discrete

Difference	Calculate change in signal over one time step
Discrete Derivative	Compute discrete time derivative
Discrete Filter	Model IIR direct form II filters
Discrete FIR Filter	Model FIR filters
Discrete State-Space	Implement discrete state-space system
Discrete Transfer Fcn	Implement discrete transfer function
Discrete Zero-Pole	Model system defined by zeros and poles of discrete transfer function
Discrete-Time Integrator	Perform discrete-time integration or accumulation of signal
First-Order Hold	Implement first-order sample-and-hold

Integer Delay	Delay signal N sample periods
Memory	Output input from previous time step
Tapped Delay	Delay scalar signal multiple sample periods and output all delayed versions
Transfer Fcn First Order	Implement discrete-time first order transfer function
Transfer Fcn Lead or Lag	Implement discrete-time lead or lag compensator
Transfer Fcn Real Zero	Implement discrete-time transfer function that has real zero and no pole
Unit Delay	Delay signal one sample period
Weighted Moving Average (Obsolete)	Implement weighted moving average (obsolete)
Zero-Order Hold	Implement zero-order hold of one sample period

Logic and Bit Operations

Bit Clear	Set specified bit of stored integer to zero
Bit Set	Set specified bit of stored integer to one
Bitwise Operator	Perform specified bitwise operation on inputs
Combinatorial Logic	Implement truth table
Compare To Constant	Determine how signal compares to specified constant

Determine how signal compares to zero
Detect change in signal's value
Detect decrease in signal's value
Detect falling edge when signal's value decreases to strictly negative value, and its previous value was nonnegative
Detect falling edge when signal's value decreases to nonpositive value, and its previous value was strictly positive
Detect increase in signal's value
Detect rising edge when signal's value increases to nonnegative value, and its previous value was strictly negative
Detect rising edge when signal's value increases to strictly positive value, and its previous value was nonpositive
Output selection of contiguous bits from input signal
Determine if signal is in specified interval
Determine if signal is in specified interval
Perform specified logical operation on input
Perform specified relational operation on inputs
Shift bits or binary point of signal

Lookup Tables

Direct Lookup Table (n-D)	Index into N-dimensional table to retrieve element, column, or 2-D matrix
Interpolation Using Prelookup	Use output of Prelookup block to accelerate approximation of N-dimensional function
Lookup Table	Approximate one-dimensional function
Lookup Table (2-D)	Approximate two-dimensional function
Lookup Table (n-D)	Approximate N-dimensional function
Lookup Table Dynamic	Approximate one-dimensional function using dynamically specified table
Prelookup	Compute index and fraction for Interpolation Using Prelookup block
Sine, Cosine	Implement sine and/or cosine wave in fixed point using lookup table approach that exploits quarter wave symmetry

Math Operations

Abs	Output absolute value of input
Algebraic Constraint	Constrain input signal to zero
Assignment	Assign values to specified elements of signal
Bias	Add bias to input

Complex to Magnitude-Angle	Compute magnitude and/or phase angle of complex signal
Complex to Real-Imag	Output real and imaginary parts of complex input signal
Divide	Divide one input by another
Dot Product	Generate dot product of two vectors
Gain	Multiply input by constant
Magnitude-Angle to Complex	Convert magnitude and/or a phase angle signal to complex signal
Math Function	Perform mathematical function
Matrix Concatenate, Vector Concatenate	Concatenate input signals of same data type to create contiguous output signal
MinMax	Output minimum or maximum input value
MinMax Running Resettable	Determine minimum or maximum of signal over time
Permute Dimensions	Rearrange dimensions of multidimensional array dimensions
Polynomial	Perform evaluation of polynomial coefficients on input values
Product	Multiply and divide scalars and nonscalars or multiply and invert matrices
Product of Elements	Copy or invert one scalar input, or collapse one nonscalar input
Real-Imag to Complex	Convert real and/or imaginary inputs to complex signal
Reshape	Change dimensionality of signal
Rounding Function	Apply rounding function to signal
Sign	Indicate sign of input

Sine Wave Function	Generate sine wave, using external signal as time source
Slider Gain	Vary scalar gain using slider
Squeeze	Remove singleton dimensions from multidimensional signal
Sum, Add, Subtract, Sum of Elements	Add or subtract inputs
Trigonometric Function	Perform trigonometric function
Unary Minus	Negate input
Weighted Sample Time Math	Support calculations involving sample time

Model Verification

Assertion	Check whether signal is nonzero
Check Discrete Gradient	Check that absolute value of difference between successive samples of discrete signal is less than upper bound
Check Dynamic Gap	Check that gap of possibly varying width occurs in range of signal's amplitudes
Check Dynamic Lower Bound	Check that one signal is always less than another signal
Check Dynamic Range	Check that signal falls inside range of amplitudes that varies from time step to time step
Check Dynamic Upper Bound	Check that one signal is always greater than another signal
Check Input Resolution	Check that input signal has specified resolution

Check Static Gap	Check that gap exists in signal's range of amplitudes
Check Static Lower Bound	Check that signal is greater than (or optionally equal to) static lower bound
Check Static Range	Check that signal falls inside fixed range of amplitudes
Check Static Upper Bound	Check that signal is less than (or optionally equal to) static upper bound

Model-Wide Utilities

Block Support Table	View data type support for Simulink® blocks
DocBlock	Create text that documents model and save text with model
Model Info	Display revision control information in model
Time-Based Linearization	Generate linear models in base workspace at specific times
Trigger-Based Linearization	Generate linear models in base workspace when triggered

Ports & Subsystems

Action Port	Implement Action subsystems used by if and switch control flow statements in Simulink software.
Configurable Subsystem	Represent any block selected from user-specified library of blocks
Enable	Add enabling port to subsystem
Enabled and Triggered Subsystem	Represent subsystem whose execution is enabled and triggered by external input
Enabled Subsystem	Represent subsystem whose execution is enabled by external input
For Iterator Subsystem	Represent subsystem that executes repeatedly during simulation time step
Function-Call Generator	Execute function-call subsystem specified number of times at specified rate
Function-Call Subsystem	Represent subsystem that can be invoked as function by another block
If	Model if-else control flow
If Action Subsystem	Represent subsystem whose execution is triggered by If block
Inport	Create input port for subsystem or external input
Model	Include model as block in another model
Outport	Create output port for subsystem or external output

Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem	Represent system within another system
Switch Case	Implement C-like switch control flow statement
Switch Case Action Subsystem	Represent subsystem whose execution is triggered by Switch Case block
Trigger	Add trigger port to subsystem or function-call model
Triggered Subsystem	Represent subsystem whose execution is triggered by external input
While Iterator Subsystem	Represent subsystem that executes repeatedly while condition is satisfied during simulation time step

Signal Attributes

Bus to Vector	Convert virtual bus to vector
Data Type Conversion	Convert input signal to specified data type
Data Type Conversion Inherited	Convert from one data type to another using inherited data type and scaling
Data Type Duplicate	Force all inputs to same data type
Data Type Propagation	Set data type and scaling of propagated signal based on information from reference signals
Data Type Scaling Strip	Remove scaling and map to built in integer

IC	Set initial value of signal
Probe	Output signal's attributes, including width, dimensionality, sample time, and/or complex signal flag
Rate Transition	Handle transfer of data between blocks operating at different rates
Signal Conversion	Convert signal to new type without altering signal values
Signal Specification	Specify desired dimensions, sample time, data type, numeric type, and other attributes of signal
Weighted Sample Time	Support calculations involving sample time
Width	Output width of input vector

Signal Routing

Bus Assignment	Replace specified bus elements
Bus Creator	Create signal bus
Bus Selector	Select signals from incoming bus
Data Store Memory	Define data store
Data Store Read	Read data from data store
Data Store Write	Write data to data store
Demux	Extract and output elements of vector signal
Environment Controller	Create branches of block diagram that apply only to simulation or only to code generation
From	Accept input from Goto block
Goto	Pass block input to From blocks

Goto Tag Visibility	Define scope of Goto block tag
Index Vector	Switch output between different inputs based on value of first input
Manual Switch	Switch between two inputs
Merge	Combine multiple signals into single signal
Multiport Switch	Choose between multiple block inputs
Mux	Combine several input signals into vector
Selector	Select input elements from vector, matrix, or multidimensional signal
Switch	Switch output between first input and third input based on value of second input

Sinks

Display	Show value of input
Outport	Create output port for subsystem or external output
Scope and Floating Scope	Display signals generated during simulation
Stop Simulation	Stop simulation when input is nonzero
Terminator	Terminate unconnected output port
To File	Write data to file
To Workspace	Write data to MATLAB [®] workspace
XY Graph	Display X-Y plot of signals using MATLAB figure window

Sources

Band-Limited White Noise	Introduce white noise into continuous system
Chirp Signal	Generate sine wave with increasing frequency
Clock	Display and provide simulation time
Constant	Generate constant value
Counter Free-Running	Count up and overflow back to zero after maximum value possible is reached for specified number of bits
Counter Limited	Count up and wrap back to zero after outputting specified upper limit
Digital Clock	Output simulation time at specified sampling interval
From File	Read data from MAT-file
From Workspace	Read data from workspace
Ground	Ground unconnected input port
Inport	Create input port for subsystem or external input
Pulse Generator	Generate square wave pulses at regular intervals
Ramp	Generate constantly increasing or decreasing signal
Random Number	Generate normally distributed random numbers
Repeating Sequence	Generate arbitrarily shaped periodic signal
Repeating Sequence Interpolated	Output discrete-time sequence and repeat, interpolating between data points

Repeating Sequence Stair	Output and repeat discrete time sequence
Signal Builder	Create and generate interchangeable groups of signals whose waveforms are piecewise linear
Signal Generator	Generate various waveforms
Sine Wave	Generate sine wave
Step	Generate step function
Uniform Random Number	Generate uniformly distributed random numbers

User-Defined Functions

Embedded MATLAB Function	Include MATLAB code in models that generate embeddable C code
Fcn	Apply specified expression to input
Level-2 M-File S-Function	Use Level-2 M-file S-function in model
MATLAB Fcn	Apply MATLAB function or expression to input
S-Function	Include S-function in model
S-Function Builder	Create S-function from C code that you provide

Additional Math & Discrete

Additional Discrete (p. 1-17)	Provide additional discrete math support
Additional Math: Increment — Decrement (p. 1-18)	Increment or decrement value of signal by one
Additional Discrete	
Fixed-Point State-Space	Implement discrete-time state space
Transfer Fcn Direct Form II	Implement Direct Form II realization of transfer function
Transfer Fcn Direct Form II Time Varying	Implement time varying Direct Form II realization of transfer function
Unit Delay Enabled	Delay signal one sample period, if external enable signal is on
Unit Delay Enabled External IC	Delay signal one sample period, if external enable signal is on, with external initial condition
Unit Delay Enabled Resettable	Delay signal one sample period, if external enable signal is on, with external Boolean reset
Unit Delay Enabled Resettable External IC	Delay signal one sample period, if external enable signal is on, with external Boolean reset and initial condition
Unit Delay External IC	Delay signal one sample period, with external initial condition
Unit Delay Resettable	Delay signal one sample period, with external Boolean reset
Unit Delay Resettable External IC	Delay signal one sample period, with external Boolean reset and initial condition

Unit Delay With Preview Enabled	Output signal and signal delayed by one sample period, if external enable signal is on
Unit Delay With Preview Enabled Resettable	Output signal and signal delayed by one sample period, if external enable signal is on, with external reset
Unit Delay With Preview Enabled Resettable External RV	Output signal and signal delayed by one sample period, if external enable signal is on, with external RV reset
Unit Delay With Preview Resettable	Output signal and signal delayed by one sample period, with external reset
Unit Delay With Preview Resettable External RV	Output signal and signal delayed by one sample period, with external RV reset

Additional Math: Increment – Decrement

Blocks — Alphabetical List

Purpose Output absolute value of input

Library Math Operations

Description

For signed data types, the absolute value of the most negative value is problematic since it is not representable by the data type. In this case, the behavior of the block is controlled by the **Saturate on integer overflow** check box. If selected, the absolute value of the data type saturates to the most positive representable value. If not selected, the absolute value of the most negative value represented by the data type has no effect.

The Abs block outputs the absolute value of the input.

For example, suppose the block input is an 8-bit signed integer. The range of this data type is from -128 to 127, and the absolute value of -128 is not representable. If you select the **Saturate on integer overflow** check box, then the absolute value of -128 is 127. If it is not selected, then the absolute value of -128 remains at -128.

Data Type Support

The Abs block accepts real signals of any numeric data type supported by Simulink software, except Boolean. The Abs block supports real fixed-point data types. The block also accepts complex floating-point inputs.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

The **Main** pane of the Abs block dialog box appears as follows:

Function Block Parameters: Abs
Abs
y = u
Main Signal Attributes
Enable zero-crossing detection
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Enter the time interval between sample time hits or specify another appropriate sample time such as continuous. By default, the block inherits its sample time based upon its context within the model. See "Working with Sample Times" in the Simulink documentation.

The **Signal Attributes** pane of the Abs block dialog box appears as follows:

Function Block Parameters: Abs
Abs
y = u
Main Signal Attributes
Output maximum:
Output data type: Inherit: Same as input >>
Integer rounding mode: Floor
Saturate on integer overflow
OK Cancel Help Apply

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button by to display the Data Type Assistant, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the $Simulink^{\circledast}$ Fixed PointTM User's Guide.

Saturate on integer overflow

Select to have overflows saturate. If selected, the block maps signed integer input elements corresponding to the most negative value of that data type to the most positive value of that data type:

- For 8-bit integers, -128 maps to 127.
- For 16-bit integers, -32768 maps to 32767.
- For 32-bit integers, -2147483648 maps to 2147483647.

Otherwise, the block does not act on signed integer input elements corresponding to the most negative value of that data type:

- For 8-bit integers, -128 remains -128.
- For 16-bit integers, -32768 remains -32768.
- For 32-bit integers, -2147483648 remains -2147483648.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled

Purpose Implement Action subsystems used by if and switch control flow statements in Simulink software.

Ports & Subsystems

Description

Action

Library

Action Port blocks implement Action subsystems used in if and switch control flow statements. The Action Port block is available in the If Action Subsystem and the Switch Case Action Subsystem. See the references for the If and Switch Case blocks for examples using Action Port blocks.

Use Action Port blocks to create Action subsystems as follows:

1 Place a subsystem in the system containing the If or Switch Case block.

You can use an ordinary subsystem or an atomic subsystem. In either case, the resulting Action subsystem is atomic.

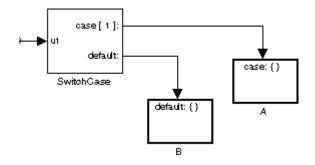
2 Add an Action Port to the new subsystem.

This adds an input port named Action to the subsystem, which is now an Action subsystem.

Action subsystems execute their programming in response to the conditional outputs of an If or Switch Case block. Use Action subsystems as follows:

- **1** Create an Action subsystem for each output port configured for an If or Switch Case block.
- **2** Connect each output port (if, else, or elseif ports for the If block; case or default ports for the Switch Case block) to the Action port on an Action subsystem.

When the connection is made, the icon for the subsystem and the Action Port block it contains are changed to the name of the output


	<pre>port for the If or Switch Case block (i.e., if{ }, else{ }, elseif{ }, case{ }, or default{ }).</pre>			
	3 Open the new subsystem and add the diagram that you want to execute in response to the condition this subsystem covers.			
	The Action Port block has only the States when execution is resumed parameter in its parameters dialog. If you set this field to held (the default value) for an Action Port block, the states of its Action subsystem are retained between calls even if other member Action subsystems of an if-else or switch control flow statement are called. If you set the States when execution is resumed field to reset, the states of a member Action subsystem are reset to initial values when it is reenabled.			
	Note All blocks in an Action subsystem driven by an If or Switch Case block must run at the same rate as the driving block.			
Data Type Support	There are no data inputs or outputs for Action Port blocks.			
Parameters	Block Parameters: Action Port			
and Dialog	- Action Port			
Dialog Box	Place this block in a subsystem to link to a signal from an If block or a Switch-Case block.			
	Parameters			
	States when execution is resumed: held			
	OK Cancel Help Apply			

States when execution is resumed

Specifies how to handle internal states when the subsystem of this Action Port block is reenabled.

Set this field to held (the default value) to make sure that the Action subsystem states retain their previous values when the subsystem is reenabled. Otherwise, set this field to reset if you want the states of the Action subsystem to be reinitialized when the subsystem is reenabled.

Reenablement of a subsystem occurs when it is called and the condition of the call is true after having been previously false. In the following example, the Action Port blocks for both Action subsystems A and B have the **States when execution is resumed** parameter set to reset.

If case[1] is true, Action subsystem A is called. This implies that the default condition is false. When B is later called for the default condition, its states are reset. In the same way, Action subsystem A's states are reset when it is called right after Action subsystem B is called.

Repeated calls to a case's Action subsystem do not reset its states. If A is called again right after a previous call to A, this does not reset A's states because its condition, case[1], was not previously false. The same applies to B.

_		
Characteristics	Sample Time	Inherited from driving If or Switch Case
		block

Purpose	Constrain input signal to zero
---------	--------------------------------

Library

Math Operations

Description

The Algebraic Constraint block constrains the input signal f(z) to zero and outputs an algebraic state z. The block outputs the value that produces a zero at the input. The output must affect the input through a direct feedback path, that is, the feedback path contains only blocks with direct feedthrough. For example, you can specify algebraic equations for index 1 differential-algebraic systems (DAEs).

Algorithm

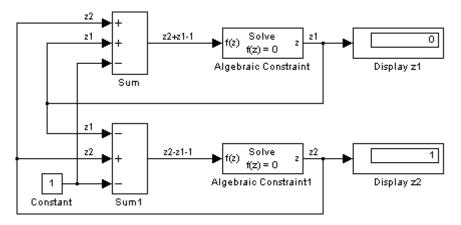
The Algebraic Constraint block uses a dogleg trust-region algorithm to solve algebraic loops [1], [2].

Data TypeThe Algebraic Constraint block accepts and outputs real values of type
double.

Parameters and Dialog Box

🙀 Function Block Parameters: Algebraic Constraint 🛛 🛛 🔀
Algebraic Constraint (mask) (link)
Constrains input signal f(z) to zero and outputs an algebraic state z. This block outputs the value necessary to produce a zero at the input. The output must affect the input through some feedback path. Provide an initial guess of the output to improve algebraic loop solver efficiency.
Parameters
Initial guess:
0
OK Cancel Help Apply

Initial guess


An initial guess for the solution value. The default is 0.

Example By default, the **Initial guess** parameter is zero. You can improve the efficiency of the algebraic-loop solver by providing an **Initial guess** for the algebraic state *z* that is close to the solution value.

For example, the following model solves these equations:

 $z^2 + z^1 = 1$ $z^2 - z^1 = 1$

The solution is z2 = 1, z1 = 0, as the Display blocks show.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Zero Crossing	No

References [1] Garbow, B. S., K. E. Hillstrom, and J. J. Moré. *User Guide for MINPACK-1*. Argonne, IL: Argonne National Laboratory, 1980.

[2] Rabinowitz, P. H. Numerical Methods for Nonlinear Algebraic Equations. New York, NY: Gordon and Breach, 1970.

Assertion

Purpose	Check whether signal is nonzero
---------	---------------------------------

Library

Model Verification

Description

The Assertion block checks whether any of the elements of the signal at its input is nonzero. If all elements are nonzero, the block does nothing. If any element is zero, the block halts the simulation, by default, and displays an error message. Use the block parameter dialog box to:

- Specify that the block should display an error message when the assertion fails but allow the simulation to continue.
- Specify an M-code expression to evaluate when the assertion fails.
- Enable or disable the assertion.

You can also use the **Model Verification block enabling** setting on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box to enable or disable all Assertion blocks in a model.

The Assertion block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop[®] generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Assertion block accepts input signals of any dimensions and any numeric data type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

Sink Block Parameters: Assertion
Assert that the input signal is non-zero. The default behavior in the absence of a callback is to output an error message when the assertion fails.
Parameters
Enable assertion
Simulation callback when assertion fails:
🔽 Stop simulation when assertion fails
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

Enable assertion

Clearing this check box disables the Assertion block, that is, causes the model to behave as if the Assertion block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all Assertion blocks in a model regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

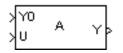
Stop simulation when assertion fails

Selecting this check box causes the Assertion block to halt the simulation when the block's input is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Sample time (-1 for inherited)

Enter the time interval between sample time hits or specify another appropriate sample time such as continuous. By default, the block inherits its sample time based upon its context within the model. See "Working with Sample Times" in the Simulink documentation.

Characteristics	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No


Assignment

Purpose Assign values to specified elements of signal

Library

Math Operations

Description

The Assignment block assigns values to specified elements of the signal. You can specify the indices of the elements to be assigned values either by entering the indices in the block's dialog box or by connecting an external indices source or sources to the block. The signal at the block's data port, labeled U, specifies values to be assigned to Y. The block replaces the specified elements of Y with elements from the data signal.

Based on the value you enter for the **Number of output dimensions** parameter, a table of index options is displayed. Each row of the table corresponds to one of the output dimensions in **Number of output dimensions**. For each dimension, you can define the elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix signal as a 2-D signal. When you configure the Assignment block for multidimensional signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The table in the Assignment block dialog changes to include one row for each dimension. If you define each dimension with the following entries:

• 1

Index Option, select Assign all

• 2

Index Option, select Index vector (dialog)

Index, enter [1 3 5]

• 3

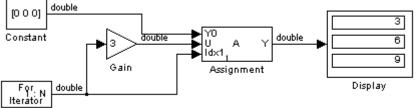
Index Option, select Starting index (dialog) Index, enter 4

• 4

Index Option, select Starting index (port)

• 5

Index Option, select Index vector (port)


```
The assigned values will be Y(1:end,[1 3 5],4:3+size(U,3),Idx4:Idx4+size(U,4)-1,Idx5)=U, where Idx4 and Idx5 are the input ports for dimensions 4 and 5.
```

The Assignment block's data port is labeled U. The rest of this section refers to the data port as U to simplify the explanation of the block's usage.

You can use the block to assign values to vector, matrix, or multidimensional signals.

Iterated Assignment

You can use the Assignment block to assign values computed in a For or While Iterator loop to successive elements of a vector, matrix, or multidimensional signal in a single time step. For example, the following model uses a For Iterator block to create a vector signal each of whose elements equals 3*i where i is the index of the element.

For Iterator

Iterated assignment uses an iterator (For or While) block to generate the indices required by the Assignment block. On the first iteration of an iterated assignment, the Assignment block copies the first input (Y0) to the output (Y) and assigns the second input (U) to the output $Y(E_1)$. On successive iterations, the Assignment block simply assigns the current value of U to $Y(E_i)$, i.e., without first copying Y0 to Y. All of this occurs in a single time step.

and l

Data Type Support

The data and initialization ports of the Assignment block accept signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The external indices port accepts any built-in data type, except Boolean data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

arameters		
lumber of output dimensions: 1		
ndex mode: One-based		
Index Option	Index	Output Size
1 Index vector (port)	from port <idx1></idx1>	
٩		
 Image: A state of the state of	or each dimension in table	

Number of output dimensions

Enter the number of dimensions of the output signal.

Index mode

Specifies the indexing mode: One-based or Zero-based. If One-based is selected, an index of 1 specifies the first element of the input vector, 2, the second element, and so on. If Zero-based is selected, an index of 0 specifies the first element of the input vector, 1, the second element, and so on.

Index Option

Define, by dimension, how the elements of the signal are to be indexed. From the list, choose:

• Assign all

This is the default. All elements are assigned.

• Index vector (dialog)

Enables the Index column. Enter the indices of elements.

• Index vector (port)

Disables the **Index** column. The index port defines the indices of elements.

• Starting index (dialog)

Enables the **Index** column. Enter the starting index of the range of elements to be assigned values.

• Starting index (port)

Disables the **Index** column. The index port defines the starting index of the range of elements to be assigned values.

If you choose Index vector (port) or Starting index (port) for any dimension in the table, you can specify the value for the **Initialize output (Y)** parameter to be one of the following:

- Initialize using input port <YO>
- Specify size for each dimension in table

Otherwise, Y0 always initializes output port Y.

The Index and Output Size columns are displayed as relevant.

Index

If the **Index Option** is **Index vector** (dialog), enter the index of each element you are interested in.

If the **Index Option** is Starting index (dialog), enter the starting index of the range of elements to be selected. The number of elements from the starting point is determined by the size of this dimension at U.

Output Size

Enter the width of the block output signal. If you select Specify size for each dimension in table for the **Initialize output (Y)** parameter, this column is enabled.

Initialize output (Y)

Specify how to initialize the output signal. The **Initialize output** parameter appears only if you select Index vector (port) or Starting index (port) for the **Index Option** parameter.

• Initialize using input port <YO>

The signal at the input port Y0 initializes the output.

• Specify size for each dimension in table

The block requires you to specify the width of the block's output signal in the **Output Size** parameter. If the output has unassigned elements, the value of those elements is undefined.

Action if any output element is not assigned

Specifies whether to produce a warning or error message if you have not assigned all output elements. Options include:

- Error
- Warning
- None

Sample time (-1 for inherited)

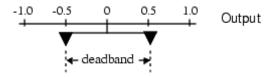
Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample

Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified by Sample time parameter
	Scalar Expansion	Yes
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Backlash

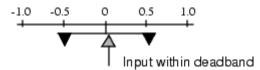
Purpose Model behavior of system with play


Library

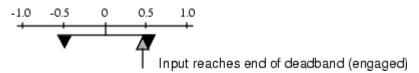
Discontinuities

Description

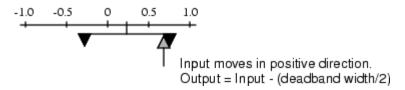
The Backlash block implements a system in which a change in input causes an equal change in output. However, when the input changes direction, an initial change in input has no effect on the output. The amount of side-to-side play in the system is referred to as the *deadband*. The deadband is centered about the output. This figure shows the block's initial state, with the default deadband width of 1 and initial output of 0.


A system with play can be in one of three modes:

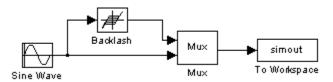
- Disengaged In this mode, the input does not drive the output and the output remains constant.
- Engaged in a positive direction In this mode, the input is increasing (has a positive slope) and the output is equal to the input *minus* half the deadband width.
- Engaged in a negative direction In this mode, the input is decreasing (has a negative slope) and the output is equal to the input *plus* half the deadband width.


If the initial input is outside the deadband, the **Initial output** parameter value determines whether the block is engaged in a positive or negative direction, and the output at the start of the simulation is the input plus or minus half the deadband width.

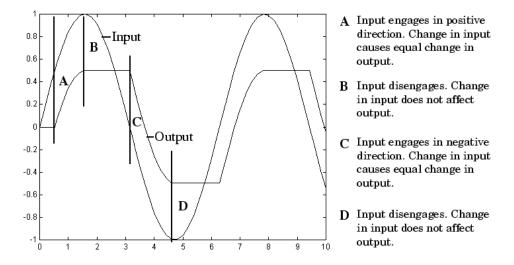
For example, the Backlash block can be used to model the meshing of two gears. The input and output are both shafts with a gear on one end, and the output shaft is driven by the input shaft. Extra space between the gear teeth introduces *play*. The width of this spacing is the **Deadband width** parameter. If the system is disengaged initially, the output (the position of the driven gear) is defined by the **Initial output** parameter.


The following figures illustrate the block's operation when the initial input is within the deadband. The first figure shows the relationship between the input and the output while the system is in disengaged mode (and the default parameter values are not changed).

The next figure shows the state of the block when the input has reached the end of the deadband and engaged the output. The output remains at its previous value.


The final figure shows how a change in input affects the output while they are engaged.

If the input reverses its direction, it disengages from the output. The output remains constant until the input either reaches the opposite end of the deadband or reverses its direction again and engages at the same end of the deadband. Now, as before, movement in the input causes equal movement in the output. For example, if the deadband width is 2 and the initial output is 5, the output, *y*, at the start of the simulation is as follows:


- 5 if the input, u, is between 4 and 6
- u + 1 if u < 4
- u 1 if u > 6

This sample model and the plot that follows it show the effect of a sine wave passing through a Backlash block.

The Backlash block parameters are unchanged from their default values (the deadband width is 1 and the initial output is 0). Notice in the plotted output following that the Backlash block output is zero until the input reaches the end of the deadband (at 0.5). Now the input and output are engaged and the output moves as the input does until the input changes direction (at 1.0). When the input reaches 0, it again engages the output at the opposite end of the deadband.

Backlash

Data Type Support

The Backlash block accepts and outputs real values of single, double, and built-in integer data types.

Backlash

Parameters and Dialog Box

🙀 Function Block Parameters: Backlash 🛛 🛛 🔀
Backlash
Model backlash where the deadband width specifies the amount of play in the system.
Parameters
Deadband width:
1
Initial output:
0
Enable zero-crossing detection
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

Deadband width

Specify the width of the deadband. The default is 1.

Initial output

Specify the initial output value. The default value is 0. This parameter is tunable. Simulink software does not allow the initial output of this block to be inf or NaN.

Enable zero-crossing detection

Select to enable use of zero-crossing detection to detect engagement with lower and upper thresholds. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics

	Dimensionalized Zero-Crossing Detection	Yes Yes, if you select Enable zero-crossing
	Scalar Expansion	Yes
	Sample Time	Specified in the Sample time parameter
5	Direct Feedthrough	Yes

Bad Link

Purpose Indicate unresolved reference to library block

Description

This block indicates an unresolved reference to a library block (see "Creating a Reference Block"). You can use this block's parameter dialog box to fix the reference to point to the actual location of the library block.

Parameters and Dialog Box

leference			
Unresolved library	reference.		
arameters ———			
Source block:			
mylib/Line			
Source type:			
		1	

Source block

Path of the library block that this link represents. To fix a bad link, edit this field to reflect the actual path of the library block. Then select Apply or OK to apply the fix and close the dialog box.

Source type

Type of library block that this link represents.

Band-Limited White Noise

Purpose Introduce white noise into contin	uous system
--	-------------

Sources

Library

Description

╏╨╻┝

The Band-Limited White Noise block generates normally distributed random numbers that are suitable for use in continuous or hybrid systems.

The primary difference between this block and the Random Number block is that the Band-Limited White Noise block produces output at a specific sample rate, which is related to the correlation time of the noise.

Theoretically, continuous white noise has a correlation time of 0, a flat power spectral density (PSD), and a total energy of infinity. In practice, physical systems are never disturbed by white noise, although white noise is a useful theoretical approximation when the noise disturbance has a correlation time that is very small relative to the natural bandwidth of the system.

In Simulink software, you can simulate the effect of white noise by using a random sequence with a correlation time much smaller than the shortest time constant of the system. The Band-Limited White Noise block produces such a sequence. The correlation time of the noise is the sample rate of the block. For accurate simulations, use a correlation time much smaller than the fastest dynamics of the system. You can get good results by specifying

$$t_c \approx \frac{1}{100} \frac{2\pi}{f_{max}}$$

where f_{max} is the bandwidth of the system in rad/sec.

Algorithm

To produce the correct intensity of this noise, the covariance of the noise is scaled to reflect the implicit conversion from a continuous PSD to a discrete noise covariance. The appropriate scale factor is 1/tc, where tc is the correlation time of the noise. This scaling ensures that the response of a continuous system to the approximate white noise has the same covariance as the system would have to true white noise. Because of this scaling, the covariance of the signal from the Band-Limited White Noise block is not the same as the **Noise power** (intensity) dialog box parameter. This parameter is actually the height of the PSD of the white noise. This block approximates the covariance of white noise as the **Noise power** divided by *tc*.

The Band-Limited White Noise block outputs real values of type double.

Parameters and

Data Type

Support

Dialog Box

Source Block Parameters: Band-Limited White Noise	×
—Band-Limited White Noise. (mask) (link) The Band-Limited White Noise block generates normally distribute	4
random numbers that are suitable for use in continuous or hybrid systems.	
Parameters	
Noise power:	
[0,1]	
Sample time:	
0.1	
Seed:	
[23341]	
✓ Interpret vector parameters as 1-D	
OK Cancel Help	

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the "Working with Blocks" chapter of the Simulink documentation.

Noise power

The height of the PSD of the white noise. The default value is 0.1.

Sample time

The correlation time of the noise. The default value is 0.1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Seed

The starting seed for the random number generator. The default value is **23341**.

Interpret vector parameters as 1-D

Output a 1-D array if the block's parameters are vectors. Otherwise, output a 2-D array one of whose dimensions is 1. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of Noise power and Seed parameters and output
	Dimensionalized	Yes
	Zero Crossing	No

Purpose	Add bias to input
Library	Math Operations
Description \downarrow $_{u+0.0}$	The Bias block adds a bias, or offset, to the input signal according to Y = U + Bias
	where U is the block input and Y is the output.
Data Type Support	The Bias block accepts and outputs real or complex values of any numeric data type supported by Simulink software, except Boolean. The Bias block supports fixed-point data types.
	For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.
Parameters and Dialog Box	Function Block Parameters: Bias Bias Add bias to input, Y = U + Bias. Parameters Bias: 0.0 Saturate on integer overflow OK Cancel Help Apply

Bias

Specify the value of the offset to add to the input signal.

Saturate on integer overflow

If the input (and hence the output) is an integer data type (for example, int8) and the data type cannot accommodate the output signal, selecting this option causes the block to output the maximum value allowed by the data type. Otherwise, in this case, the block outputs the result of using twos-complement arithmetic to add the input to the output, i.e., the value is the result of adding the bias to the input modulo the maximum representable value of the data type.

Characteristics

Direct Feedthrough	Yes
Sample Time	Inherited from the driving block
Scalar Expansion	Yes
States	0
Dimensionalized	Yes
Zero Crossing	No

- Purpose Set specified bit of stored integer to zero
- Library

Logic and Bit Operations

Description

stored integer to zero. Scaling is ignored. You can specify the bit to be set to zero with the **Index of bit** parameter, where bit zero is the least significant bit.

The Bit Clear block sets the specified bit, given by its index, of the

Data Type Support

The Bit Clear block supports Simulink integer, fixed-point, and Boolean data types. The block does not support true floating-point data types or enumerated data types.

Parameters and Dialog Box

Function Block	Parameters: E	Bit Clear		×
F Bit Clear (mask) (lin	k)			
Clear ith bit of the s	tored integer to I	0. Scaling is ign	ored.	
Parameters				
Index of bit (0 is lea	ast significant):			
0				
		1	1	1 1
	OK	Cancel	Help	Apply

Index of bit

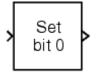
Index of bit where bit 0 is the least significant bit.

Examples If the Bit Clear block is turned on for bit 2, bit 2 is set to 0. A vector of constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010

OK Cancel	Help	Apply

00100 01000 10000]. With bit 2 set to 0, the result is [00001 00010 00000 01000 10000], which is represented in decimal as [1 2 0 8 16].

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes


See Also Bit Set

Purpose Set specified bit of stored integer to one

Library

Logic and Bit Operations

Description

Scaling is ignored. You can specify the bit to be set to one with the **Index of bit** parameter,

The Bit Set block sets the specified bit of the stored integer to one.

where bit zero is the least significant bit.

Data Type Support

The Bit Set block supports Simulink integer, fixed-point, and Boolean data types. The block does not support true floating-point data types or enumerated data types.

Parameters and Dialog Box

🙀 Function Block Parameters: Bit Set 🔀 🔀
Bit Set (mask) (link)
Set ith bit of the stored integer to 1. Scaling is ignored.
Parameters
Index of bit (0 is least significant):
0
OK Cancel Help Apply

Index of bit

Index of bit where bit 0 is the least significant bit.

Examples If the Bit Set block is turned on for bit 2, bit 2 is set to 1. A vector of constants 2.^[0 1 2 3 4] is represented in binary as [00001 00010

00100 01000 10000]. With bit 2 set to 1, the result is [00101 00110 00100 01100 10100], which is represented in decimal as [5 6 4 12 20].

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Bit Clear

Purpose Perform specified bitwise operation on inputs

Library

Logic and Bit Operations

Description

The Bitwise Operator block performs the specified bitwise operation on its operands.

Unlike the logic operations performed by the Logical Operator block, bitwise operations treat the operands as a vector of bits rather than a single number. You select the bitwise Boolean operation from the **Operator** parameter list. The supported operations are given below.

Operation	Description
AND	TRUE if the corresponding bits are all TRUE
OR	TRUE if at least one of the corresponding bits is TRUE
NAND	TRUE if at least one of the corresponding bits is FALSE
NOR	TRUE if no corresponding bits are TRUE
XOR	TRUE if an odd number of corresponding bits are TRUE
NOT	TRUE if the input is FALSE (available only for single input)

Restrictions on Block Operations

The Bitwise Operator block does not support shift operations. For shift operations, use the Shift Arithmetic block.

When configured as a multi-input XOR gate, this block performs an addition modulo-two operation as mandated by the IEEE® Standard for Logic Elements.

Restrictions on Inputs and Outputs

The size of the output of the Bitwise Operator block depends on the number of inputs, their vector size, and the selected operator:

- The NOT operator accepts only one input, which can be a scalar or a vector. If the input is a vector, the output is a vector of the same size containing the bitwise logical complements of the input vector elements.
- For a single vector input, the block applies the operation (except the NOT operator) to all elements of the vector. If a bit mask is not specified, then the output is a scalar. If a bit mask is specified, then the output is a vector.
- For two or more inputs, the block performs the operation between all of the inputs. If the inputs are vectors, the operation is performed between corresponding elements of the vectors to produce a vector output.

Tip If you do not select the **Use bit mask** check box, then the block can accept multiple inputs. You select the number of input ports from the **Number of input ports** parameter. All inputs must have the same base data type.

If you select the **Use bit mask** check box, then a single input is associated with the bit mask you specify from the **Bit Mask** parameter. You specify the bit mask using any valid MATLAB expression. For example, you can specify the bit mask 00100101 as $2^5+2^2+2^0$. Alternatively, you can use strings to specify a hexadecimal bit mask such as {'FE73', '12AC'}. If the bit mask is larger than the input signal data type, then it is ignored.

Tip The output data type, which is inherited from the driving block, should represent zero exactly. Data types that satisfy this condition include signed and unsigned integers and any floating-point data type.

Bit Set and Bit Clear Operations	You can use the bit mask to perform a bit set or a bit clear on the input. To perform a bit set, set the Operator parameter list to OR and create a bit mask with a 1 for each corresponding input bit that you want to set to 1. To perform a bit clear, set the Operator parameter list to AND and create a bit mask with a 0 for each corresponding input bit that you want to set to 0.
	Suppose you want to perform a bit set on the fourth bit of an 8-bit input vector. The bit mask would be 00010000, which you can specify as 2^4 in the Bit mask parameter. To perform a bit clear, the bit mask would be 11101111, which you can specify as $2^7+2^6+2^5+2^3+2^2+2^{-1}+2^{-0}$ in the Bit mask parameter.
Data Type Support	The Bitwise Operator block supports Simulink integer, fixed-point, and Boolean data types. The block does not support true floating-point data types or enumerated data types.

Parameters and Dialog Box

🙀 Function Block Parameters: Bitwise Operator	X
Bitwise Operator (mask) (link)	
Perform the specified bitwise operation on the inputs. The output data type should represent zero exactly.	
Parameters	
	1
Operator: AND	1
🔽 Use bit mask	
Number of input ports:	
1	
Bit Mask	
bin2dec('11011001')	1
Treat mask as: Stored Integer	1
OK Cancel Help Apply	

Operator

The bitwise logical operator associated with the specified operands.

Use bit mask

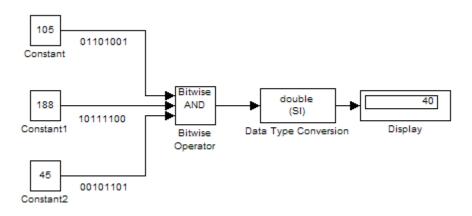
Specify if the bit mask is used (single input only).

Number of input ports

The number of inputs.

Bit Mask

The bit mask to associate with a single input. The **Bit Mask** parameter is converted from a double to the input data type offline using round-to-nearest and saturation.

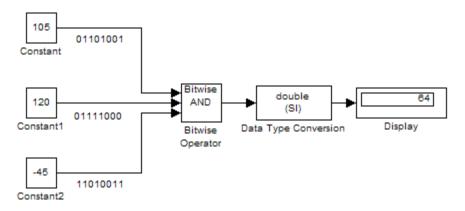

Treat mask as

Treat the mask as a real-world value or a stored integer.

Based on the encoding scheme described in "Scaling" in the Simulink Fixed Point documentation, Real World Value treats the mask as V = SQ + B where S is the slope and B is the bias. Stored Integer treats the mask as a stored integer, Q.

Examples

The following fixed-point model shows how the Bitwise Operator block works when inputs are unsigned.



Each Constant block outputs an 8-bit unsigned integer (uint8). The results for all logic operations are shown below.

Operation	Binary Value	Decimal Value
AND	00101000	40
OR	11111101	253

Operation	Binary Value	Decimal Value
NAND	11010111	215
NOR	00000010	2
XOR	11111000	248
NOT	N/A	N/A

The following fixed-point model shows how the Bitwise Operator block works when inputs are signed.

Each Constant block outputs an 8-bit signed integer (int8). The results for all logic operations are shown below.

Operation	Binary Value	Decimal Value
AND	01000000	64
OR	11111011	-5
NAND	10111111	-65
NOR	00000100	4
XOR	11000010	-62
NOT	N/A	N/A

Characteristics

Direct Feedthrough	Yes
Scalar Expansion	Yes, of inputs
Multidimensionalized	Yes

Block Support Table

Purpose	View data type support for Simulink blocks
Library	Model-Wide Utilities
Description Block Support Table	The Block Support Table block enables you to access a table that summarizes the data types supported by the blocks in the Simulink libraries. Double-click the block to view the table.
Data Type Support	Not applicable.
Parameters and Dialog Box	Block Parameters: Block Support Table Image: Composition of the state of the

Characteristics Not applicable.

Purpose Replace specified bus elements

Library

Signal Routing

Description

The Bus Assignment block assigns signals connected to its Assignment input ports (:=) to specified elements of the bus connected to its Bus input port, replacing the signals previously assigned to those elements. The change does not affect the signals themselves, it affects only the composition of the bus. Signals not replaced are unaffected by the replacement of other signals. See "Using Composite Signals" for information about buses.

Connect the bus to be changed to the first input port. Use the block's dialog box to specify the bus elements to be replaced. The block displays an assignment input port for each such element. The signal connected to the assignment port must have the same structure, data type, and numeric type as the bus element to which it corresponds.

You cannot use the Bus Assignment block to replace a bus that is nested within another bus. Thus no element selected in the dialog box for replacement can be a bus, and no signal connected to an Assignment port can be a bus.

All signals in a nonvirtual bus must have the same sample time, even if the elements of the associated bus object specify inherited sample times. Any bus operation that would result in a nonvirtual bus that violates this requirement generates an error. All buses and signals input to a Bus Assignment block that modifies a nonvirtual bus must therefore have the same sample time. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus, to allow the signal or bus to be included in a nonvirtual bus. See "Virtual and Nonvirtual Buses" for more information.

Data Type Support The bus input port of the Bus Assignment block accepts and outputs real or complex values of any data type supported by Simulink software, including fixed-point and enumerated data types. The assignment input ports accept the same data types as the bus elements to which they correspond. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

nows the selections. Use the U		o select the signals that are to be assigned. Then no reorder the selections.	ie light listbox
rameters Signals in the bus	Find Select>> Refresh	Signals that are being assigned	Up Down Remove

Signals in the bus

Displays the names of the signals contained by the bus at the block's Bus input port. Click any item in the list to select it. To find the source of the selected signal, click the adjacent **Find** button. Simulink software opens the subsystem containing the signal source and highlights the source's icon. Use the **Select>>** button to move the currently selected signal into the adjacent list of signals to be assigned values (see **Signals that are being assigned** below). To refresh the display (e.g., to reflect modifications to the bus connected to the block), click the adjacent **Refresh** button.

Signals that are being assigned

Lists the names of bus elements to be assigned values. This block displays an assignment input port for each bus element in this list. The label of the corresponding input port contains the name of the element. You can order the signals by using the **Up**, **Down**, and **Remove** buttons. Port connectivity is maintained when the signal order is changed.

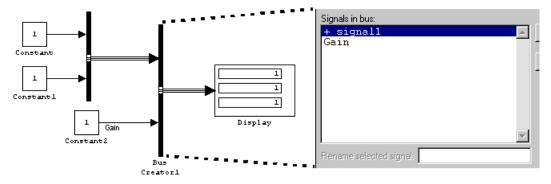
Three question marks (???) before the name of a bus element indicate that the input bus no longer contains an element of that name, for example, because the bus has changed since the last time you refreshed the Bus Assignment block's input and bus element assignment lists. You can fix the problem either by modifying the bus to include a signal of the specified name or by removing the name from the list of bus elements to be assigned values.

Characteristics	Multidimensionalized	Yes			
See Also	• "Using Composite Signal	s"			
	• "Using Buses"				
	• Bus Creator				
	• Bus Selector				
	• Bus to Vector				
	• Simulink.Bus				
	• Simulink.Bus.cellToObject				
	 Simulink.Bus.createObject 				
	• Simulink.BusElement				
	• Simulink.Bus.objectTo	Cell			
	• Simulink.Bus.save				

Bus Creator

Purpose	Create signal bus
Library	Signal Routing
Description	The Bus Creator block combines a set of signals into a bus. To bundle a group of signals with a Bus Creator block, set the block's Number of inputs parameter to the number of signals in the group. The block displays the number of ports that you specify. Connect the signals to be grouped to the resulting input ports. See "Using Composite Signals" for information about buses. The signals in the bus will be order from the top input port to the bottom

der from the top input port to the bottom input port. See "How to Rotate a Block" in the Simulink documentation for a description of the port order for various block orientations.


You can connect any type of signal to the inputs, including other bus signals. To ungroup the signals, connect the block's output port to a Bus Selector port.

Note Simulink software hides the name of a Bus Creator block when you copy it from the Simulink library to a model.

Naming Signals

The Bus Creator block assigns a name to each signal on the bus that it creates. This allows you to refer to signals by name when searching for their sources (see "Browsing Bus Signals" on page 2-51) or selecting signals for connection to other blocks. The block offers two bus signal naming options. You can specify that each signal on the bus inherits the name of the signal connected to the bus (the default) or that each input signal must have a specific name.

To specify that bus signals inherit their names from input ports, select Inherit bus signal names from input ports from the list box on the block's parameter dialog box. The names of the inherited bus signals appear in the **Signals in bus** list box.

The Bus Creator block generates names for bus signals whose corresponding inputs do not have names. The names are of the form signaln, where n is the number of the port to which the input signal is connected.

You can change the name of any signal by editing its name on the block diagram or in the **Signal Properties** dialog box. If you change a name in this way while the Bus Creator block's dialog box is open, you must close and reopen the dialog box or click the **Refresh** button next to the **Signals in bus** list to update the name in the dialog box.

To specify that the bus inputs must have specific names, select Require input signal names to match signals below from the list box in the block's parameter dialog box. The block's parameter dialog box displays the names of the signals currently connected to its inputs, or a generated name (for example, signal2) for an anonymous input. You can now use the parameter dialog box to change the required names of the block's inputs.

To change the required signal name, select the signal in the **Signals in bus** list. The selected signal's name appears in the **Rename selected signal** field. Edit the name in the field and click **Apply** or **OK**.

Browsing Bus Signals

The **Signals in bus** list on a Bus Creator block's parameter dialog box displays a list of the signals entering the block. A plus sign (+) next to a signal indicates that the signal is itself a bus. You can display its contents by clicking the plus sign. If the expanded input includes bus signals, plus signs appear next to the names of those bus signals. You can expand them as well. In this way, you can view all signals entering the block, including those entering via buses. To find the source of any signal entering the block, select the signal in the **Signals in bus** list and click the adjacent **Find** button. Simulink software opens the subsystem containing the signal source, if necessary, and highlights the source's icon.

Data Type Support

The Bus Creator block accepts and outputs real or complex values of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, refer to "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Bus Creator

Parameters and Dialog Box

	names from input po	orts	<u>-</u>
Number of inputs:	2		
Signals in bus			Find
signal 1 signal 2			Refresh
Rename selected	l signal:		
	l signal:		

Signal naming options

Assign input signal names to the corresponding bus signals.

Settings

Default: Inherit bus signal names from input ports

Inherit bus signal names from input ports Assign input signal names to the corresponding bus signals.

Require input signal names to match signals below Inputs must have the names listed in the **Signals in bus** list.

Dependencies

Selecting Require input signal names to match signals below enables **Rename selected signal**.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Number of inputs

Specify the number of input ports on this block.

Settings

Default: 2

To bundle a group of signals, enter the number of signals in the group.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Signals in bus

Show the signals in the output bus.

Settings

When you modify the **Number of inputs** parameter, click **Refresh** to update the list of signals.

Tips

- A plus sign (+) next to a signal name indicates that the signal is itself a bus. Click the plus sign to display the subsidiary bus signals.
- Click the **Refresh** button to update the list after editing the name of an input signal.
- Click the **Find** button to highlight the source of the currently selected signal.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Rename selected signal

List the name of the signal currently selected in the **Signals in bus** list when you select the **Require input signal names to match signals** below option.

Settings

Default: ''

Edit this field to change the name of the currently selected signal.

Dependencies

This parameter is enabled when you select Require input signal names to match signals below as the **Parameters**; and signal1 or signal2 as the **Signals in bus**.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Specify properties via bus object

Use a bus object to define the structure of the bus created by this block.

Settings

Default: Off

🔽 On

Use a bus object to define the structure of the bus created by this block.

C Off

Do not use a bus object to define the structure of the bus created by this block.

Tips

Selecting this parameter is required when creating a nonvirtual bus, and optional when creating a virtual bus.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bus object

Specify the name of the bus object used to define the structure of the bus created by this block.

Settings

Default: BusObject

The default value is a dummy bus object name. Type in the name of the bus object you want to use. If you need to create or change a bus object, click **Edit** to the left of the **Bus object** field to open the Simulink Bus Editor. See "Using the Bus Editor" for more information.

Tips

At the beginning of a simulation or when you update the model's diagram, Simulink software checks whether the signals connected to this Bus Creator block have the specified structure. If not, Simulink software displays an error message.

Dependencies

This parameter is enabled by Specify properties via bus object.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

🔽 On

Output a nonvirtual bus.

C Off

Output a virtual bus.

Tips

- Select this option if you want code generated from this model to use a C structure to define the structure of the bus signal output by this block.
- All signals in a nonvirtual bus must have the same sample time, even if the elements of the associated bus object specify inherited sample times. Any bus operation that would result in a nonvirtual bus that violates this requirement generates an error. Therefore, if you select this option all signals entering the Bus Creator block must have the same sample time. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus, to allow the signal or bus to be included in a nonvirtual bus.

Dependencies

This parameter is enabled by Specify properties via bus object.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

- See the Bus Creator block reference page for more information.
- See "Virtual and Nonvirtual Buses" for more information.

Bus Creator

Characteristics	Multidimensionalized	Yes				
See Also	• "Using Composite Signals	s"				
	• "Using Buses"					
	• Bus Assignment					
	• Bus Selector					
	• Bus to Vector	• Bus to Vector				
	• Simulink.Bus					
	Simulink.Bus.cellToObject					
	 Simulink.Bus.createObject 					
	• Simulink.BusElement					
	• Simulink.Bus.objectTo	Cell				
	• Simulink.Bus.save					

Bus Selector

Purpose	Select signals from incoming bus
Library	Signal Routing
Description	The Bus Selector block outputs a specified subset of the elements of the bus at its input. The block can output the specified elements as separate signals or as a new bus. See "Using Composite Signals" for information about buses.
_	When the block outputs separate elements, it outputs each element from a separate port from top to bottom of the block. See "How to Rotate a Block"for a description of the port order for various block orientations. See "Using Composite Signals" for information about buses.

Note Simulink software hides the name of a Bus Selector block when you copy it from the Simulink library to a model.

Caution

The MathWorks recommends not using Bus Selector blocks in library blocks, because such use complicates changing the library blocks and increases the likelihood of errors. See "Buses and Libraries" for more information.

Data Type Support

A Bus Selector block accepts and outputs real or complex values of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

listbox shows the signals i	n the input bus. Use the Selec	t button to select the o	utput
Find	Selected signals		Up
Select>>	2??? signal2		Down
Refresh		B	emove
	: listbox shows the signals i a selections. Use the Up, D Find Select>>	: listbox shows the signals in the input bus. Use the Select e selections. Use the Up, Down, or Remove button to rec Find Selected signals ??? signal1 ??? signal2	Select>> ??? signal2

Signals in the bus

Shows the signals in the input bus.

Settings

To refresh the display to reflect modifications to the bus connected to the block, click **Refresh**.

Tips

- Use **Select>>** to select signals to output.
- To find the source of any signal entering the block, select the signal in the list and click **Find**. The Simulink software opens the subsystem containing the signal source, and highlights the source's icon.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Selected signals

Shows the signals to be output.

Settings

Default: signal1, signal2

You can change the list by using the Up, Down, and Remove buttons.

Tips

- Port connectivity is maintained when the signal order is changed.
- If an output signal listed in the **Selected signals** list box is not an input to the Bus Selector block, the signal name is preceded by three question marks (???).

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Output as bus

Output the selected elements as a bus.

Settings

Default: Off

🔽 On

Output the selected elements as a bus.

C Off

Output the selected elements as standalone signals, each from an output port that is labeled with the corresponding element's name.

Tips

The output bus is virtual if the input bus is virtual, or nonvirtual if the input bus is nonvirtual.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

- See the Bus Selector block reference page for more information.
- See "Virtual and Nonvirtual Buses" for more information.

Characteristics	Multidimensionalized	Yes		
See Also	• "Using Composite Signal	s"		
	• "Using Buses"			
	• Bus Assignment			
	• Bus Creator			
	• Bus to Vector			

• Simulink.Bus

- Simulink.Bus.cellToObject
- Simulink.Bus.createObject
- Simulink.BusElement
- Simulink.Bus.objectToCell
- Simulink.Bus.save

Bus to Vector

Purpose	Convert virtual bus to vector				
Library	Signal Attributes				
Description	The Bus to Vector block converts a virtual bus signal to a vector signal. The input bus signal must consist of scalar, 1-D, or either row or column vectors having the same data type, signal type, and sampling mode. If the input bus contains row or column vectors, this block outputs a row or column vector, respectively; otherwise, it outputs a 1-D array.				
	Use the Bus to Vector block only to replace an implicit bus-to-vector conversion with an equivalent explicit conversion. See "Bus signal treated as vector" and "Correcting Buses Used as Muxes" for more information.				
	Note Simulink software hides the name of a Bus to Vector block when you copy it from the Simulink library to a model.				
Data Type Support	The Bus to Vector block accepts and outputs real or complex values of any data type supported by Simulink software, including fixed-point and enumerated data types.				
	For a discussion of the data types supported by Simulink software, refer to "Data Types Supported by Simulink" in the "Working with Data"				

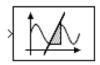
chapter of the Simulink documentation.

Parameters and Dialog Box

Function Block	c Parameters: E	Bus to Vector		×
⊢ Bus to Vector				
Convert a virtual bus signal to a vector signal. The input bus signal must consist of scalar, 1-D, or either row or column vectors having the same data type, signal type, and sampling mode. If the input bus contains row or column vectors, this block outputs a row or column vector, respectively; otherwise, it outputs a 1-D array.				
	<u>0</u> K	<u>C</u> ancel	<u>H</u> elp	Apply

This block has no user-accessible parameters.

Characteristics	Multidimensionalized	Yes
See Also	• "Using Composite Signals"	
	• "Using Buses"	
	Avoiding Mux/Bus Mixtures	
	Bus Assignment	
	• Bus Creator	
	• Bus Selector	
	 Simulink.BlockDiagram.addBusToVector 	
	• Simulink.Bus	
	• Simulink.Bus.cellToObject	
	• Simulink.Bus.createObject	
	• Simulink.BusElement	
	 Simulink.Bus.objectToCell 	


• Simulink.Bus.save

Purpose Check that absolute value of difference between successive samples of discrete signal is less than upper bound

Library

Model Verification

Description

The Check Discrete Gradient block checks each signal element at its input to determine whether the absolute value of the difference between successive samples of the element is less than an upper bound. Use the block parameter dialog box to specify the value of the upper bound (1 by default). If the verification condition is true, the block does nothing. Otherwise, the block halts the simulation, by default, and displays an error message in the Simulation Diagnostics viewer.

The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box lets you enable or disable all model verification blocks, including Check Discrete Gradient blocks, in a model.

The Check Discrete Gradient block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Discrete Gradient block accepts single, double, int8, int16, and int32 input signals of any dimensions.

Parameters and Dialog Box

🙀 Sink Block Parameters: Check Discrete Gradient 🛛 🔀				
Checks_Gradient (mask) (link)				
Assert that the absolute value of the difference between successive samples of a discrete signal is less than an upper bound.				
Parameters				
Maximum gradient:				
1				
Enable assertion				
Simulation callback when assertion fails (optional):				
✓ Stop simulation when assertion fails				
Cutput assertion signal				
Select icon type: graphic				
OK Cancel Help Apply				

Maximum gradient

Upper bound on the gradient of the discrete input signal.

Enable assertion

Clearing this check box disables the Check Discrete Gradient block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Discrete Gradient blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Discrete Gradient block to halt the simulation when the block's output is zero and display an error message in the Simulink Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

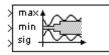
Selecting this check box causes the Check Discrete Gradient block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

S	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No


Check Dynamic Gap

Purpose Check that gap of possibly varying width occurs in range of signal's amplitudes

Library

Model Verification

Description

The Check Dynamic Gap block checks that a gap of possibly varying width occurs in the range of a signal's amplitudes. The test signal is the signal connected to the input labeled *sig*. The inputs labeled *min* and *max* specify the lower and upper bounds of the dynamic gap, respectively. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Dynamic Gap block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Dynamic Gap block accepts input signals of any dimensions and of any numeric data type supported by Simulink software. All three input signals must have the same dimension and data type. If the inputs are nonscalar, the block checks each element of the input test signal to the corresponding elements of the reference signals. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

🙀 Sink Block Parameters: Check Dynamic Gap 🛛 🛛 🔀				
Checks_DGap (mask) (link)				
Assert that the input signal 'sig' is always less than the lower bound 'min' or greater than the upper bound 'max'. The first input is the upper-bound of the gap; the second input, the lower-bound; the third input, the test signal.				
Parameters				
Enable assertion				
Simulation callback when assertion fails (optional):				
Stop simulation when assertion fails				
Output assertion signal				
Select icon type: graphic				
OK Cancel Help Apply				

Enable assertion

Clearing this check box disables the Check Dynamic Gap block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Dynamic Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Gap block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

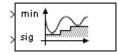
Selecting this check box causes the Check Dynamic Gap block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

. .

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics Din


.5	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Purpose Check that one signal is always less than another signal

Library

Model Verification

Description

The Check Dynamic Lower Bound block checks that the amplitude of a reference signal is less than the amplitude of a test signal at the current time step. The test signal is the signal connected to the input labeled *sig*. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Dynamic Lower Bound block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Dynamic Lower Bound block accepts input signals of any numeric data type supported by Simulink software. The test and the reference signals must have the same dimensions and data type. If the inputs are nonscalar, the block checks each element of the input test signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation. Parameters and Dialog Box

Sink Block Parameters: Check Dynamic Lower Bound	<		
Checks_DMin (mask) (link)			
Assert that one signal is always less than another signal. The first input is the lower-bound signal. The second input is the test signal.			
Parameters			
✓ Enable assertion			
Simulation callback when assertion fails (optional):			
✓ Stop simulation when assertion fails			
Cutput assertion signal			
Select icon type: graphic			
	1		
OK Cancel Help Apply			

Enable assertion

Clearing this check box disables the Check Dynamic Lower Bound block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks, including Check Dynamic Lower Bound blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Lower Bound block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

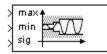
Output assertion signal

Selecting this check box causes the Check Dynamic Lower Bound block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No


Check Dynamic Range

Purpose Check that signal falls inside range of amplitudes that varies from time step to time step

Library

Model Verification

Description

The Check Dynamic Range block checks that a test signal falls inside a range of amplitudes at each time step. The width of the range can vary from time step to time step. The input labeled *sig* is the test signal. The inputs labeled *min* and *max* are the lower and upper bounds of the valid range at the current time step. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Dynamic Range block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Dynamic Range block accepts input signals of any dimensions and of any numeric data type supported by Simulink software. All three input signals must have the same dimension and data type. If the inputs are nonscalar, the block checks each element of the input test signal to the corresponding elements of the reference signals. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

Sink Block Parameters: Check Dynamic Range		
Checks_DRange (mask) (link)		
Assert that one signal always lies between two other signals. The first input is the upper-bound signal; the second input, the lower-bound; the third input, the test		
Parameters		
Enable assertion		
Simulation callback when assertion fails (optional):		
✓ Stop simulation when assertion fails		
C Output assertion signal		
Select icon type: graphic		
OK Cancel Help Apply		

Enable assertion

Clearing this check box disables the Check Dynamic Range block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Dynamic Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Range block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Range block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

1.1

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics Din

3	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Purpose Check that one signal is always greater than another signal

Library

Model Verification

Description

> max > sig The Check Dynamic Upper Bound block checks that the amplitude of a reference signal is greater than the amplitude of a test signal at the current time step. The test signal is the signal connected to the input labeled *sig*. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Dynamic Upper Bound block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error-checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Dynamic Upper Bound block accepts input signals of any dimensions and of any numeric data type supported by Simulink software. The test and the reference signals must have the same dimensions and data type. If the inputs are nonscalar, the block compares each element of the input test signal to the corresponding elements of the reference signal.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Check Dynamic Upper Bound

Parameters and Dialog Box

Sink Block Parameters: Check Dynamic Upper Bound
Checks_DMax (mask) (link)
Assert that one signal is always greater than another signal. The first input is the upper-bound signal. The second input is the test signal.
Parameters
✓ Enable assertion
Simulation callback when assertion fails (optional):
Stop simulation when assertion fails
Output assertion signal
Select icon type: graphic
OK Cancel Help Apply

Enable assertion

Clearing this check box disables the Check Dynamic Upper Bound block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks, including Check Dynamic Upper Bound blocks, in a model regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Dynamic Upper Bound block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Dynamic Upper Bound block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Check Input Resolution

Purpose Check that input signal has specified resolution

Library

Model Verification

Description

The Check Input Resolution block checks whether the input signal has a specified scalar or vector resolution (see Resolution). If the resolution is a scalar, the input signal must be a multiple of the resolution within a 10e-3 tolerance. If the resolution is a vector, the input signal must equal an element of the resolution vector. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Input Resolution block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Input Resolution block accepts input signals of data type double and of any dimension. If the input signal is nonscalar, the block checks the resolution of each element of the input test signal.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

🙀 Sink Block Parameters: Check Input Resolution 🛛 🛛 🔀
Checks_Resolution (mask) (link)
Assert that the input signal has a specified resolution. If the resolution is a scalar, the input signal must be a multiple of the resolution within a 10e-3 tolerance. If the resolution is a vector, the input signal must equal an element of the resolution
Parameters
Resolution:
1
Enable assertion
Simulation callback when assertion fails (optional):
Stop simulation when assertion fails
Output assertion signal
OK Cancel Help Apply

Resolution

Resolution that the input signal must have.

Enable assertion

Clearing this check box disables the Check Input Resolution block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Input Resolution blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

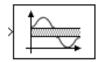
Stop simulation when assertion fails

Selecting this check box causes the Check Input Resolution block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Input Resolution block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Characteristics Direct Feedthrough N


Direct Feedthrough	No
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Purpose Check that gap exists in signal's range of amplitudes

Library

Model Verification

Description

The Check Static Gap block checks that each element of the input signal is less than (or optionally equal to) a static lower bound or greater than (or optionally equal to) a static upper bound at the current time step. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Gap block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Static Gap block accepts input signals of any dimensions and of any numeric data type supported by Simulink software.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

🙀 Sink Block Parameters: Check Static Gap 🛛 🗙
Checks_SGap (mask) (link)
Assert that the input signal is less than (or optionally equal to) a static lower bound or greater than (or optionally equal to) a static upper bound.
Parameters
Upper bound:
100
✓ Inclusive upper bound
Lower bound:
0
Inclusive lower bound
Enable assertion
Simulation callback when assertion fails (optional):
1
Stop simulation when assertion fails
Output assertion signal
Select icon type: graphic
OK Cancel Help Apply

Upper bound

Upper bound of the gap in the input signal's range of amplitudes.

Inclusive upper bound

Selecting this check box specifies that the gap includes the upper bound.

Lower bound

Lower bound of the gap in the input signal's range of amplitudes.

Inclusive lower bound

Selecting this check box specifies that the gap includes the lower bound.

Enable assertion

Clearing this check box disables the Check Static Gap block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Static Gap blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Gap block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Gap block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics	Direct Feedthrough	No
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Purpose Check that signal is greater than (or optionally equal to) static lower bound

Library

Model Verification

Description

The Check Static Lower Bound block checks that each element of the input signal is greater than (or optionally equal to) a specified lower bound at the current time step. Use the block parameter dialog box to specify the value of the lower bound and whether the lower bound is inclusive. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Lower Bound block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Static Lower Bound block accepts input signals of any dimensions and of any numeric data type supported by Simulink software.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

🙀 Sink Block Parameters: Check Static Lower Bound 🛛 🛛 🗵		
Checks_SMin (mask) (link)		
Assert that the input signal is greater than (or optionally equal to) a static lower		
Parameters		
Lower bound:		
0		
✓ Inclusive boundary		
Enable assertion		
Simulation callback when assertion fails (optional):		
Stop simulation when assertion fails		
Cutput assertion signal		
Select icon type: graphic		
OK Cancel Help Apply		

Lower bound

Lower bound on the range of amplitudes that the input signal can have.

Inclusive boundary

Selecting this check box makes the range of valid input amplitudes include the lower bound.

Enable assertion

Clearing this check box disables the Check Static Lower Bound block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Static Lower Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Lower Bound block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Lower Bound block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Direct Feedthrough	No
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	Yes

Multidimensionalized	Yes
Zero Crossing	No

Purpose Check that signal falls inside fixed range of amplitudes

Library

Model Verification

Description

The Check Static Range block checks that each element of the input signal falls inside the same range of amplitudes at each time step. Use the block parameter dialog box to specify the upper and lower bounds of the valid amplitude range and whether the range includes the bounds. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Range block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Static Range block accepts input signals of any dimensions and of any numeric data type supported by Simulink software.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

🙀 Sink Block Parameters: Check Static Range 🛛 🛛 🔀		
Checks_SRange (mask) (link)		
Assert that the input signal lies between a static lower and upper bound or optionally equals either bound.		
Parameters		
Upper bound:		
100		
Inclusive upper bound		
Lower bound:		
0		
Inclusive lower bound		
Enable assertion		
Simulation callback when assertion fails (optional):		
I		
Stop simulation when assertion fails		
Output assertion signal		
Select icon type: graphic		
OK Cancel Help Apply		

Upper bound

Upper bound of the range of valid input signal amplitudes.

Inclusive upper bound

Selecting this check box specifies that the valid signal range includes the upper bound.

Lower bound

Lower bound of the range of valid input signal amplitudes.

Inclusive lower bound

Selecting this check box specifies that the valid signal range includes the lower bound.

Enable assertion

Clearing this check box disables the Check Static Range block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Static Range blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Range block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Range block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics	Direct Feedthrough	No	
	Sample Time	Inherited from driving block	
	Scalar Expansion	No	
	Dimensionalized	Yes	
	Multidimensionalized	Yes	
	Zero Crossing	No	

Purpose Check that signal is less than (or optionally equal to) static upper bound

Library

Model Verification

Description

The Check Static Upper Bound block checks that each element of the input signal is less than (or optionally equal to) a specified upper bound at the current time step. Use the block parameter dialog box to specify the value of the upper bound and whether the bound is inclusive. If the verification condition is true, the block does nothing. If not, the block halts the simulation, by default, and displays an error message.

The Check Static Upper Bound block and its companion blocks in the Model Verification library are intended to facilitate creation of self-validating models. For example, you can use model verification blocks to test that signals do not exceed specified limits during simulation. When you are satisfied that a model is correct, you can turn error checking off by disabling the verification blocks. You do not have to physically remove them from the model. If you need to modify a model, you can temporarily turn the verification blocks back on to ensure that your changes do not break the model.

Note For information about how Real-Time Workshop generated code handles Model Verification blocks, see "Enabling Model Verification Blocks" in the Real-Time Workshop User's Guide.

Data Type Support

The Check Static Upper Bound block accepts input signals of any dimensions and of any numeric data type supported by Simulink software.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

🙀 Sink Block Parameters: Check Static Upper Bound 🛛 🛛 🔀			
Checks_SMax (mask) (link)			
Assert that the input signal is less than (or optionally equal to) a static upper bound.			
Parameters			
Upper bound:			
0			
Inclusive boundary			
Enable assertion			
Simulation callback when assertion fails (optional):			
✓ Stop simulation when assertion fails			
Output assertion signal			
Select icon type: graphic			
OK Cancel Help Apply			

Upper bound

Upper bound on the range of amplitudes that the input signal can have.

Inclusive boundary

Selecting this check box makes the range of valid input amplitudes include the upper bound.

Enable assertion

Clearing this check box disables the Check Static Upper Bound block, that is, causes the model to behave as if the block did not exist. The **Model Verification block enabling** setting under **Debugging** on the **Data Validity** diagnostics pane of the Configuration Parameters dialog box allows you to enable or disable all model verification blocks in a model, including Check Static Upper Bound blocks, regardless of the setting of this option.

Simulation callback when assertion fails

An M-code expression to evaluate when the assertion fails.

Stop simulation when assertion fails

Selecting this check box causes the Check Static Upper Bound block to halt the simulation when the block's output is zero and display an error message in the Simulation Diagnostics viewer. Otherwise, the block displays a warning message in the MATLAB Command Window and continues the simulation.

Output assertion signal

Selecting this check box causes the Check Static Upper Bound block to output a Boolean signal that is true (1) at each time step if the assertion succeeds and false (0) if the assertion fails. The data type of the output signal is Boolean if you have selected the Implement logic signals as boolean data check box on the **Optimization** pane of the Configuration Parameters dialog box. Otherwise the data type of the output signal is double.

Select icon type

Type of icon used to display this block in a block diagram: either graphic or text. The graphic option displays a graphical representation of the assertion condition on the icon. The text option displays a mathematical expression that represents the assertion condition. If the icon is too small to display the expression, the text icon displays an exclamation point. To see the expression, enlarge the block.

Characteristics

Direct Feedthrough	No
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	Yes

Multidimensionalized	Yes
Zero Crossing	No

Chirp Signal

Purpose	Generate sine wave with increasing frequency
---------	--

Sources

Library

Description

The Chirp Signal block generates a sine wave whose frequency increases at a linear rate with time. You can use this block for spectral analysis of nonlinear systems. The block generates a scalar or vector output.

The parameters, **Initial frequency**, **Target time**, and **Frequency at target time**, determine the block's output. You can specify any or all of these variables as scalars or arrays. All the parameters specified as arrays must have the same dimensions. The block expands scalar parameters to have the same dimensions as the array parameters. The block output has the same dimensions as the parameters unless you select the **Interpret vector parameters as 1-D** check box. If you select this check box and the parameters are row or column vectors, the block outputs a vector (1-D array) signal.

Data Type Support

The Chirp Signal block outputs a real-valued signal of type double.

Source Block Parameters: Chirp Signal
chirp (mask) (link)
Output a linear chirp signal (sine wave whose frequency varies linearly with time).
Parameters
Initial frequency (Hz):
0.1
Target time (secs):
100
Frequency at target time (Hz):
1
✓ Interpret vector parameters as 1-D
OK Cancel Help

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the "Working with Blocks" chapter of the Simulink documentation.

Initial frequency

The initial frequency of the signal, specified as a scalar or matrix value. The default is 0.1 Hz.

Target time

The time at which the frequency reaches the **Frequency at target time** parameter value, a scalar or matrix value. The frequency continues to change at the same rate after this time. The default is 100 seconds.

Frequency at target time

The frequency of the signal at the target time, a scalar or matrix value. The default is 1 Hz.

Interpret vector parameters as 1-D

If selected, column or row matrix values for the **Initial frequency**, **Target time**, and **Frequency at target time** parameters result in a vector output whose elements are the elements of the row or column. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation.

Characteristics

Sample Time	Continuous
Scalar Expansion	Yes, of parameters
Dimensionalized	Yes
Zero Crossing	No

Clock

Purpose	Display and provide simulation time		
Library	Sources		
Description	The Clock block outputs the current simulation time at each simulation step. This block is useful for other blocks that need the simulation time. When you need the current time within a discrete system, use the Digital Clock block.		
Data Type Support	The Clock block outputs a real-valued signal of type double.		
Parameters and	Source Block Parameters: Clock		

Dialog Box

Source Block Parameters: Clock	×
Clock	
Output the current simulation time.	
-Parameters	
📁 Display time	
Decimation:	
10	
OK Cancel	Help

Display time

Use the **Display time** check box to display the current simulation time inside the Clock icon.

Decimation

The **Decimation** parameter value is the increment at which Simulink software updates the Clock icon when **Display time** is checked. Specify a positive integer (the default is 10). For example, if the decimation is 1000, then, for a fixed integration step of 1 millisecond, the Clock icon updates at 1 second, 2 seconds, and so on.

Characteristics Sample Time		Continuous
Scalar Expansion		N/A
	Dimensionalized	No
	Zero Crossing	No

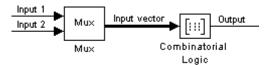
Combinatorial Logic

Purpose	Implement truth table
Library	Logic and Bit Operations
Description	The Combinatorial Logic block implements a standard truth table for modeling programmable logic arrays (PLAs), logic circuits, decision tables, and other Boolean expressions. You can use this block in conjunction with Memory blocks to implement finite-state machines or flip-flops.

block outputs.

or flip-flops. You specify a matrix that defines all possible block outputs as the **Truth table** parameter. Each row of the matrix contains the output for a different combination of input elements. You must specify outputs for every combination of inputs. The number of columns is the number of

The relationship between the number of inputs and the number of rows is


number of rows = 2 ^ (number of inputs)

Simulink software returns a row of the matrix by computing the row's index from the input vector elements. Simulink software computes the index by building a binary number where input vector elements having zero values are 0 and elements having nonzero values are 1, then adding 1 to the result. For an input vector, u, of m elements,

row index = $1 + u(m) \cdot 2^{0} + u(m-1) \cdot 2^{1} + \ldots + u(1) \cdot 2^{m-1}$

Example of Two-Input AND Function

This example builds a two-input AND function, which returns 1 when both input elements are 1, and 0 otherwise. To implement this function, specify the **Truth table** parameter value as [0; 0; 0; 1]. The portion of the model that provides the inputs to and the output from the Combinatorial Logic block might look like this.

The following table indicates the combination of inputs that generate each output. The input signal labeled "Input 1" corresponds to the column in the table labeled Input 1. Similarly, the input signal "Input 2" corresponds to the column with the same name. The combination of these values determines the row of the Output column of the table that is passed as block output.

For example, if the input vector is [1 0], the input references the third row:

```
(2^{1*1} + 1)
```

The output value is 0.

Row	Input 1	Input 2	Output
1	0	0	0
2	0	1	0
3	1	0	0
4	1	1	1

Example of Circuit

This sample circuit has three inputs: the two bits (**a** and **b**) to be summed and a carry-in bit (**c**). It has two outputs: the carry-out bit (**c**') and the sum bit (**s**). Here are the truth table and the outputs associated with each combination of input values for this circuit.

Inputs			Outputs		
a	b	с	c'	S	
0	0	0	0	0	

Inputs			Outputs		
a	b	с	c'	S	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

To implement this adder with the Combinatorial Logic block, you enter the 8-by-2 matrix formed by columns **c'** and **s** as the **Truth table** parameter.

You can also implement sequential circuits (that is, circuits with states) with the Combinatorial Logic block by including an additional input for the state of the block and feeding the output of the block back into this state input.

Data Type Support

The type of signals accepted by a Combinatorial Logic block depends on whether you selected the Boolean logic signals option (see "Implement logic signals as boolean data (vs. double)" in the "Working with Data" chapter of the Simulink documentation). If this option is enabled, the block accepts real signals of type Boolean or double. The **Truth table** parameter can have Boolean values (0 or 1) of any data type, including fixed-point data types. If the table contains non-Boolean values, the table's data type must be double.

The type of the output is the same as that of the input except that the block outputs double if the input is Boolean and the truth table contains non-Boolean values.

If Boolean compatibility mode is disabled, the Combinatorial Logic block accepts only signals of type Boolean. The block outputs double if

the truth table contains non-Boolean values of type ${\tt double}.$ Otherwise, the output is ${\tt Boolean}.$

Parameters and Dialog Box

🛃 Function Bloc	k Parameters: C	ombinatorial	Logic	>
- Combinatorial Log	gic			
	ents of the input ve the corresponding able is implicit.			
Parameters				
Truth table:				
[0 0;0 1;0 1;1 0;	0 1;1 0;1 0;1 1]			
Sample time (-1 f	or inherited):			
-1				
	OK	Cancel	Help	Apply

Truth table

The matrix of outputs. Each column corresponds to an element of the output vector and each row corresponds to a row of the truth table.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics

Direct Feedthrough	Yes
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	Yes; the output width is the number of columns of the Truth table parameter
Zero Crossing	No

Purpose Determine how signal compares to specified constant

Library

Logic and Bit Operations

Description

The Compare To Constant block compares an input signal to a constant. Specify the constant in the **Constant value** parameter. Specify how the input is compared to the constant value with the **Operator** parameter. The **Operator** parameter can have the following values:

- == Determine whether the input is equal to the specified constant.
- ~= Determine whether the input is not equal to the specified constant.
- < Determine whether the input is less than the specified constant.
- <= Determine whether the input is less than or equal to the specified constant.
- > Determine whether the input is greater than the specified constant.
- >= Determine whether the input is greater than or equal to the specified constant.

The output is 0 if the comparison is false, and 1 if it is true.

Data Type Support

The Compare To Constant block accepts inputs of any data type supported by Simulink software, including fixed-point and enumerated data types. The block first converts its **Constant value** parameter to the input data type, and then performs the specified operation. The block output is uint8 or boolean as specified by the **Output data type mode** parameter.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink User's Guide.

Function Block Parameters: Compare To Constant
Compare To Constant (mask) (link)
Determine how a signal compares to a constant.
Parameters
Operator: <=
Constant value:
3.0
Output data type mode: uint8
Enable zero-crossing detection
OK Cancel Help Apply

Operator

Specify how the input is compared to the constant value, as discussed in Description.

Constant value

Specify the constant value to which the input is compared.

Output data type mode

Specify the data type of the output, uint8 or boolean.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Direct Feedthrough	Yes	
Scalar Expansion		Yes	
	Multidimensionalized	Yes	
	Zero Crossing	Yes, if enabled.	

See Also Compare To Zero

Compare To Zero

- **Purpose** Determine how signal compares to zero
- Library Logic and Bit Operations

Description

The Compare To Zero block compares an input signal to zero. Specify how the input is compared to zero with the **Operator** parameter. The **Operator** parameter can have the following values:

- == Determine whether the input is equal to zero.
- ~= Determine whether the input is not equal to zero.
- < Determine whether the input is less than zero.
- <= Determine whether the input is less than or equal to zero.
- > Determine whether the input is greater than zero.
- >= Determine whether the input is greater than or equal to zero.

The output is 0 if the comparison is false, and 1 if it is true.

Data TypeThe Compare To Zero block accepts inputs of any numeric data typeSupportSupported by Simulink software, including fixed-point data types. The
block output is uint8 or boolean as specified by the Output data type
mode parameter.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink User's Guide.

Parameters and Dialog Box

🙀 Function Block Parameters: Compare To Zero	×
Compare To Zero (mask) (link)	
Determine how a signal compares to zero.	
-Parameters	
Operator: <=	
Output data type mode: uint8	
Enable zero-crossing detection	
OK Cancel Help Apply	

Operator

Specify how the input is compared to zero, as discussed in Description.

Output data type mode

Specify the data type of the output, uint8 or boolean.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink User's Guide.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes
	Zero-Crossing Detection	Yes, if enabled.
	Multidimensionalized	Yes

See Also Compare To Constant

Complex to Magnitude-Angle

Purpose	Compute magnitude	and/or phase	angle of con	nplex signal

See the preceding description.

Library Math Operations

Description

The Complex to Magnitude-Angle block accepts a complex-valued signal of type double or single. It outputs the magnitude and/or phase angle of the input signal, depending on the setting of the **Output** parameter. The outputs are real values of the same data type as the block input. The input can be an array of complex signals, in which case the output signals are also arrays. The magnitude signal array contains the magnitudes of the corresponding complex input elements. The angle output similarly contains the angles of the input elements.

Data Type Support

Parameters and Dialog Box

🙀 Function Block Parameters: Complex to Magnitude-Angle	×
Complex to Magnitude-Angle	
Compute magnitude and/or radian phase angle of the input.	
Parameters	
Output: Magnitude and angle	-
Sample time (-1 for inherited):	
-1	
OK Cancel Help	Apply

Output

Determines the output of this block. Choose from the following values: Magnitude and angle (outputs the input signal's magnitude and phase angle in radians), Magnitude (outputs the

input's magnitude), Angle (outputs the input's phase angle in radians).

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Complex to Real-Imag

Purpose	Output real and imaginary parts of complex input signal			
Library	Math Operations			
Description	The Complex to Real-Imag block accepts a complex-valued signal of any data type supported by Simulink software, including fixed-point data types. It outputs the real and/or imaginary part of the input signal, depending on the setting of the Output parameter. The real outputs are of the same data type as the complex input. The input can be an array (vector or matrix) of complex signals, in which case the output signals are arrays of the same dimensions. The real array contains the real parts of the corresponding complex input elements. The imaginary output similarly contains the imaginary parts of the input elements.			
Data Type Support	See the preceding description. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.			
Parameters and Dialog Box	Function Block Parameters: Complex to Real-Imag Complex to Real-Imag Output the real and/or imaginary components of the input. Parameters Output: Real and imag Sample time (-1 for inherited): -1 OK Cancel Help Apply			

Output

Determines the output of this block. Choose from the following values: Real and imag (outputs the input signal's real and imaginary parts), Real (outputs the input's real part), Imag (outputs the input's imaginary part).

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics

Direct Feedthrough	Yes
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Configurable Subsystem

Purpose Represent any block selected from user-specified library of blocks Library Ports & Subsystems Description The Configurable Subsystem block represents one of a set of blocks contained in a specified library of blocks. The block's context menu lets you choose which block the configurable subsystem represents. Configurable Subsystem blocks simplify creation of models that represent families of designs. For example, suppose that you want to model an automobile that offers a choice of engines. To model such a

represent families of designs. For example, suppose that you want to model an automobile that offers a choice of engines. To model such a design, you would first create a library of models of the engine types available with the car. You would then use a Configurable Subsystem block in your car model to represent the choice of engines. To model a particular variant of the basic car design, a user need only choose the engine type, using the configurable engine block's dialog.

To create a configurable subsystem in a model, you must first create a library containing a master configurable subsystem and the blocks that it represents. You can then create configurable instances of the master subsystem by dragging copies of the master subsystem from the library and dropping them into models.

You can add any type of block to a master configurable subsystem library. Simulink software derives the port names for the configurable subsystem by making a unique list from the port names of all the choices. Note that Simulink software uses default port names for non-subsystem block choices.

Note that Simulink software does not allow you to break library links in a configurable subsystem because Simulink software needs the links to reconfigure the subsystem when you choose a new configuration. Breaking links would be useful only if you never intended to reconfigure the subsystem, in which case you could simply replace the configurable subsystem with a nonconfigurable subsystem that implements the permanent configuration.

Creating a Master Configurable Subsystem

To create a master configurable subsystem:

- 1 Create a library of blocks representing the various configurations of the configurable subsystem.
- **2** Save the library.
- **3** Create an instance of the Configurable Subsystem block in the library.

To do this, drag a copy of the Configurable Subsystem block from the Simulink Ports & Subsystems library into the library you created in the preceding step.

- **4** Display the Configurable Subsystem block's dialog by double-clicking it. The dialog displays a list of the other blocks in the library.
- **5** Under **List of block choices** in the dialog box, select the blocks that represent the various configurations of the configurable subsystems you are creating.
- 6 Click the **OK** button to apply the changes and close the dialog box.
- **7** Select **Block Choice** from the Configurable Subsystem block's context menu.

The context menu displays a submenu listing the blocks that the subsystem can represent.

- 8 Select the block that you want the subsystem to represent by default.
- **9** Save the library.

Note If you add or remove blocks from a library, you must recreate any Configurable Subsystem blocks that use the library.

If you modify a library block that is the default block choice for a configurable subsystem, the change does not immediately propagate

to the configurable subsystem. To propagate this change, do one of the following:

- Change the default block choice to another block in the subsystem, then change the default block choice back to the original block.
- Recreate the configurable subsystem block, including the selection of the updated block as the default block choice.

Creating an Instance of a Configurable Subsystem

To create an instance of a configurable subsystem in a model,

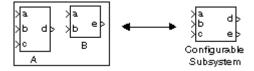
- 1 Open the library containing the master configurable subsystem.
- **2** Drag a copy of the master into the model.
- **3** Select **Block Choice** from the copy's context menu.
- **4** Select the block that you want the configurable subsystem to represent.

The instance of the configurable system displays the icon and parameter dialog box of the block that it represents.

Setting Instance Block Parameters

As with other blocks, you can use the parameter dialog box of a configurable subsystem instance to set the instance's parameters interactively and the set_param command to set the parameters from the MATLAB command line or in an M-file program. If you use set_param, you must specify the full path name of the configurable subsystem's current block choice as the first argument of set_param, e.g.,

```
curr_choice = get_param('mymod/myconfigsys', 'BlockChoice');
curr_choice = ['mymod/myconfigsys/' curr_choice];
set_param(curr_choice, 'MaskValues', ...);
```


Mapping I/O Ports

A configurable subsystem displays a set of input and output ports corresponding to input and output ports in the selected library. Simulink software uses the following rules to map library ports to Configurable Subsystem block ports:

- Map each uniquely named input/output port in the library to a separate input/output port of the same name on the Configurable Subsystem block.
- Map all identically named input/output ports in the library to the same input/output ports on the Configurable Subsystem block.
- Terminate any input/output port not used by the currently selected library block with a Terminator/Ground block.

This mapping allows a user to change the library block represented by a Configurable Subsystem block without having to rewire connections to the Configurable Subsystem block.

For example, suppose that a library contains two blocks A and B and that block A has input ports labeled a, b, and c and an output port labeled d and that block B has input ports labeled a and b and an output port labeled e. A Configurable Subsystem block based on this library would have three input ports labeled a, b, and c, respectively, and two output ports labeled d and e, respectively, as illustrated in the following figure.

In this example, port **a** on the Configurable Subsystem block connects to port **a** of the selected library block no matter which block is selected. On the other hand, port **c** on the Configurable Subsystem block functions only if library block A is selected. Otherwise, it simply terminates.

	Note A Configurable Subsystem block does not provide ports that correspond to non-I/O ports, such as the trigger and enable ports on triggered and enabled subsystems. Thus, you cannot use a Configurable Subsystem block directly to represent blocks that have such ports. You can do so indirectly, however, by wrapping such blocks in subsystem blocks that have input or output ports connected to the non-I/O ports.			
Data Type Support	The Configurable Subsystem block accepts and outputs signals of the same types as are accepted or output by the block that it currently represents. The data types may be any supported by Simulink software, including fixed-point data types.			
Parameters and Dialog Box	Configuration dialog : Configurable Subsystem Image: Configurable Subsystem List of block choices Image: Configurable Subsystem Block name Member Pulse Generator Image: Configurable Subsystem Random Number Image: Configurable Subsystem Sine Wave Image: Configurable Subsystem OK Cancel Help Apply			

List of block choices

Select the blocks you want to include as members of the configurable subsystem. You can include user-defined subsystems as blocks.

Port information

Lists of input and output ports of member blocks. In the case of multiports, you can rearrange selected port positions by clicking the **Up** and **Down** buttons.

Characteristics A Configurable Subsystem block has the characteristics of the block that it currently represents. Double-clicking the block opens the dialog box for the block that it currently represents.

Constant

Purpose	Generate constant value
---------	-------------------------

Sources

Library

Description

The Constant block generates a real or complex constant value. The block generates scalar (one-element array), vector (1-D array), or matrix (2-D array) output, depending on the dimensionality of the **Constant value** parameter and the setting of the **Interpret vector parameters as 1-D** parameter. Also, the block can generate either a sample-based or frame-based signal, depending on the setting of the **Sampling mode** parameter.

The output of the block has the same dimensions and elements as the **Constant value** parameter. If you specify a vector for this parameter, and you want the block to interpret it as a vector (i.e., a 1-D array), select the **Interpret vector parameters as 1-D** parameter; otherwise, the block treats the **Constant value** parameter as a matrix (i.e., a 2-D array).

Data Type Support

By default, the Constant block outputs a signal whose data type and complexity are the same as that of the block's **Constant value** parameter. However, you can specify the output to be any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

The ${\bf Main}$ pane of the Constant block dialog box appears as follows:

🙀 Source Block Parameters: Constant				
Constant				
Output the constant specified by the 'Constant value' parameter. If 'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on, treat the constant value as a 1-D array. Otherwise, output a matrix with the same dimensions as the constant value.				
Main Signal Attributes				
Constant value:				
1				
Interpret vector parameters as 1-D				
Sampling mode: Sample based				
Sample time:				
inf				
OK Cancel Help				

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the "Working with Blocks" chapter of the Simulink documentation.

The **Signal Attributes** pane of the Constant block dialog appears as follows:

🙀 Source Block Parameters: Constant			X	
Constant				
Output the constant specified by the 'Constant value' parameter. If 'Constant value' is a vector and 'Interpret vector parameters as 1-D' is on, treat the constant value as a 1-D array. Otherwise, output a matrix with the same dimensions as the constant value.				
Main Signal Attributes				
Output minimum:	Output maxin	num:		
0	[]			
Output data type: Inherit: Inherit from 'Const	ant value'	•	>>>	
	OK	Cancel	Help	

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Constant

Constant value

Specify the constant value output of the block.

Settings

Default: 1

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

- You can enter any expression that MATLAB evaluates as a matrix, including the Boolean keywords true and false.
- This parameter is converted from its data type to the specified output data type offline using round toward nearest and saturation.

Command-Line Information

Interpret vector parameters as 1-D

Select this check box to output a vector of length N if the **Constant** value parameter evaluates to an N-element row or column vector, i.e., a matrix of dimension 1xN or Nx1.

Settings

Default: Selected

🔽 On

Outputs a vector of length N if the **Constant value** parameter evaluates to an N-element row or column vector, i.e., a matrix of dimension $1 \times N$ or $N \times 1$.

C Off

Does not output a vector of length N if the Constant value parameter evaluates to an N-element row or column vector, i.e., a matrix of dimension $1 \times N$ or $N \times 1$.

If this check box is cleared, you can interact with the **Sampling mode** parameter.

Dependencies

This parameter enablesSampling mode.

Command-Line Information

Constant

Sampling mode

Specify whether the output signal is Sample based or Frame based.

Settings

Default: Sample based

Sample based

The output signal is sample-based.

Frame based

The output signal is frame-based.

Tips

To generate frame-based signals, you must have the Signal Processing Blockset[™] product installed.

Dependencies

This parameter is enabled by clearing **Interpret vector parameters** as 1-D.

Selecting Sample based enables the following parameter:

• Sample time

Selecting Frame based enables the following parameter:

• Frame period

Command-Line Information

Sample time

Specify the interval between times that the Constant block's output can change during simulation (e.g., as a result of tuning its **Constant value** parameter).

Settings

Default: inf

This setting indicates that the block's output can never change. This setting speeds simulation and generated code by avoiding the need to recompute the block's output.

See "How to Specify the Sample Time" in the online documentation for more information.

Dependencies

This parameter is enabled by **Sampling mode**.

Command-Line Information

Frame period

Specify the interval between frames that the Constant block's output can change during simulation (e.g., as a result of tuning its **Constant value** parameter).

Settings

Default: inf

Dependency

This parameter is enabled by **Sampling mode**.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

₽On

Lock scaling of outputs.

 \Box_{Off}

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Constant

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA, Simulink software chooses the output data type without regard to hardware constraints. Otherwise. Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

- Inherit: Inherit from 'Constant value'
 Use data type of Constant value parameter. This option appears
 for some blocks.
- Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2⁰,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

Constant

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the Show data type assistant button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias

Enter slope and bias.

- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Constant

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics

CS	Direct Feedthrough	N/A
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Coulomb and Viscous Friction

Purpose	Model discontinuity at zero, with linear gain elsewhere
Library	Discontinuities
Description	The Coulomb and Viscous Friction block models Coulomb (static) and viscous (dynamic) friction. The block models a discontinuity at zero and a linear gain otherwise. The block implementation is
	y = sign(u) * (Gain * abs(u) + Offset)
	where y is the output, u is the input, and Gain and Offset are block parameters.
	The Offset corresponds to Coulomb friction. By default, the Offset is a vector with four elements: [1 3 2 0]. This default vector tests the same input value against four different offset values. You can specify a vector with a different number of elements, such as one.
	The Gain corresponds to the signal gain for nonzero input values. By default, the Gain is 1.
	The block accepts one input and generates one output. The input can be a scalar, vector, or matrix. For a vector or matrix input, the Offset and Gain must have the same dimensions as the input or be scalars. For a scalar input, the output will be a scalar, vector, or matrix based on the dimensions of the Offset and Gain. For example, passing a scalar input to the block when using the default Offset produces an output vector with four elements.

Data Type Support

The Coulomb and Viscous Friction block accepts and outputs real signals of type double.

Parameters and Dialog Box

🙀 Function Block Parameters: Coulomb & Viscous Friction 🛛 🛛 🔀
Coulombic and Viscous Friction (mask) (link)
A discontinuity offset at zero models coulomb friction. Linear gain models viscous friction.
Parameters
Coulomb friction value (Offset):
[1 3 2 0]
Coefficient of viscous friction (Gain):
1
OK Cancel Help Apply

Coulomb friction value

The offset, applied to all input values. The default is [1 3 2 0].

Coefficient of viscous friction

The signal gain for nonzero input values. The default is 1.

Characteristics	Direct Feedthrough	Yes	
	Sample Time	Inherited from driving block	
	Scalar Expansion	Yes	
	Dimensionalized	Yes	
	Zero Crossing	Yes, at the point where Coulomb (static) friction is overcome	

Counter Free-Running

•	Count up and overflow back to zero after maximum value possible is reached for specified number of bits				
Library	Sources				
╏┨╏	The Counter Free-Running block counts up until the maximum possible value, 2^{Nbits} - 1, is reached, where Nbits is the number of bits. Then the counter overflows to zero, and restarts counting up. The counter is always initialized to zero.				
	You can specify the number of bits with the Number of Bits parameter.				
	You can specify the sample time with the Sample time parameter.				
	The output is an unsigned integer. If you select the global doubles override, the Counter Free-Running block does not wrap back to zero.				
Data Type Support	The Counter Free-Running block outputs an unsigned integer.				
Parameters	Source Block Parameters: Counter Free-Running				
and Dialog	Counter Free-Bunning (mask) (link)				
Box	This block is a free-running counter that overflows back to zero after it has reached the maximum value possible for the specified number of bits. The count is always initialized to zero. The output is normally an unsigned integer with the specified				
	Parameters				
	Number of Bits				
	16				
	Sample time:				
	-1				
	OK Cancel Help				

Number of Bits

Specified number of bits.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No

See Also Counter Limited

Counter Limited

Purpose	Count up and wrap back to zero after outputting specified upper limit			
Library	Sources			
Description	The Counter Limited block counts up until the specified upper limit is reached. Then the counter wraps back to zero, and restarts counting up. The counter is always initialized to zero.			
1 1 1 2	You can specify the upper limit with the Upper limit parameter.			
	You can specify the sample time with the Sample time parameter. A Sample time of -1 means that the sample time is inherited.			
	The output is an unsigned integer of 8, 16, or 32 bits, with the smallest number of bits needed to represent the upper limit.			
Data Type Support	The Counter Limited block outputs an unsigned integer.			
Parameters and Dialog Box	Block Parameters: Counter Limited Image: Counter Limited (mask) (link) Counter Limited (mask) (link) This block is a counter that wraps back to zero after it has output the specified upper limit. The count is always initialized to zero. The output is normally an unsigned integer of 8, 16, or 32 bits. The smallest number of bits needed to represent the upper limit is used. Parameters Upper limit: 7 Sample time: 1 Image: Im			

Upper limit

Upper limit.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No

See Also Counter Free-Running

Data Store Memory

Library Signal Routing

Description

The Data Store Memory block defines and initializes a named shared data store, which is a memory region usable by Data Store Read and Data Store Write blocks that specify the same data store name.

The location of the Data Store Memory block that defines a data store determines which Data Store Read and Data Store Write blocks can access the data store:

- If the Data Store Memory block is in the *top-level system*, the data store can be accessed by Data Store Read and Data Store Write blocks located anywhere in the model.
- If the Data Store Memory block is in a *subsystem*, the data store can be accessed by Data Store Read and Data Store Write blocks located in the same subsystem or in any subsystem below it in the model hierarchy.

A Data Store Memory block in a referenced model cannot be accessed by Data Store Read or Data Store Write blocks in either a superior model or a subordinate model.

You initialize the data store by specifying a scalar value or an array of values in the **Initial value** parameter. The dimensions of the array determine the dimensionality of the data store. Any data written to the data store must have the dimensions designated by the **Initial value** parameter. Otherwise, an error occurs.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in the expected order. See "Ordering Data Store Access" and "Using Data Store Diagnostics" for details.

You can use Simulink.Signal objects in addition to or instead of Data Store Memory blocks to define data stores. A data store defined in the base workspace using a signal object is accessible to every model, including all referenced models. See "Working with Data Stores" for more information.

Data TypeThe Data Store Memory block stores real or complex signals of any
data type supported by Simulink software, including fixed-point and
enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation. Parameters and Dialog Box

The **Main** pane of the Data Store Memory block dialog appears as follows:

🙀 Block Parameters: Data Store Memory 🛛 🛛 🔀
DataStoreMemory
Define a memory region for use by the Data Store Read and Data Store Write blocks. All Read and Write blocks that are in the current (sub)system level or below and have the same data store name will be able to read from or write to this block.
Main Signal Attributes Diagnostics
Data store name: A
Corresponding Data Store Read/Write blocks: refresh
Initial value: 0
Data store name must resolve to Simulink signal object
RTW storage class: Auto
RTW type qualifier:
✓ Interpret vector parameters as 1-D
OK Cancel Help Apply

Data store name

Specify a name for the data store you are defining with this block. Data Store Read and Data Store Write blocks with the same name will be able to read from and write to the data store initialized by this block.

Corresponding Data Store Read blocks

This parameter lists all the Data Store Read and Data Store Write blocks that have the same data store name as the current block, and that are in the current (sub)system or in any subsystem below it in the model hierarchy. Double-click any entry on this list to highlight the block and bring it to the foreground.

Initial value

Specify the initial value or values of the data store. The dimensions of this value determine the dimensions of data that may be written to the data store. The **Minimum** parameter specifies the minimum value for this parameter, the **Maximum** parameter specifies the maximum value.

Data store must resolve to Simulink signal object

Causes Simulink software, when compiling the model, to search the model and base workspace for a Simulink.Signal object having the same name, as described in "Resolving Symbols". If such an object is not found, Simulink software halts the compilation and displays an error. Otherwise Simulink software compares the attributes of the signal object with the corresponding attributes of the data store memory block. If the block and the object attributes are inconsistent, Simulink software halts model compilation and displays an error.

These following parameters pertain to code generation and have no effect during simulation:

- Data store name must resolve to Simulink signal object
- RTW storage class
- RTW type qualifier

See "Block State Storage and Interfacing" in the Real-Time Workshop documentation for more information.

Interpret vector parameters as 1-D

If selected and the **Initial value** parameter is specified as a column or row matrix, the data store is initialized to a 1-D array whose elements are equal to the elements of the row or column vector. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation.

The **Signal Attributes** pane of the Data Store Memory block dialog appears as follows:

뒑 Block	Parameters: Data	a Store Men	iory		X
_ DataSto	reMemory				
All Read	i memory region for u I and Write blocks th e data store name wi	iat are in the c	urrent (sub)sj	ystem level or be	elow and have
Main	Signal Attributes	Diagnostics	:		
Minimum:	[]		Maximum:	[]	
Data type	e: Inherit: auto			•	>>>
Signal typ	pe: auto				-
		ОК	Cancel	Help	Apply

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")

• Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: auto
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button button to display the **Data Type Assistant**, which helps you set the **Data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Data type** parameter.

Signal type

Specify the numeric type, real or complex, of the values stored in the data store.

The **Diagnostics** pane of the Data Store Memory block dialog appears as follows:

	Block Parameters: Data Store Memory
_ D	ataStoreMemory
A	efine a memory region for use by the Data Store Read and Data Store Write blocks. I Read and Write blocks that are in the current (sub)system level or below and have e same data store name will be able to read from or write to this block.
	ain Signal Attributes Diagnostics
De	tect read before write: warning
De	tect write after read: warning
De	tect write after write: warning
_	OK Cancel Help Apply

Detect read before write

Select the diagnostic action to take if the model attempts to read data from a data store to which it has not written data in this time step. See also "Detect read before write" in the **Data Store**

Memory Block section of the **Configuration Parameters** > **Diagnostics** > **Data Validity** pane.

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Detect write after read

Select the diagnostic action to take if the model attempts to write data to the data store after previously reading data from it in the current time step. See also "Detect write after read" in the **Data Store Memory Block** section of the **Configuration Parameters > Diagnostics > Data Validity** pane.

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Detect write after write

Select the diagnostic action to take if the model attempts to write data to the data store twice in succession in the current time step. See also "Detect write after write" in the **Data Store Memory**

Block section of the Configuration Parameters > Diagnostics > Data Validity pane.

Default: warning

none

Simulink software takes no action.

warning

Simulink software displays a warning.

error

Simulink software terminates the simulation and displays an error message.

Characteristics	Sample Time	N/A
	Dimensionalized	Yes
	Multidimensionalized	Yes

See Also • "Working with Data Stores"

- Data Store Memory
- Data Store Read

Data Store Read

Library Signal Routing

Description

The Data Store Read block copies data from the named data store to its output. More than one Data Store Read block can read from the same data store.

The data store from which the data is read is determined by the location of the Data Store Memory block or signal object that defines the data store. For more information, see "Working with Data Stores" and Data Store Memory.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in the expected order. See "Ordering Data Store Access" and "Using Data Store Diagnostics" for details.

Data Type
SupportThe Data Store Read block can output a real or complex signal of any
data type supported by Simulink software, including fixed-point end
enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

🙀 Source Block Parameters: Data Store Read	×
DataStoreRead	
Read values from specified data store.	
Parameters	
Data store name: A	•
Data store memory block: none	
Corresponding Data Store Write blocks:	<u>refresh</u>
Sample time: 0	
OK Cancel	Help

Data store name

Specifies the name of the data store from which this block reads data. The adjacent pull-down list lists the names of Data Store Memory blocks that exist at the same level in the model as the Data Store Read block or at higher levels. To change the name, select a name from the pull-down list or enter the name directly in the edit field.

When Simulink software compiles the model containing this block, Simulink software searches the model upwards from this block's level for a Data Store Memory block having the specified data store name. If Simulink software does not find such a block, it searches the model workspace and the MATLAB workspace for a Simulink.Signal object having the same name. See "Resolving Symbols" for more information about the search path.

If Simulink software finds the signal object, it creates a hidden Data Store Memory block at the model's root level having the properties specified by the signal object and an initial value of 0. If Simulink software finds neither the Data Store Memory block nor the signal object, it halts the compilation and displays an error.

Data store memory block

This field lists the Data Store Memory block that initialized the store from which this block reads.

Data store write blocks

This parameter lists all the Data Store Write blocks with the same data store name as this block that are in the same (sub)system or in any subsystem below it in the model hierarchy. Double-click any entry on this list to highlight the block and bring it to the foreground.

Sample time

The sample time, which controls when the block reads from the data store. A value of -1 indicates that the sample time is inherited. See "How to Specify the Sample Time" for more information.

Characteristics	Sample Time	Specified in the Sample time parameter
	Dimensionalized	Yes
	Multidimensionalized	Yes

See Also • "Working with Data Stores"

- Data Store Memory
- Data Store Read

Purpose Write data to data st	tore
--------------------------------------	------

Library Signal Routing

Description

The Data Store Write block copies the value at its input to the named data store. Each write operation performed by a Data Store Write block writes over the data store, replacing the previous contents.

The data store to which this block writes is determined by the location of the Data Store Memory block or signal object that defines the data store. For more information, see "Working with Data Stores" and Data Store Memory. The size of the data store is set by the signal object or the Data Store Memory block that defines and initializes the data store. Each Data Store Write block that writes to that data store must write the same amount of data.

More than one Data Store Write block can write to the same data store. However, if two Data Store Write blocks attempt to write to the same data store during the same simulation step, results are unpredictable.

Obtaining correct results from data stores requires ensuring that data store reads and writes occur in the expected order. See "Ordering Data Store Access" and "Using Data Store Diagnostics" for details.

Data Type Support The Data Store Write block accepts a real or complex signal of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters
andData store nameDialog
BoxData store name of the data store to which this block writes
data. The adjacent pull-down list lists the names of Data Store
Memory blocks that exist at the same level in the model as the
Data Store Write block or at higher levels. To change the name,

select a name from the pull-down list or enter the name directly in the edit field.

When Simulink software compiles the model containing this block, Simulink software searches the model upwards from this block's level for a Data Store Memory block having the specified data store name. If Simulink software does not find such a block, it searches the model workspace and the MATLAB workspace for a Simulink.Signal object having the same name. See "Resolving Symbols" for more information about the search path.

If Simulink software finds the signal object, it creates a hidden Data Store Memory block at the model's root level having the properties specified by the signal object and an initial value of 0. If Simulink software finds neither the Data Store Memory block nor the signal object, it halts the compilation and displays an error.

Data store memory block

This field lists the Data Store Memory block that initialized the store to which this block writes.

Data store read blocks

This parameter lists all the Data Store Read blocks with the same data store name as this block that are in the same (sub)system or in any subsystem below it in the model hierarchy. Double-click any entry on this list to highlight the block and bring it to the foreground.

Sample time

Specify the sample time that controls when the block writes to the data store. A value of -1 indicates that the sample time is inherited. See "How to Specify the Sample Time" for more information.

Characteristics	Sample Time	Specified in the Sample time parameter
	Dimensionalized	Yes
	Multidimensionalized	Yes

- **See Also** "Working with Data Stores"
 - Data Store Memory
 - Data Store Read

Data Type Conversion

Purpose Convert input signal to specified data type	Purpose	Convert input signa	l to specified data type
--	---------	---------------------	--------------------------

Library Signal Attributes

Description The Data Type Conversion block converts an input signal of any Simulink software data type to the data type and scaling specified by the block's **Output data type** parameter. The input can be any real-or complex-valued signal. If the input is real, the output is real. If the input is complex, the output is complex.

Note This block requires that you specify the data type and/or scaling for the conversion. If you want to inherit this information from an input signal, you should use the Data Type Conversion Inherited block.

The **Input and output to have equal** parameter controls how the input is processed. The possible values are Real World Value (RWV) and Stored Integer (SI):

- Select Real World Value (RWV) to treat the input as V = SQ + Bwhere S is the slope and B is the bias. V is used to produce Q = (V - B)/S, which is stored in the output. This is the default value.
- Select Stored Integer (SI) to treat the input as a stored integer, Q. The value of Q is directly used to produce the output. In this mode, the input and output are identical except that the input is a raw integer lacking proper scaling information. Selecting Stored Integer may be useful in these circumstances:
 - If you are generating code for a fixed-point processor, the resulting code only uses integers and does not use floating-point operations.
 - If you want to partition your model based on hardware characteristics. For example, part of your model may involve simulating hardware that produces integers as output.

Working with Fixed-Point Values Greater than 32 Bits

The MATLAB built-in integer data types are limited to 32 bits. If you want to output fixed-point numbers that range between 33 and 53 bits without loss of precision or range, you should break the number into pieces using the Gain block, and then output the pieces using the Data Type Conversion block to store the value inside a double.

Suppose that the original signal is an unsigned 128-bit value with default scaling. You can break this signal into four pieces using four parallel Gain blocks configured with the gain and output settings shown below.

Piece	Gain	Output Data Type
1	2^0	uint(32) - Least significant 32 bits
2	2^-32	uint(32)
3	2^-64	uint(32)
4	2^-96	uint(32) - Most significant 32 bits

For each Gain block, you must also configure the **Integer rounding mode** parameter to Floor and clear the **Saturate on integer overflow** check box.

Working with Enumerated Signals

You can use a Data Type Conversion block to cast signal of an enumerated type to a signal of any numeric type, provided that the underlying integers of all enumerated values input to the block are within the range of the numeric type. Otherwise, an error occurs during simulation.

You can use a Data Type Conversion block to cast a signal of any integer type to a signal of an enumerated type, provided that every value input to the Data Type Conversion block is the underlying integer of some value in the enumerated type. Otherwise, an error occurs during simulation.

You cannot use a Data Type Conversion block to cast a non-integer numeric signal an enumerated signal. You cannot cast a complex signal to an enumerated signal regardless of the data types of its real and imaginary parts. See "Using Enumerated Data" for information about enumerated data types in Simulink.

When you generate code for a Data Type Conversion block that casts to an enumerated type, the code uses safe casting if the block's **Saturate on integer overflow** option is selected. If the option is cleared, the code does not use safe casting to enumerated types. See "Enumerated Type Safe Casting" for more information.

Data TypeThe Data Type Conversion block handles any data type supported bySupportSimulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

	rameters: Data Type Convers	lon	
Data Type Conversion			
Convert the input to t	he data type and scaling of the ou	tput.	
input and the output l	o possible goals. One goal is to have e equal. The other goal is to have e equal. Overflows and quantizatived.	e the Stored Integer	r Values of the
Parameters			
Output minimum:	Output ma	aximum:	
0	0		
	nherit: Inherit via back propagatio		
	ave equal: Real World Value (RW		>>
Input and output to h	ave equal: Real World Value (RW		>>
Input and output to h Integer rounding mod	ave equal: Real World Value (RW		>> •
Input and output to h Integer rounding mod	ave equal: Real World Value (RW e: Floor er overflow		>> •
Input and output to h	ave equal: Real World Value (RW e: Floor er overflow		>> •
Input and output to H Integer rounding mod Saturate on integer Sample time (-1 for in	ave equal: Real World Value (RW e: Floor er overflow		>>
Input and output to H Integer rounding mod	ave equal: Real World Value (RW e: Floor er overflow		>>

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

₽On

Lock scaling of outputs.

 \Box_{Off}

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Input and output to have equal

Specify which type of input and output should be equal.

Settings

Default: Real World Value (RWV)

Real World Value (RWV)

Specifies the goal of making the Real World Value (RWV) of the input equal to the Real World Value (RWV) of the output.

Stored Integer (SI)

Specifies the goal of making the Stored Integer (SI) value of the input equal to the Stored Integer (SI) value of the output.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Saturate on integer overflow

Specify whether overflows saturate.

Settings Default: Off

🔽 On

Overflows saturate.

C Off

Overflows do not saturate.

Tips

- When you select this check box, saturation applies to every internal operation on the block, not just the output or result.
- In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA, Simulink software chooses the output data type without regard to hardware constraints. Otherwise. Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

- Inherit: Inherit from 'Constant value' Use data type of **Constant value** parameter. This option appears for some blocks.
- Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2⁰,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias

Enter slope and bias.

- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

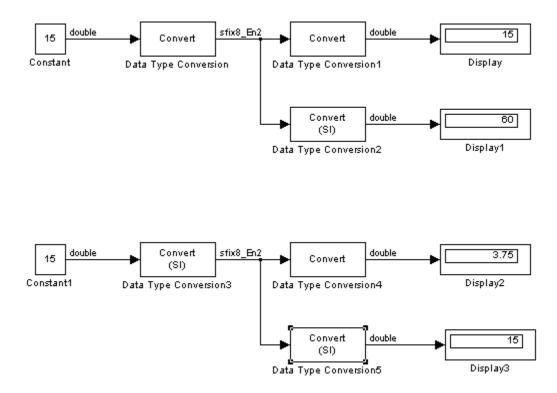
Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

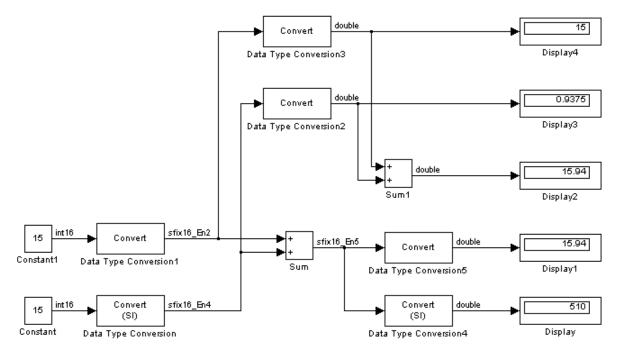

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Examples Example 1 – Real World Values Versus Stored Integers

This example uses the Data Type Conversion block to explain the difference between a real-world value and a stored integer. Consider the two fixed-point models shown below.



In the top model, the Data Type Conversion block treats the input as a real-world value, and maps that value to an 8-bit signed generalized fixed-point data type with a scaling of 2^{-2} . When the value is then output from the Data Type Conversion1 block as a real-world value, the scaling and data type information is retained and the output value is 001111.00, or 15. When the value is output from the Data Type Conversion2 block as a stored integer, the scaling and data type information is not retained and the stored integer is interpreted as 00111100, or 60.

In the bottom model, the Data Type Conversion3 block treats the input as a stored integer, and the data type and scaling information is not applied. When the value is then output from the Data Type Conversion4 block as a real-world value, the scaling and data type information is applied to the stored integer, and the output value is 000011.11, or 3.75. When the value is output from the Data Type Conversion5 block as a stored integer, you get back the original input value of 15.

Example 2 – Real World Values and Stored Integers in Summations

The model shown below illustrates how a summation operation applies to real-world values and stored integers, and how scaling information is dealt with in generated code.

Note that the summation operation produces the correct result when the Data Type Conversion (2 or 5) block outputs a real-world value. This is because the specified scaling information is applied to the stored integer value. However, when the Data Type Conversion4 block outputs a stored integer value, then the summation operation produces an unexpected result due to the absence of scaling information. If you generate code for the above model, then the code captures the appropriate scaling information. The code for the Sum block is shown below. The inputs to this block are tagged with the specified scaling information so that the necessary shifts are performed for the summation operation.

/* Sum Block: <root>/Sum</root>		
*		
* y = u0 + u1		
*		
* InputO Data Type: Fixed Point	S16	2^-2
* Input1 Data Type: Fixed Point	S16	2^-4
* OutputO Data Type: Fixed Point	S16	2^-5
*		
* Round Mode: Floor		
* Saturation Mode: Wrap		
*		
*/		
sum = ((in1) << 3);		
sum += ((in2) << 1);		

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	N/A
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

See Also Data Type Conversion Inherited

Purpose Convert from one data type to another using inherited data type and scaling

Library Signal Attributes

Description

The Data Type Conversion Inherited block forces dissimilar data types to be the same. The first input is used as the reference signal and the second input is converted to the reference type by inheriting the data type and scaling information. (See "How to Rotate a Block" in the Simulink User's Guide for a description of the port order for various block orientations.) Either input is scalar expanded such that the output has the same width as the widest input.

Inheriting the data type and scaling provides these advantages:

- It makes reusing existing models easier.
- It allows you to create new fixed-point models with less effort since you can avoid the detail of specifying the associated parameters.

Data TypeThe Data Type Conversion Inherited block handles any data typeSupportsupported by Simulink software, including fixed-point and enumerated
data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

Function Block Parameters: Data Type Conversion Inherited 🗙				
Conversion Inherited (mask) (link)				
Convert the second input to the data type and scaling of the first input.				
The conversion has two possible goals. One goal is to have the Real World Values of the input and the output be equal. The other goal is to have the Stored Integer Values of the input and the output be equal. Overflows and quantization errors can prevent the goal from being fully achieved.				
-Parameters				
Input and Output to have equal: Real World Value				
Integer rounding mode: Floor				
Saturate to max or min when overflows occur				
OK Cancel Help Apply				

Input and Output to have equal

Specify whether the Real World Value (RWV) or the Stored Integer (SI) of the input and output should be the same. Refer to Description in the Data Type Conversion block reference page for more information about these choices.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

Select to have overflows saturate.

Characteristics Direct Feedthrough Yes	Characteristics	Direct Feedthrough	Yes
--	------------------------	--------------------	-----

See Also Data Type Conversion

Data Type Duplicate

Purpose	Force all	inputs to	same	data type	

Library Signal Attributes

Description

The Data Type Duplicate block forces all inputs to have exactly the same data type. Other attributes of input signals, such as dimension, complexity, and sample time, are completely independent.

You can use the Data Type Duplicate block to check for consistency of data types among blocks. If all signals do not have the same data type, the block returns an error message.

The Data Type Duplicate block is typically used such that one signal to the block controls the data type for all other blocks. The other blocks are set to inherit their data types via backpropagation.

The block is also used in a user created library. These library blocks can be placed in any model, and the data type for all library blocks are configured according to the usage in the model. To create a library block with more complex data type rules than duplication, use the Data Type Propagation block.

Data Type Support

The Data Type Duplicate block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Parameters and Dialog Box

Sink Block Parameters: Data Type Duplicate
- Data Type Duplicate (mask) (link)
Force all inputs to have the exact same data type.
Parameters
Number of input ports:
2
OK Cancel Help Apply

Number of input ports

Number of input ports.

Characteristics

ics	Scalar Expansion	Yes
	States	0

Data Type Propagation

Purpose Set data type and scaling of propagated signal based on information from reference signals Library Signal Attributes **Description** The Data Type Propagation block allows you to control the data type and scaling of signals in your model. You can use this block in Ref1 conjunction with fixed-point blocks that have their **Output data type** parameter configured to Inherit: Inherit via back propagation. Ref2 The block has three inputs: Ref1 and Ref2 are the reference inputs, Prop while the Prop input back propagates the data type and scaling information gathered from the reference inputs. This information is then passed on to other fixed-point blocks. The block provides you with many choices for propagating data type and scaling information. For example, you can:

- Use the number of bits from the Ref1 reference signal, or use the number of bits from widest reference signal.
- Use the range from the Ref2 reference signal, or use the range of the reference signal with the greatest range.
- Use a bias of zero, regardless of the biases used by the reference signals.
- Use the precision of the reference signal with the least precision.

You specify how data type information is propagated with the **Propagated data type** parameter list. If the parameter list is configured as Specify via dialog, then you manually specify the data type via the **Propagated data type** edit field. If the parameter list is configured as Inherit via propagation rule, then you must use the parameters described in "Parameters and Dialog Box" on page 2-211.

You specify how scaling information is propagated with the **Propagated** scaling parameter list. If the parameter list is configured as Specify via dialog, then you manually specify the scaling via the **Propagated** scaling edit field. If the parameter list is configured as Inherit via propagation rule, then you must use the parameters described in "Parameters and Dialog Box" on page 2-211.

After you use the information from the reference signals, you can apply a second level of adjustments to the data type and scaling by using individual multiplicative and additive adjustments. This flexibility has a variety of uses. For example, if you are targeting a DSP, then you can configure the block so that the number of bits associated with a MAC (multiply and accumulate) operation is twice as wide as the input signal, and has a certain number of guard bits added to it.

The Data Type Propagation block also provides a mechanism to force the computed number of bits to a useful value. For example, if you are targeting a 16-bit micro, then the target C compiler is likely to support sizes of only 8 bits, 16 bits, and 32 bits. The block will force these three choices to be used. For example, suppose the block computes a data type size of 24 bits. Since 24 bits is not directly usable by the target chip, the signal is forced up to 32 bits, which is natively supported.

There is also a method for dealing with floating-point reference signals. This makes it easier to create designs that are easily retargeted from fixed-point chips to floating-point chips or vice versa.

The Data Type Propagation block allows you to set up libraries of useful subsystems that will be properly configured based on the connected signals. Without this data type propagation process, a subsystem that you use from a library will almost certainly not work as desired with most integer or fixed-point signals, and manual intervention to configure the data type and scaling would be required. This block can eliminate the manual intervention in many situations.

Precedence Rules

The precedence of the dialog box parameters decreases from top to bottom. Additionally:

• Double-precision reference inputs have precedence over all other data types.

	• Single-precision reference inputs have precedence over integer and fixed-point data types.
	• Multiplicative adjustments are carried out before additive adjustments.
	• The number of bits is determined before the precision or positive range is inherited from the reference inputs.
Data Type Support	The Data Type Propagation block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

The **Propagated type** pane of the Data Type Propagation block dialog appears as follows:

Sink Block Parameters: Data Type Propagation			
Data Type Propagation (mask) (link)			
 Set the Data Type and Scaling of the propagated signal based on information from the reference signals. Notes: Items closer to the top of the dialog have higher priority/precedence. Reference inputs of type double have priority over all others. Singles have priority over integer and fixed point data types. Multiplicative adjustments are carried out before additive adjustments. Number-of-Bits is determined before the precision or positive-range is inherited from the reference signals. PosRange is one bit higher than the exact maximum positive range of the signal. The computed Number-of-Bits is promoted to the smallest allowable value that is greater than or equal. If none exists, then error. 			
Propagated type Propagated scaling			
1. Propagated data type: Inherit via propagation rule			
1.1. If any reference input is double, output is: double			
1.2. If any reference input is single, output is: single			
1.3. Is-Signed: IsSigned1 or IsSigned2			
1.4.1. Number-of-Bits: Base max([NumBits1 NumBits2])			
1.4.2. Number-of-Bits: Multiplicative adjustment			
1			
1.4.3. Number-of-Bits: Additive adjustment			
0			
1.4.4. Number-of-Bits: Allowable final values			
1:128			
OK Cancel Help Apply			

Propagated data type

Use the parameter list to propagate the data type via the dialog box, or inherit the data type from the reference signals. Use the edit field to specify the data type via the dialog box.

If any reference input is double, output is

Specify single or double. This parameter makes it easier to create designs that are easily retargeted from fixed-point chips to floating-point chips or vice versa.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

If any reference input is single, output is

Specify single or double. This parameter makes it easier to create designs that are easily retargeted from fixed-point chips to floating-point chips or visa versa.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

Is-Signed

Specify the sign of Prop as one of the following values:

Parameter Value	Description
IsSigned1	Prop is a signed data type if Ref1 is a signed data type.
IsSigned2	Prop is a signed data type if Ref2 is a signed data type.
IsSigned1 or IsSigned2	Prop is a signed data type if either Ref1 or Ref2 are signed data types.
TRUE	Ref1 and Ref2 are ignored, and Prop is always a signed data type.
FALSE	Ref1 and Ref2 are ignored, and Prop is always an unsigned data type.

For example, if the Ref1 signal is ufix(16), the Ref2 signal is sfix(16), and the **Is-Signed** parameter is IsSigned1 or IsSigned2, then Prop is forced to be a signed data type.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

Number-of-bits: Base

Specify the number of bits used by Prop for the base data type as one of the following values:

Parameter Value	Description
NumBits1	The number of bits for Prop is given by the number of bits for Ref1.
NumBits2	The number of bits for Prop is given by the number of bits for Ref2.
max([NumBits1 NumBits2])	The number of bits for Prop is given by the reference signal with largest number of bits.
min([NumBits1 NumBits2])	The number of bits for Prop is given by the reference signal with smallest number of bits.
NumBits1+NumBits2	The number of bits for Prop is given by the sum of the reference signal bits.

Refer to Targeting an Embedded Processor in the *Simulink Fixed Point User's Guide* for more information about the base data type.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

Number-of-bits: Multiplicative adjustment

Specify the number of bits used by Prop by including a multiplicative adjustment. For example, suppose you want to guarantee that the number of bits associated with a multiply and

accumulate (MAC) operation is twice as wide as the input signal. To do this, you configure this parameter to the value **2**.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

Number-of-bits: Additive adjustment

Specify the number of bits used by Prop by including an additive adjustment. For example, if you are performing multiple additions during a MAC operation, the result might overflow. To prevent overflow, you can associate guard bits with the propagated data type. To associate four guard bits, you specify the value 4.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

Number-of-bits: Allowable final values

Force the computed number of bits used by Prop to a useful value. For example, if you are targeting a processor that supports only 8, 16, and 32 bits, then you configure this parameter to [8,16,32]. The block always propagates the smallest specified value that fits. If you want to allow all fixed-point data types, you would specify the value 1:128.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated data type** parameter list.

The **Propagated scaling** pane of the Data Type Propagation block dialog appears as follows:

Sink Block Parameters: Data Type Propagation				
Data Type Propagation (mask) (link)				
 Set the Data Type and Scaling of the propagated signal based on information from the reference signals. Notes: Items closer to the top of the dialog have higher priority/precedence. Reference inputs of type double have priority over all others. Singles have priority over integer and fixed point data types. Multiplicative adjustments are carried out before additive adjustments. Number-of-Bits is determined before the precision or positive-range is inherited from the reference signals. PosRange is one bit higher than the exact maximum positive range of the signal. The computed Number-of-Bits is promoted to the smallest allowable value that is greater than or equal. If none exists, then error. 				
Propagated type Propagated scaling				
2. Propagated scaling: Inherit via propagation rule				
2.1.1. Slope: Base min([Slope1 Slope2])				
2.1.2. Slope: Multiplicative adjustment				
1				
2.1.3. Slope: Additive adjustment				
0				
2.2.1. Bias: Base Bias1				
2.2.2. Bias: Multiplicative adjustment:				
1				
2.2.3. Bias: Additive adjustment:				
0				
OK Cancel Help Apply				

Propagated scaling

Use the parameter list to propagate the scaling via the dialog box, inherit the scaling from the reference signals, or calculate the scaling to obtain best precision.

Propagated scaling (Slope or [Slope Bias])

Specify the scaling as either a slope or a slope and bias.

This parameter is visible only if Specify via dialog is selected for the **Propagated scaling** parameter list.

Values used to determine best precision scaling

Specify any values to be used to constrain the precision, such as the upper and lower limits on the propagated input. Based on the data type, the scaling will automatically be selected such that these values can be represented with no overflow error and minimum quantization error.

This parameter is visible only if Obtain via best precision is selected for the **Propagated scaling** parameter list.

Slope: Base

Specify the slope used by Prop for the base data type as one of the following values:

Parameter Value	Description
Slope1	The slope of Prop is given by the slope of Ref1.
Slope2	The slope of Prop is given by the slope of Ref2.
<pre>max([Slope1 Slope2])</pre>	The slope of Prop is given by the maximum slope of the reference signals.
min([Slope1 Slope2])	The slope of Prop is given by the minimum slope of the reference signals.

Parameter Value	Description
Slope1*Slope2	The slope of Prop is given by the product of the reference signal slopes.
Slope1/Slope2	The slope of Prop is given by the ratio of the Ref1 slope to the Ref2 slope.
PosRange1	The range of Prop is given by the range of Ref1.
PosRange2	The range of Prop is given by the range of Ref2.
max([PosRange1 PosRange2])	The range of Prop is given by the maximum range of the reference signals.
min([PosRange1 PosRange2])	The range of Prop is given by the minimum range of the reference signals.
PosRange1*PosRange2	The range of Prop is given by the product of the reference signal ranges.
PosRange1/PosRange2	The range of Prop is given by the ratio of the Ref1 range to the Ref2 range.

You control the precision of Prop with Slope1 and Slope2, and you control the range of Prop with PosRange1 and PosRange2. Additionally, PosRange1 and PosRange2 are one bit higher than the maximum positive range of the associated reference signal.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated scaling** parameter list.

Slope: Multiplicative adjustment

Specify the slope used by Prop by including a multiplicative adjustment. For example, if you want 3 bits of additional precision (with a corresponding decrease in range), the multiplicative adjustment is 2^-3 .

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated scaling** parameter list.

Slope: Additive adjustment

Specify the slope used by Prop by including an additive adjustment. An additive slope adjustment is often not needed. The most likely use is to set the multiplicative adjustment to 0, and set the additive adjustment to force the final slope to a specified value.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated scaling** parameter list.

Bias: Base

Specify the bias used by Prop for the base data type. The parameter values are described as follows:

Parameter Value	Description	
Bias1	The bias of Prop is given by the bias of Ref1.	
Bias2	The bias of Prop is given by the bias of Ref2.	
max([Bias1 Bias2])	The bias of Prop is given by the maximum bias of the reference signals.	
min([Bias1 Bias2])	The bias of Prop is given by the minimum bias of the reference signals.	
Bias1*Bias2	The bias of Prop is given by the product of the reference signal biases.	
Bias1/Bias2	The bias of Prop is given by the ratio of the Ref1 bias to the Ref2 bias.	
Bias1+Bias2	The bias of Prop is given by the sum of the reference biases.	
Bias1-Bias2	The bias of Prop is given by the difference of the reference biases.	

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated scaling** parameter list.

Bias: Multiplicative adjustment

Specify the bias used by Prop by including a multiplicative adjustment.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated scaling** parameter list.

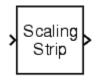
Bias: Additive adjustment

Specify the bias used by Prop by including an additive adjustment.

If you want to guarantee that the bias associated with Prop is zero, you should configure both the multiplicative adjustment and the additive adjustment to 0.

This parameter is visible only if Inherit via propagation rule is selected for the **Propagated scaling** parameter list.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes


Data Type Scaling Strip

Purpose Remove scaling and map to built in integer

Library

Signal Attributes

Description

The Scaling Strip block strips the scaling off a fixed point signal. It maps the input data type to the smallest built in data type that has enough data bits to hold the input. The stored integer value of the input is the value of the output. The output always has nominal scaling (slope = 1.0 and bias = 0.0), so the output does not make a distinction between real world value and stored integer value.

Data Type Support

The Data Type Scaling Strip block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

🙀 Function Block	Parameters: Data	Type Scalin	ıg Strip	×
C Scaling Strip (mask	k) (link)			
smallest built-in dat Value of the input scaling (slope = 1.0	e scaling off a fixed p ta type that has suffici will be the value of the 0 and bias = 0.0), so th rld Value and Stored I	ent bits to hold e output. The he output does	d the input. The sto output always has	ored Integer nominal
	ОК	Cancel	Help	Apply

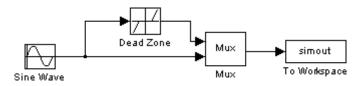
Characteristics

Direct Feedthrough	Yes
Scalar Expansion	Yes
Multidimensionalized	Yes

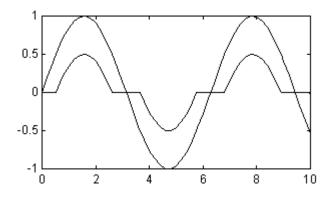
Purpose Provide region of zero output

Library

Discontinuities


Description

		7	L
1	7		ſ


The Dead Zone block generates zero output within a specified region, called its dead zone. The lower and upper limits of the dead zone are specified as the **Start of dead zone** and **End of dead zone** parameters. The block output depends on the input and dead zone:

- If the input is within the dead zone (greater than the lower limit and less than the upper limit), the output is zero.
- If the input is greater than or equal to the upper limit, the output is the input minus the upper limit.
- If the input is less than or equal to the lower limit, the output is the input minus the lower limit.

This sample model uses lower and upper limits of -0.5 and +0.5, with a sine wave as input.

This plot shows the effect of the Dead Zone block on the sine wave. While the input (the sine wave) is between -0.5 and 0.5, the output is zero.

Data Type Support

The Dead Zone block accepts and outputs a real signal of any numeric data type supported by Simulink software, except Boolean. The Dead Zone block supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Parameters and Dialog Box

🙀 Function Block Parameters: Dead Zone 🛛 🔀
Dead Zone
Output zero for inputs within the deadzone. Offset input signals by either the Start or End value when outside of the deadzone.
Parameters
Start of dead zone:
-0.5
End of dead zone:
0.5
Saturate on integer overflow
✓ Treat as gain when linearizing
Enable zero-crossing detection
Sample time (-1 for inherited):
-1
OK Cancel Help Apply
Carter Help Apply

Start of dead zone

Specify the lower limit of the dead zone. The default is -0.5.

End of dead zone

Specify the upper limit of the dead zone. The default is 0.5.

Saturate on integer overflow

Select to have overflows saturate.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Treat as gain when linearizing

The linearization commands in Simulink software treat this block as a gain in state space. Select this option to cause the commands to treat the gain as 1; otherwise, the commands treat the gain as 0.

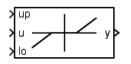
Enable zero-crossing detection

Select to enable zero-crossing detection to detect when the limits are reached. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See Specifying Sample Time in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of parameters
	Dimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled


See Also Dead Zone Dynamic

Purpose Set inputs within bounds to zero

Library

Discontinuities

Description

The Dead Zone Dynamic block dynamically bounds the range of the input signal, providing a region of zero output. The bounds change according to the upper and lower limit input signals where

- The input within the bounds is set to zero.
- The input below the lower limit is shifted down by the lower limit.
- The input above the upper limit is shifted down by the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is the 10 port.

Data Type Support

The Dead Zone Dynamic block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters	
and	
Dialog	
Box	

Function Block Parameters:	Dead Zone Dyna	mic	×	
Dead Zone Dynamic (mask) (link)				
Output zero for inputs within deadzone. Offset input signals by either the Start or End value when outside of the deadzone.				
OK	Cancel	Help	Apply	

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Dead Zone

Decrement Real World

Purpose	Decrease real world value of signal by one
Library	Additional Math & Discrete / Additional Math: Increment - Decrement
Description	The Decrement Real World block decreases the real world value of the signal by one. Overflows always wrap.

Data Type Support

The Decrement Real World block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

🙀 Function Block Parameters: D	ecrement Re	al World	×	
Real World Value Decrement (mask	.) (link)			
Decrease the Real World Value of S Overflows will always wrap.	Signal by 1.0			
OK	Cancel	Help	Apply	

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	No

See Also Decrement Stored Integer, Decrement Time To Zero, Decrement To Zero, Increment Real World

Decrement Stored Integer

Purpose	Decrease stored integer value of signal by one		
Library	Additional Math & Discrete / Additional Math: Increment - Decrement		
Description	The Decrement Stored Integer block decreases the stored integer value of a signal by one.		
> Q >	Floating-point signals are also decreased by one, and overflows always wrap.		
Data Type Support	The Decrement Stored Integer block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.		
Parameters and Dialog Box	Function Block Parameters: Decrement Stored Integer Stored Integer Value Decrement (mask) (link) Decrease the Stored Value of Signal by 1 Floating Point signals are decreased by 1.0 Overflows will always wrap. OK Cancel Help Apply		

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	No

See Also Decrement Real World, Decrement Time To Zero, Decrement To Zero, Increment Stored Integer

Purpose Library Additional Math & Discrete / Additional Math: Increment - Decrement **Description** The Decrement Time To Zero block decreases the real-world value of the signal by the sample time, Ts. The output will never go below zero. This block only works with fixed sample rates. max(V-Ts,0) X **Data Type** The Decrement Time To Zero block accepts signals of any numeric data **Support** type supported by Simulink software, including fixed-point data types. **Parameters** Function Block Parameters: Decrement Time To Zero X and Decrement Time To Zero (mask) (link) Dialog Decrease the Real World Value of Signal by the Sample Time Ts, Box but never go below zero. This block only works with fixed sample rates, so it will not work inside a triggered subsystem. Cancel OK. Help Apply

Decrease real-world value of signal by sample time, but only to zero

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	No

See Also Decrement Real World, Decrement Stored Integer, Decrement To Zero

Decrement To Zero

Purpose	Decrease real-world value of signal by one, but only to zero
Library	Additional Math & Discrete / Additional Math: Increment - Decrement
Description	The Decrement To Zero block decreases the real-world value of the signal by one. The output will never go below zero.

Data Type Support

The Decrement To Zero block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

	Function Block Parameters: Decrement To Zero		
	Decrement To Zero (mask) (link)		
	Decrease the Real World Value of Signal by 1.0, but never go below zero.		
. .	OK Cancel Help Apply		
Parameters and Dialog Box			
Chama a staniation			

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	No

See Also Decrement Real World, Decrement Stored Integer, Decrement Time To Zero

Purpose Extract and output elements of vector signal

Signal Routing

Description

Library

The Demux block extracts the components of an input signal and outputs the components as separate signals. The output signals are ordered from top to bottom output port. See "How to Rotate a Block" for a description of the port order for various block orientations. To avoid adding clutter to a model, Simulink software hides the name of a Demux block when you copy it from the Simulink library to a model. See "Mux Signals" for information about creating and decomposing vectors.

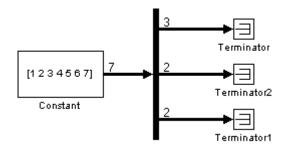
The **Number of outputs** parameter allows you to specify the number and, optionally, the dimensionality of each output port. If you do not specify the dimensionality of the outputs, the block determines the dimensionality of the outputs for you.

The Demux block operates in either vector mode or bus selection mode, depending on whether you selected the **Bus selection mode** parameter. The two modes differ in the types of signals they accept. Vector mode accepts only a vector-like signal, that is, either a scalar (one-element array), vector (1-D array), or a column or row vector (one row or one column 2-D array). Bus selection mode accepts only a bus signal.

Note The MathWorks discourages enabling **Bus selection mode** and using a Demux block to extract elements of a bus signal. Muxes and buses should not be intermixed in new models. See "Avoiding Mux/Bus Mixtures" for more information.

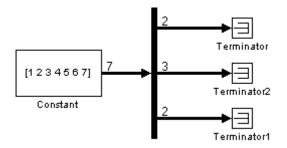
The Demux block's **Number of outputs** parameter determines the number and dimensionality of the block's outputs, depending on the mode in which the block operates.

Specifying the Number of Outputs in Vector Mode


In vector mode, the value of the parameter can be a scalar specifying the number of outputs or a vector whose elements specify the widths of the block's output ports. The block determines the size of its outputs from the size of the input signal and the value of the **Number of outputs** parameter.

The following table summarizes how the block determines the outputs for an input vector of width ${\sf n}.$

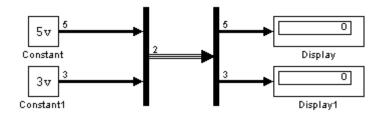
Parameter Value	Block outputs	Comments
p = n	p scalar signals	For example, if the input is a three-element vector and you specify three outputs, the block outputs three scalar signals.
p > n	Error	
p < n	p vector signals each having	If the input is a six-element
n mod $p = 0$	n/p elements	vector and you specify three outputs, the block outputs three two-element vectors.
p < n	m vector signals each having	If the input is a five-element
n mod p = m	(n/p)+1 elements and p-m signals having n/p elements	vector and you specify three outputs, the block outputs two two-element vector signals and one scalar signal.
$[p_1 p_2 \dots p_m]$	m vector signals having	If the input is a five-element
$p_1+p_2+\ldots+p_m=n$	widths $p_1, p_2, \ldots p_m$	vector and you specify [3, 2] as the output, the block
p _i > 0		outputs three of the input elements on one port and the other two elements on the other port.


Parameter Value	Block outputs	Comments
$[p_1 \ p_2 \ \dots \ p_m]$ $p_1+p_2+\ldots+p_m=n$ some or all $p_i = -1$	m vector signals	If pi is greater than zero, the corresponding output has width p_i . If p_i is -1, the width of the corresponding output is dynamically sized.
$[p_1 \ p_2 \ \dots \ p_m]$ $p_1 + p_2 + \dots + p_m! = n$ $p_i = > 0$	Error	

Note that you can specify the number of outputs as fewer than the number of input elements, in which case the block distributes the elements as evenly as possible over the outputs as illustrated in the following example.

You can use -1 in a vector expression to indicate that the block should dynamically size the corresponding port. For example, the expression [-1, 3 -1] causes the block to output three signals in which the second signal always has three elements while the sizes of the first and third signals depend on the size of the input signal.

If a vector expression comprises positive values and -1 values, the block assigns as many elements as needed to the ports with positive values and distributes the remain elements as evenly as possible over the ports with -1 values. For example, suppose that the block input is seven elements wide and you specify the output as [-1, 3, -1]. In this case, the block outputs two elements on the first port, three elements on the second, and two elements on the third.

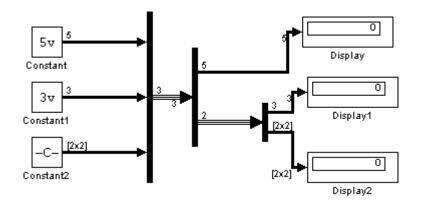


Specifying the Number of Outputs in Bus Selection Mode

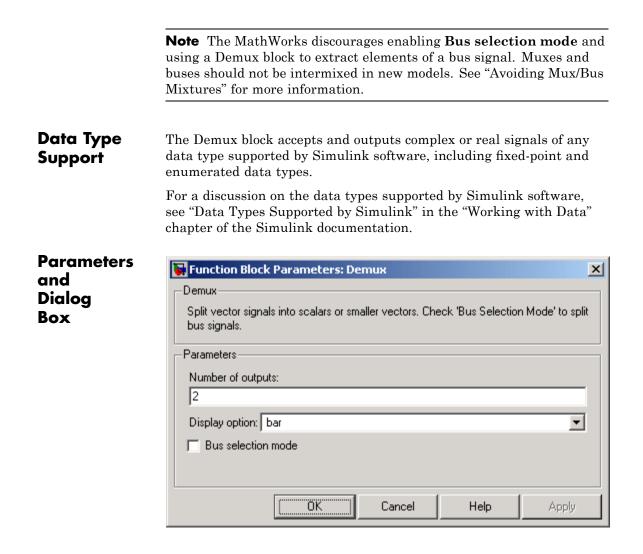
In bus selection mode, the value of the **Number of outputs** parameter can be a:

• Scalar specifying the number of output ports

The specified value must equal the number of input signals. For example, if the input bus comprises two signals and the value of this parameter is a scalar, the value must equal 2.



• Vector each of whose elements specifies the number of signals to output on the corresponding port


For example, if the input bus contains five signals, you can specify the output as [3, 2], in which case the block outputs three of the input signals on one port and the other two signals on a second port.

• Cell array each of whose elements is a cell array of vectors specifying the dimensions of the signals output by the corresponding port

The cell array format constrains the Demux block to accept only signals of specified dimensions. For example, the cell array {{[2 2], 3} {1}} tells the block to accept only a bus signal comprising a 2-by-2 matrix, a three-element vector, and a scalar signal. You can use the value -1 in a cell array expression to let the block determine the dimensionality of a particular output based on the input. For example, the following diagram uses the cell array expression {{-1}, {-1,-1}} to specify the output of the leftmost Demux block.

In bus selection mode, if you specify the dimensionality of an output port, i.e., if you specify any value other than -1, the corresponding input element must match the specified dimensionality.

Number of outputs

Specify the number and dimensions of outputs.

Settings

Default: 2

This block interprets this parameter depending on the **Bus selection mode** parameter. See the block description for more information.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See the Demux block reference page for more information.

Display option

Select options to display the Demux block. The options are

Settings

Default: bar

bar

Display the icon as a solid bar of the block's foreground color.

none

Display the icon as a box containing the block's type name.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See the Demux block reference page for more information.

Bus selection mode

Enable bus selection mode.

Settings Default: Off

🔽 On

Enable bus selection mode.

C Off

Disable bus selection mode.

Tips

The MathWorks discourages enabling **Bus selection mode** and using a Demux block to extract elements of a bus signal. Muxes and buses should not be intermixed in new models. See "Avoiding Mux/Bus Mixtures" for more information.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

Derivative

Purpose	Output time derivative of input
---------	---------------------------------

Continuous

Library

Description

The Derivative block approximates the derivative of its input by computing

 $\frac{du}{dt}$

where du is the change in input value and dt is the change in time since the previous simulation time step. The block accepts one input and generates one output. The initial output for the block is zero.

The accuracy of the results depends on the size of the time steps taken in the simulation. Smaller steps allow a smoother and more accurate output curve from this block. Unlike blocks that have continuous states, the solver does not take smaller steps when the input changes rapidly.

When the input is a discrete signal, the continuous derivative of the input is an impulse when the value of the input changes, otherwise it is 0. You can obtain the discrete derivative of a discrete signal using

$$y(k) = \frac{1}{\Delta t} (u(k) - u(k-1))$$

and taking the *z*-transform

$$\frac{Y(z)}{u(z)} = \frac{1-z^{-1}}{\Delta t} = \frac{z-1}{\Delta t \cdot z}$$

See "Circuit Model" in *Simulink User's Guide* for an example on choosing the best-form mathematical model to avoid using Derivative blocks in your models.

Using linmod to linearize a model that contains a Derivative block can be troublesome. To improve the accuracy of linearizations of this block, use the optional linearization parameter within the block dialog box. Additionally, for more information about how to avoid problems linearizing Derivative blocks, see Linearizing Models in the "Analyzing Simulation Results" chapter of the Simulink documentation.

Data Type Support

The Derivative block accepts and outputs a real signal of type double.

Parameters and Dialog Box

🙀 Function Block Parameters: Derivative 🛛 🛛 🔀			
Derivative			
Numerical derivative: du/dt.			
Parameters			
Linearization Time Constant s/(Ns + 1):			
inf			
OK Cancel Help Apply			

The exact linearization of the Derivative block is difficult due to the fact that the block cannot be represented as a state space system since

the dynamic equation for the block is $y = \dot{u}$. However, it is possible to approximate the linearization by adding a pole to the Derivative to create a proper transfer function. The addition of the pole has the effect of filtering the signal before differentiating it, to remove the effect of noise. The approximated linearization of the Derivative block is then

 $\frac{s}{Ns+1}$. You can change the **Linearization Time Constant**, *N*, to more accurately approximate the linearization for your system. Its default value is Inf, corresponding to a linearization of 0, but it is common

practice to change it to $\frac{1}{f_b}$, where f_b is the break frequency for the filter.

Derivative

Characteristics	Direct Feedthrough	Yes
	Sample Time	Continuous
	Scalar Expansion	N/A
	States	2*[1+(number of input elements)]
	Dimensionalized	Yes
	Zero Crossing	No

See Also Discrete Derivative

- **Purpose**Detect change in signal's value
- Library Logic and Bit Operations

Description

→ U ~= U/z →

The Detect Change block determines if an input does not equal its previous value where

- The output is true (equal to 1), when the input signal does not equal its previous value.
- The output is false (equal to 0), when the input signal equals its previous value.

Data Type Support

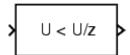
The Detect Change block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The block output is uint8.

Parameters and Dialog Box

🙀 Function Block Parameters: Detect Change 🛛 🛛 🔀				
Detect Change (mask) (link)				
If the input does not equal its previous value, then output TRUE, otherwise output FALSE. The initial condition determines the initial value of the previous input U/z.				
Parameters				
Initial condition:				
0				
OK Cancel Help Apply				

Initial condition

Set the initial condition for the previous input U/z.


Detect Change

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect Increase, Detect Rise Nonnegative, Detect Rise Positive

- **Purpose** Detect decrease in signal's value
- Library Logic and Bit Operations

Description

The Detect Decrease block determines if an input is strictly less than its previous value where

- The output is true (equal to 1), when the input signal is less than its previous value.
- The output is false (equal to 0), when the input signal is greater than or equal to its previous value.

Data Type Support The Detect Decrease block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The block output is uint8.

Parameters and Dialog Box

🙀 Function Block Parameters: Detect Decrease	×		
Detect Decrease (mask) (link)			
If the input is strictly less than its previous value, then output TRUE, otherwise output FALSE. The initial condition determines the initial value of the previous			
Parameters			
Initial condition:			
0.0			
OK Cancel Help Apply			

Initial condition

Set the initial condition for the previous input U/z.

Detect Decrease

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Detect Change, Detect Fall Negative, Detect Fall Nonpositive, Detect Increase, Detect Rise Nonnegative, Detect Rise Positive

Li	brary	Logic and Bit Operations		
D	U < 0 & NOT U/z < 0	 The Detect Fall Negative block determines if the input is less than zero, and its previous value was greater than or equal to zero where The output is true (equal to 1), when the input signal is less than zero, and its previous value was greater than or equal to zero. The output is false (equal to 0), when the input signal is greater than or equal to zero, or if the input signal is nonnegative, its previous value was positive or zero. 		
-	ata Type upport	The Detect Fall Negative block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types. The block output is uint8.		
a D	arameters nd ialog ox	Initial condition Set the initial condition of the Boolean expression U/z < 0.		
С	haracteristics	Direct Feedthrough	Yes	
		Scalar Expansion	Yes	

value, and its previous value was nonnegative

Detect falling edge when signal's value decreases to strictly negative

Purpose

See Also Detect Change, Detect Decrease, Detect Fall Nonpositive, Detect Increase, Detect Rise Nonnegative, Detect Rise Positive

Detect Fall Nonpositive

Purpose	Detect falling edge when signal's value decreases to nonpositive value, and its previous value was strictly positive		
Library	Logic and Bit Operations		
Description	The Detect Fall Nonpositive block determines if the input is less than or equal to zero, and its previous value was positive where:		
	• The output is true (equal to 1), when the input signal is less than or equal to zero, and its previous value was greater than zero.		
	• The output is false (equal to 0), when the input signal is greater than zero, or if it is nonpositive, its previous value was nonpositive.		
Data Type Support	The Detect Fall Nonpositive block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types. The block output is uint8.		
Parameters and Dialog Box Function Block Parameters: Detect Fall Nonpositive If the input is nonpositive (mask) (link) If the input is nonpositive and its previous value was strictly positive, then output TRUE, otherwise output FALSE. The initial condition determines the initial value of the boolean expression (U/z <= 0). Parameters Initial condition: 0 0K			

Initial condition

Set the initial condition of the Boolean expression $U/z \le 0$.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

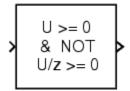
See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Increase, Detect Rise Nonnegative, Detect Rise Positive

Detect Increase

Initial condition

Set the initial condition for the previous input U/z.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes


See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect Rise Nonnegative, Detect Rise Positive

Detect Rise Nonnegative

Purpose Detect rising edge when signal's value increases to nonnegative value, and its previous value was strictly negative

Library Logic and Bit Operations

Description

The Detect Rise Nonnegative block determines if the input is greater than or equal to zero, and its previous value was less than zero where

- The output is true (equal to 1), when the input signal is greater than or equal to zero, and its previous value was less than zero.
- The output is false (equal to 0), when the input signal is less than zero, or if nonnegative, its previous value was greater than or equal to zero.

Data Type Support

Parameters

and Dialog Box The Detect Rise Nonnegative block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types. The block output is uint8.

😺 Fu	ction Blo	ck Para	ameters	Dete	ect Rise	Nonne	gative		×
[□ Dete	ct Rise Nor	nnegativ	/e (mask)	(link)-					
TRU	If the input is nonnegative and its previous value was strictly negative, then output TRUE, otherwise output FALSE. The initial condition determines the initial value of the boolean expression (U/ $z >= 0$).								
- Para	meters								
Initia	l condition:								
0									
-			OK	1	Cancel	1	Help	1	Apply

Initial condition

Set the initial condition of the Boolean expression $U/z \ge 0$.

Characteristics	Direct Feedthrough	Yes		
	Scalar Expansion	Yes		
See Alco	Detect Change Detect Deer	and Datast Fall Nagative Datast Fall		

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect Increase, Detect Rise Positive

Detect Rise Positive

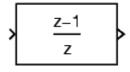
-	Detect rising edge when signal's value increases to strictly positive value, and its previous value was nonpositive			
Library	Logic and Bit Operations			
-	The Detect Rise Positive block determines if the input is strictly positive, and its previous value was nonpositive where			
U > 0 & NOT > U/z > 0	• The output is true (equal to 1), when the input signal is greater than zero, and its previous value was less than zero.			
	• The output is false (equal to 0), when the input is negative or zero, or if the input is positive, its previous value was also positive.			
Support	The Detect Rise Positive block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types. The block output is uint8.			
Parameters	Function Block Parameters: Detect Rise Positive			
and Dialog	Detect Rise Positive (mask) (link)			
Box	If the input is strictly positive and its previous value was nonpositive, then output TRUE, otherwise output FALSE. The initial condition determines the initial value of the boolean expression ($U/z > 0$).			
	Parameters			
	Initial condition:			
	0			
	OK Cancel Help Apply			

Initial condition

Set the initial condition of the Boolean expression U/z > 0.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Detect Change, Detect Decrease, Detect Fall Negative, Detect Fall Nonpositive, Detect Increase, Detect Rise Nonnegative


Difference

Purpose	Calculate change in signal over one time step
---------	---

Library Discrete

Description

The Difference block outputs the current input value minus the previous input value.

Data Type Support The Difference block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

The **Main** pane of the Difference block dialog box appears as follows:

🙀 Function Block Parameters: Difference	×
Difference (mask) (link)	
Output the current input value minus the previous input value.	
Main Signal Attributes	
Initial condition for previous input:	
0.0	
OK Cancel Help	Apply

Initial condition for previous output

Set the initial condition for the previous output.

The **Signal Attributes** pane of the Difference block dialog box appears as follows:

Function Block Parameters: Difference
Difference (mask) (link)
Output the current input value minus the previous input value.
Main Signal Attributes
Output minimum: Output maximum:
Output data type: Inherit: Inherit via internal rule >>
Integer rounding mode: Floor
Saturate to max or min when overflows occur
OK Cancel Help Apply

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button by to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Difference

Characteristics	Direct Feedthrough	Yes		
	Scalar Expansion	Yes, of inputs and gain		

Digital Clock

Purpose	Output simulation time at specified sampling interval			
Library	Sources			
Description	The Digital Clock block outputs the simulation time only at the specified sampling interval. At other times, the output is held at the previous value.			
	Use this block rather than the Clock block (which outputs continuous time) when you need the current time within a discrete system.			
Data Type Support	The Digital Clock block outputs a real signal of type double.			
Parameters and Dialog Box	Source Block Parameters: Digital Clock Digital Clock Output current simulation time at the specified rate. Parameters Sample time: 1 OK Cancel			

Sample time

The sampling interval. The default value is 1 second. See Specifying Sample Time in the "How Simulink Works" chapter of the Simulink documentation.

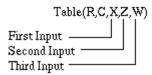
Characteristics

Sample Time	Specified in the Sample time parameter
Scalar Expansion	No
Dimensionalized	No
Zero Crossing	No

Direct Lookup Table (n-D)

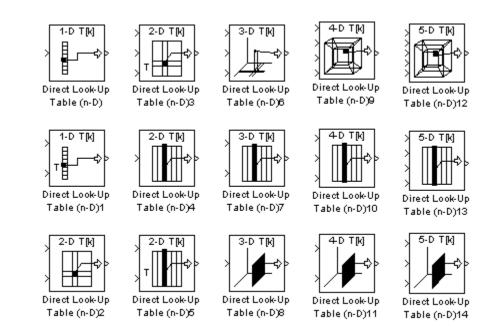
Purpose Index into N-dimensional table to retrieve element, column, or 2-D matrix

Library


Lookup Tables

Description

The Direct Lookup Table (n-D) block uses its block inputs as zero-based indices into an n-D table. The number of inputs varies with the shape of the output desired. The output can be an element, a column, or a 2-D matrix. The lookup table uses zero-based indexing, so integer data types can fully address their range. For example, a table dimension using the uint8 data type can address all 256 elements.


You define a set of output values as the **Table data** parameter. You specify what object the inputs select from the table: an element, a column, or a 2-D matrix. The first input specifies the zero-based index to the first dimension higher than the number of dimensions in the output, the next input specifies the index to the next table dimension, and so on, as shown by this figure:

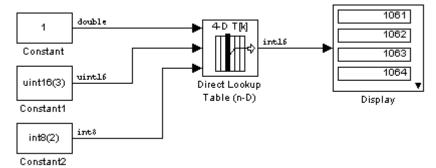
The figure shows a 5-D table with an output shape set to "2-D Matrix"; the output is a 2-D Matrix with R rows and C columns. (See "Changing a Block's Orientation" in the Simulink documentation for a description of the port order for various block orientations.)

This figure shows the set of all the different icons that the Direct Lookup Table block shows (depending on the options you choose in the block's dialog box).

Direct Lookup Table (n-D)

With dimensions higher than 4, the icon matches the 4-D icons, but shows the exact number of dimensions in the top text, e.g., "8-D T[k]." The top row of icons is used when the block output is made from one or more single-element lookups on the table. The blocks labeled "n-D Direct Table Lookup5," 6, 8, and 12 are configured to extract a column from the table, and the two blocks ending in 7 and 9 are extracting a plane from the table. Blocks in the figure ending in 10, 11, and 12 are configured to have the table be an input instead of a parameter.

Example


In this example, the block parameters are defined as

```
Inputs select this object from table: "Column"
Table data: int16(a)
```

where **a** is a 4-D array of linearly increasing numbers calculated using MATLAB functions.

```
a = ones(20,4,5,7); L = prod(size(a));
a(1:L) = [1:L]';
```

The figure shows the block outputting a vector of the 20 values in the second column of the fourth element of the third dimension from the third element of the fourth dimension.

Note that the output has the same data type as the table, i.e., int16. Also note that the block uses zero-based indexing. The output values in this example can be calculated manually using the following MATLAB command (which uses 1-based indexing):

```
a(:,1+1,1+3,1+2)
```

ans =

```
1061
1062
1063
1064
1065
1066
1067
1068
```

Data Type Support

The Direct Lookup Table (n-D) block accepts signals of any numeric data type supported by Simulink software, including fixed-point types. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

The output type can differ from the input type and can be any of the types listed for input; the output type is inherited from the data type of the **Table data** parameter.

In the case that the table comes into the block on an input port, the output port type is inherited from the table input port. Inputs for indexing must be real; table data can be complex.

Parameters
and
Dialog
Box

Function Block Parameters:	: Direct Lookup Table (n-D)		
LookupNDDirect (mask) (link)			
Table member selection. Inputs are zero-based indices into the table, e.g., an input of 3 returns the fourth element in that dimension. Block can also be used to select a column or 2-D matrix out of the table. The first selection index corresponds to the top (or left) input port.			
Parameters			
Number of table dimensions:	2		
Inputs select this object from table	e: Element		
Make table an input			
Table data:			
[4 5 6;16 19 20;10 18 23]			
Action for out of range input: Warning			
Sample time:			
-1			
OK	Cancel Help Apply		

Number of table dimensions

The number of dimensions that the **Table data** parameter must have. This determines the number of independent variables for the table and hence the number of inputs to the block. The options are 1, 2, 3, 4, or More dimensions. If you choose More, the dialog box displays an edit field, **Explicit number of table dimensions**, that allows you to enter a number of dimensions.

Explicit number of table dimensions

This field appears if you select more as the value of the **Number** of table dimensions. Enter the number of table dimensions in this field.

Inputs select this object from table

Specify whether the output data is a single element, a column, or a 2-D matrix. The number of ports changes for each selection:

Element — # of ports = # of dimensions

Column — # of ports = # of dimensions - 1

2-D matrix — # of ports = # of dimensions - 2

This numbering agrees with MATLAB indexing. For example, if you have a 4-D table of data, to access a single element you must specify four indices, as in array(1,2,3,4). To specify a column, you need three indices, as in array(:,2,3,4). Finally, to specify a 2-D matrix, you only need two indices, as in array(:,:,3,4).

Make table an input

Selecting this check box forces the Direct Lookup Table (n-D) block to ignore the **Table data** parameter. Instead, a new port appears with "T" next to it. Use this port to input table data.

Tip If you select this check box, use only 1-D or 2-D table data, because this block does not support multidimensional signals.

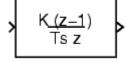
Table data

The table of output values. The matrix size must match the dimensions defined by the **Number of table dimensions** parameter or by the **Explicit number of dimensions** parameter when the number of dimensions exceeds four. During block diagram editing, you can leave the **Table data** field empty, but for running the simulation, you must match the number of dimensions in the **Table data** to the **Number of table dimensions**. For information about how to construct multidimensional arrays in MATLAB software, see "Multidimensional Arrays" in the MATLAB online documentation. (This field appears only if you clear the **Make table an input** check box.)

Action for out of range input

None, Warning, Error.

Sample time


The time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink documentation for more information.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	For scalar lookups only (not when returning a column or a 2-D matrix from the table)
	Dimensionalized	For scalar lookups only (not when returning a column or a 2-D matrix from the table)
	Zero Crossing	No

- **Purpose** Compute discrete time derivative
- Library Discrete

Description

The Discrete Derivative block computes an optionally scaled discrete time derivative as follows

$$y(t_n) = \frac{Ku(t_n)}{T_s} - \frac{Ku(t_{n-1})}{T_s}$$

where $u(t_n)$ and $y(t_n)$ are the block's input and output at the current time step, respectively, $u(t_{n-1})$ is the block's input at the previous time step, K is a scaling factor, and T_s is the simulation's discrete step size, which must be fixed.

Guidelines for Usage in Triggered Subsystems

When you use the Discrete Derivative block in triggered subsystems, follow these guidelines:

• When the **Sample time type** parameter of the trigger port is triggered, verify that your model does not trigger the subsystem at the first time step.

If your model triggers the subsystem at the first time step, the Discrete Derivative block generates a divide-by-zero warning message. This behavior occurs because the time step at t = 0 is zero.

• When the **Sample time type** parameter of the trigger port is periodic, your model can trigger the subsystem at any time step.

Data Type Support

The Discrete Derivative block supports all numeric Simulink data types, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation. Parameters and Dialog Box The **Main** pane of the Discrete Derivative block dialog box appears as follows:

Function Block Parameters: Discrete Derivative
Discrete Derivative (mask) (link)
Discrete-time derivative of the input.
This block only works with fixed sample rates, so it will not work inside a triggered subsystem.
Main Signal Attributes
Gain value:
1.0
Initial condition for previous weighted input K*u/Ts:
0.0
OK Cancel Help Apply

Gain value

Scaling factor used to weight the block's input at the current time step.

Initial condition for previous weighted input K*u/Ts

Set the initial condition for the previous scaled input.

The **Signal Attributes** pane of the Discrete Derivative block dialog box appears as follows:

Function Block Parameters: Discrete Derivative			
Discrete Derivative (mask) (link)			
Discrete-time derivative of the input.			
This block only works with fixed sample rates, so it will not work inside a triggered subsystem.			
Main Signal Attributes			
Output minimum: Output maximum:			
Output data type: Inherit: Inherit via internal rule >>			
Integer rounding mode: Floor			
Saturate to max or min when overflows occur			
OK Cancel Help Apply			

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button display the Data Type Assistant, which helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes, of inputs and gain

See Also Derivative

Discrete Filter

Purpose	Model IIR	direct form	II filters
---------	-----------	-------------	------------

Library

Discrete

Description

The Discrete Filter block independently filters each channel of the input signal with the specified digital IIR direct form II filter. The block implements static filters with fixed coefficients. You can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time, treating each element of the input as an individual channel. The output dimensions always equal those of the input signal that is filtered, except in single-input/multi-output mode.

The output of this block numerically matches the output of the Signal Processing Toolbox[™] dfilt.df2 function.

Use the **Numerator coefficient** parameter to specify the coefficients of the discrete filter's numerator polynomial. If you specify a single numerator polynomial as a vector for the **Numerator coefficient** parameter, the block outputs a scalar signal. Use the **Denominator coefficient** parameter to specify the coefficients of the function's denominator polynomial. The **Denominator coefficient** parameter must be a vector of coefficients.

You must specify the coefficients of the numerator and denominator polynomials in ascending powers of z^{-1} . The Discrete Filter block lets you use polynomials in z^{-1} (the delay operator) to represent a discrete system, a method typically used by signal processing engineers. Conversely, the Discrete Transfer Fcn block lets you use polynomials in z to represent a discrete system, the method typically used by control engineers. The two methods are identical when the numerator and denominator polynomials have the same length.

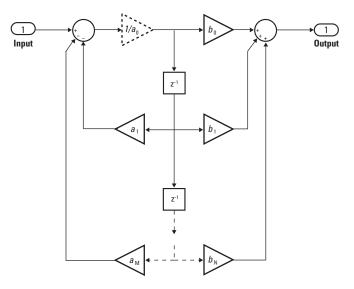
Specifying Initial States

Use the **Initial states** parameter to specify initial conditions for the filter states. To determine the number of initial states you must specify and how to specify them, see the following table of valid initial states.

The **Initial states** parameter can take one of the forms described in this table.

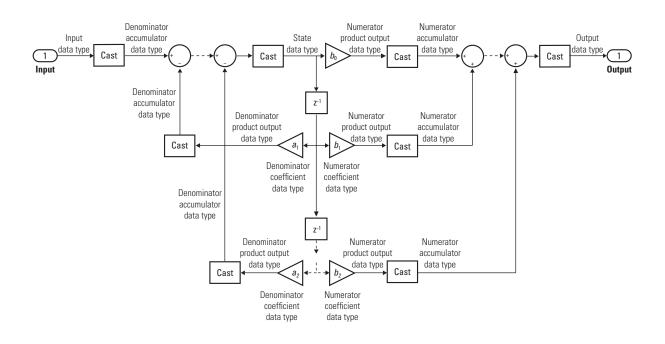
Valid Initial States

Initial Condition	Description
Scalar	The block initializes all delay elements in the filter to the scalar value.
Vector or matrix (for applying different delay elements to each channel)	 Each vector or matrix element specifies a unique initial condition for a corresponding delay element in a corresponding channel: The vector length must equal the number of delay elements in the filter, max(# of zeros, # of poles)-1.
	 The matrix must have the same number of rows as the number of delay elements in the filter, max(#_of_zeros, #_of_poles)-1, and must have one column for each channel of the input signal.


Data Type Support

The Discrete Filter block accepts and outputs real and complex signals of any numeric data type supported by the Simulink software. The block supports the same types for the numerator and denominator coefficients.

Numerator and denominator coefficients must have the same complexity and word length. They can have different fraction lengths.


States are complex when either the input or the coefficients are complex.

The following diagrams shows the filter structure and the data types used within the Discrete Filter block for fixed-point signals.

The dashed divide is omitted when the **Leading denominator coefficient equals 1** parameter is not selected.

Discrete Filter

Discrete Filter

arameters nd	The Main pane of the Discrete Filter block dialog box appears as fo	IIC
ialog	🙀 Function Block Parameters: Discrete Filter	
DX	Discrete Filter	_
	Independently filter each channel of the input over time using an IIR filter. You should spec coefficients in ascending order of powers of 1/z.	ify
	Floating point inheritance takes precedence over the data types on the 'Data Type Attribut pane. When the block input is floating point, all block data types match the input.	es'
	Main Data Type Attributes State Attributes Numerator coefficient:	
	Denominator coefficient:	
	[10.5]	
	Initial states:	
	<u> </u> 0	
	Sample time (-1 for inherited):	
	1	
	Leading denominator coefficient equals 1	
	OK Cancel Help Apply	

Numerator coefficient

Specify the coefficients of the discrete filter's numerator polynomial or polynomials in ascending powers of z^{-1} . Use a vector to specify the coefficients for a single numerator polynomial. If you specify a single numerator polynomial as a vector for this parameter, the block outputs a scalar signal.

Denominator coefficient

Specify the coefficients of the discrete filter's denominator polynomial as a vector in ascending powers of z^{-1} .

Initial states

Specify the initial conditions of the filter states. To learn how to specify initial states, see "Specifying Initial States" on page 2-274.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in "How Simulink Works" in the *Simulink User's Guide*.

Leading denominator coefficient equals 1

This parameter only applies to floating-point inputs. Select when the leading denominator coefficient, a_0 , equals one. When you select this check box, the block:

- Does not perform a divide-by- $a_{\boldsymbol{\theta}}$ either in simulation or in the generated code
- Errors out at model edit time if the a_0 value you provide in the dialog is not one
- Errors out if you tune a_0 to any non-unity value

When you clear this check box, the block:

- Performs divide-by-*a*₀ during simulation
- Is fully tunable during simulation
- Performs a divide-by- a_0 in generated code, unless tunability is turned off in the **Configuration Parameters** dialog box.

The **Data Type Attributes** pane of the Discrete Filter block dialog box appears as follows.

🙀 Function Block Parameters: Discrete Fi	lter X			
Discrete Filter				
Independently filter each channel of the input over time using an IIR filter. You should specify coefficients in ascending order of powers of 1/z.				
Floating point inheritance takes precedence over the data types on the 'Data Type Attributes' pane. When the block input is floating point, all block data types match the input.				
Main Data Type Attributes State Attributes				
Numerator coefficient minimum:	Numerator coefficient maximum:			
0	0			
Denominator coefficient minimum:	Denominator coefficient maximum:			
0	0			
Output minimum:	Output maximum:			
State data type: Inherit: Same as input >> Numerator coefficient data type: Inherit: Inherit via internal rule >> Denominator coefficient data type: Inherit: Inherit via internal rule >> Numerator product output data type: Inherit: Inherit via internal rule >> Denominator product output data type: Inherit: Inherit via internal rule >> Denominator product output data type: Inherit: Inherit via internal rule >>				
Numerator accumulator data type: Inherit: Inherit via internal rule				
Denominator accumulator data type: Inherit: Inherit via internal rule >>				
Output data type: Inherit: Inherit via internal rule >>				
Lock scaling against changes by the autoscaling tool				
Integer rounding mode: Floor				
Saturate on integer overflow				
ОК	Cancel Help Apply			

Numerator coefficient minimum

Specify the minimum value that a numerator coefficient should have. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Numerator coefficient maximum

Specify the maximum value that a numerator coefficient should have. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Denominator coefficient minimum

Specify the minimum value that a denominator coefficient should have. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Denominator coefficient maximum

Specify the maximum value that a denominator coefficient should have. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

State data type

Specify the state data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- A built-in integer, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **State data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Numerator coefficient data type

Specify the numerator coefficient data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in integer, for example, int8
- A data type object, for example, a Simulink.NumericType object

• An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Numerator coefficient data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Denominator coefficient data type

Specify the denominator coefficient data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in integer, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Denominator coefficient data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Numerator product output data type

Specify the product output data type for the numerator coefficients. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in data type, for example, int8

- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button display the **Data Type Assistant**, which helps you set the **Numerator product output data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Denominator product output data type

Specify the product output data type for the denominator coefficients. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button by to display the Data Type Assistant, which helps you set the **Denominator product output data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Numerator accumulator data type

Specify the accumulator data type for the numerator coefficients. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Numerator accumulator data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Denominator accumulator data type

Specify the accumulator data type for the denominator coefficients. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button display the **Data Type Assistant**, which helps you set the **Denominator accumulator data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select this check box to lock scaling of outputs.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate on integer overflow

Select this check box to have overflows saturate. Otherwise, they wrap.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

The **State Attributes** pane of the Discrete Filter block dialog box appears as follows.

🙀 Function Block Parameters: Discrete Filter	×			
Discrete Filter				
Independently filter each channel of the input over time using an IIR filter. You should specify coefficients in ascending order of powers of 1/z.				
Floating point inheritance takes precedence over the data types on the 'Data Type Attributes' pane. When the block input is floating point, all block data types match the input.				
Main Data Type Attributes State Attributes				
State name:				
☐ State name must resolve to Simulink signal object				
Real-Time Workshop storage class: Auto	7			
Real-Time Workshop storage type qualifier:				
OK Cancel Help	Apply			

State name

Use this parameter to assign a unique name to each state. The default is ' '. When this field is blank, no name is assigned. Consider the following when using this parameter:

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.
- For example, you can specify two names in a system with four states. Simulink software assigns the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

This parameter enables **State name must resolve to Simulink signal object** when you click **Apply**.

State name must resolve to Simulink signal object

Select this check box to require that state name resolve to Simulink signal object. This check box is cleared by default.

This parameter is only enabled when you specify the **State name** parameter.

Selecting this check box enables **Real-Time Workshop storage class**.

Real-Time Workshop storage class

From the list, select state storage class.

	Auto If you do not no Auto as the sto	eed states to interface to external code, select prage class.	
	ExportedGlobal State is stored	in a global variable.	
	ImportedExtern <i>model_</i> privato	e.h declares the state as an extern variable.	
	ImportedExternPoi <i>model_</i> privat	nter e.h declares the state as an extern pointer.	
	This parameter is only enabled when you specify the State name parameter. Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables Real-Time Workshop storage type qualifier . During simulation, the block uses the following values:		
	 The initial value of the signal object to which the state name is resolved Min and Max values of the signal object 		
See "Block State Storage and Interfacing" in the <i>Real-Time Workshop</i> User's Guide for more information.			
Characteristics	Direct Feedthrough	Only when the leading numerator coefficient is not equal to zero	
	Sample Time	Specified in the Sample time parameter	
	Scalar Expansion	Yes, of initial states	
	States	See "Specifying Initial States" on page	

2-274

Dimensionalized	Yes
Zero Crossing	No

Discrete FIR Filter

Purpose	Model FIR filters
---------	-------------------

Library Discrete

Description

The Discrete FIR Filter block independently filters each channel of the input signal with the specified digital FIR filter. The block can implement static filters with fixed coefficients, as well as time-varying filters with coefficients that change over time. You can tune the coefficients of a static filter during simulation.

This block filters each channel of the input signal independently over time, treating each element of the input as an individual channel. The output dimensions equal those of the input, except in single-input/multi-output mode.

The outputs of this block numerically match the outputs of the Signal Processing Blockset Digital Filter Design block and of the Signal Processing Toolbox dfilt function.

This block supports the Simulink state logging feature. See "States" in the *Simulink User's Guide* for more information.

Filter Structure Support

You can change the filter structure implemented with the Discrete FIR Filter block by selecting one of the following from the **Filter structure** parameter:

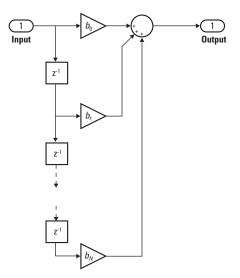
- Direct form
- Direct form symmetric
- Direct form antisymmetric
- Direct form transposed
- Lattice MA

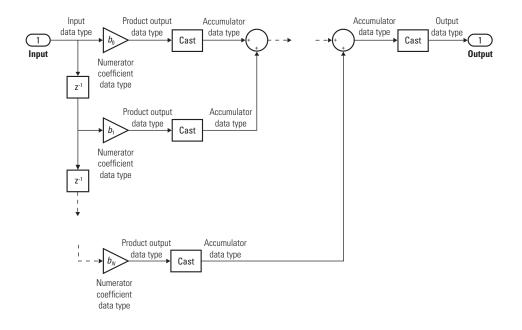
You must have an available Signal Processing Blockset software license to run a model with any of these filter structures other than direct form.

Specifying Initial States

The Discrete FIR Filter block initializes the internal filter states to zero by default, which has the same effect as assuming that past inputs and outputs are zero. You can optionally use the **Initial states** parameter to specify nonzero initial conditions for the filter delays.

To determine the number of initial states you must specify and how to specify them, see the table on valid initial states. The **Initial states** parameter can take one of the forms described in the next table.

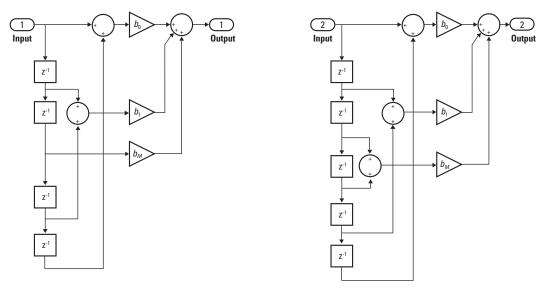

Initial Condition	Description
Scalar	The block initializes all delay elements in the filter to the scalar value.
Vector or matrix (for applying different delay elements to each channel)	 Each vector or matrix element specifies a unique initial condition for a corresponding delay element in a corresponding channel: The vector length equal the product of the number of input channels and the number of delay elements in the filter, #_of_filter_coeffs-1 (or #_of_reflection_coeffs for Lattice MA).
	• The matrix must have the same number of rows as the number of delay elements in the filter, #_of_filter_coeffs-1 (#_of_reflection_coeffs for Lattice MA), and must have one column for each channel of the input signal.
Support sign	Discrete FIR Filter block accepts and outputs real and complex als of any numeric data type supported by Simulink. The bock ports the same types for the numerator coefficients.


Valid Initial States

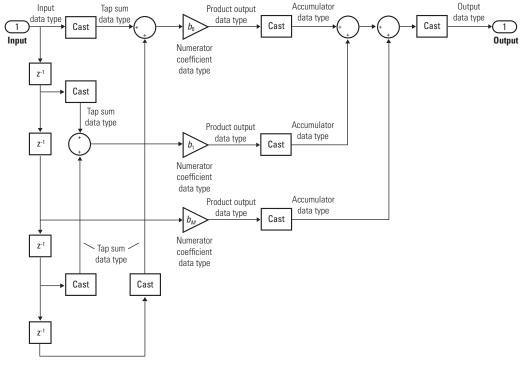
The following diagrams show the filter structure and the data types used within the Discrete FIR Filter block for fixed-point signals.

Direct Form

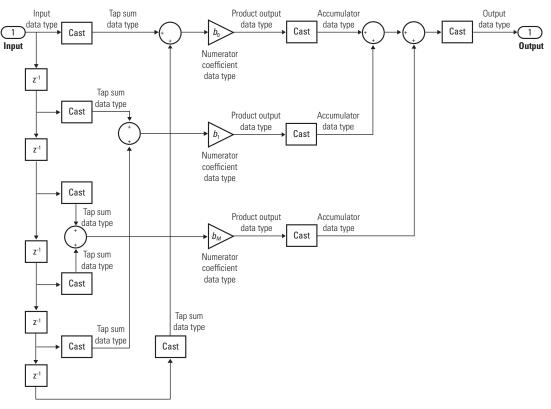
You cannot specify the state data type on the block mask for this structure because the input states have the same data types as the input.



Direct Form Symmetric


You cannot specify the state data type on the block mask for this structure because the input states have the same data types as the input.

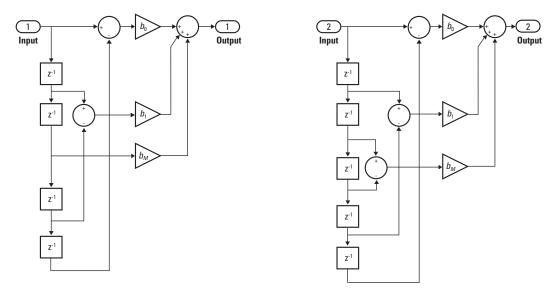
It is assumed that the filter coefficients are symmetric. The block only uses the first half of the coefficients for filtering.


Even Order - Type I

Odd Order - Type II

Even Order - Type I

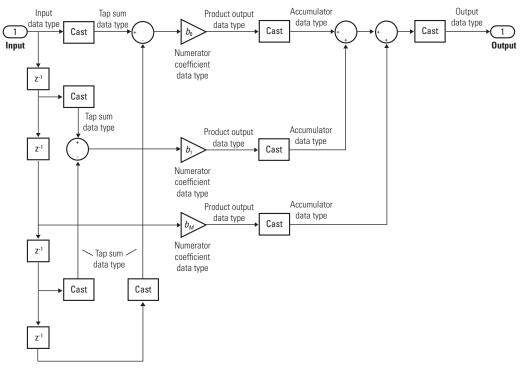
Discrete FIR Filter

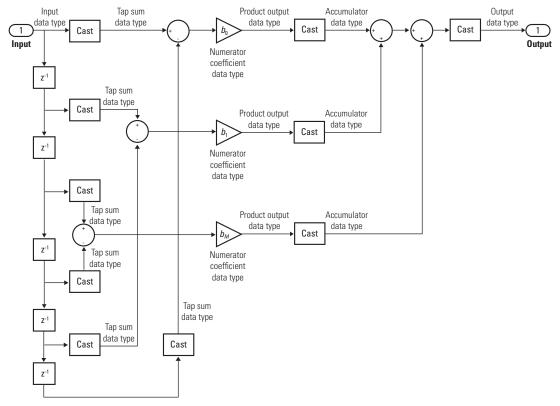


Odd Order - Type II

Direct Form Antisymmetric

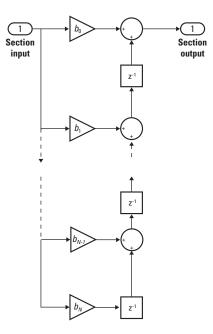
You cannot specify the state data type on the block mask for this structure because the input states have the same data types as the input.

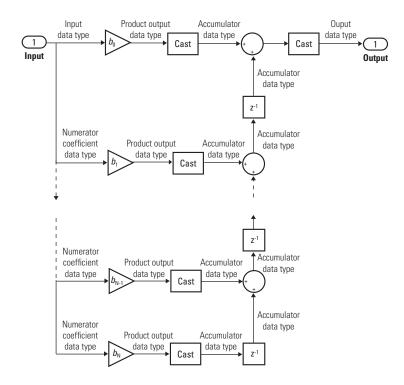

It is assumed that the filter coefficients are antisymmetric. The block only uses the first half of the coefficients for filtering.


Even Order - Type III

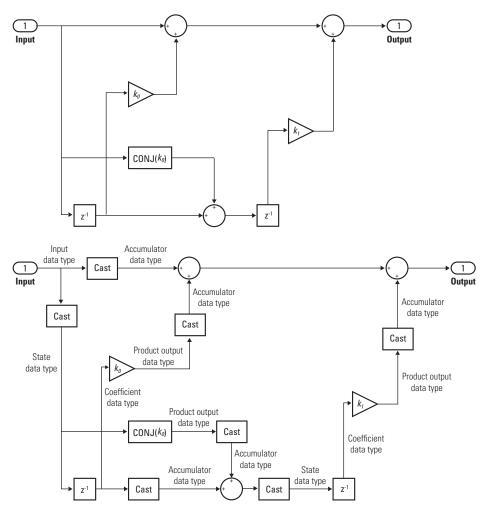
Odd Order - Type IV

Discrete FIR Filter


Even Order - Type III



Odd Order - Type IV


Direct Form Transposed

States are complex when either the inputs or the coefficients are complex.

Lattice MA

Parameters and Dialog Box

as follows.

-Discrete FIR Filter				
	cients using eith	er tunable dialog	time using an FIR filt parameters or separ	
A Signal Processing Direct Form.) Blockset license	e is required to us	e a filter structure o	ther thar
			e data types on the int, all block data typ	
Main Data Typ	e Attributes			
Coefficient source:	Dialog paramet	ters		
Filter structure: D	rect form			
Numerator coefficie				
[0.5 0.5]	114			
Initial states:				
0				
,	· I · I · I			
Sample time (-1 for	innerited):			
]-1				

The Main pane of the Discrete FIR Filter block dialog box appears

Coefficient source

Specify whether you want to input the filter coefficients on the block mask or inherit them from an input port.

Filter structure

Select the filter structure you want the block to implement. You must have an available Signal Processing Blockset software license to run a model with a Discrete FIR Filter block that implements any filter structure other than direct form.

Numerator coefficient

Specify the vector of numerator coefficients of the filter's transfer function.

This parameter is only visible when Dialog parameters is selected for the **Coefficient source** parameter.

Initial states

Specify the initial conditions of the filter states. To learn how to specify initial states, see "Specifying Initial States" on page 2-293.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in "How Simulink Works" in the *Simulink User's Guide*.

The **Data Type Attributes** pane of the Discrete FIR Filter block dialog box appears as follows.

Function Block Parameters: Discrete FIR Filter				
Discrete FIR Filter				
Independently filter each channel of the input over time using an FIR filter. You can specify filter coefficients using either tunable dialog parameters or separate input ports, which are useful for time-varying coefficients.				
A Signal Processing Blockset license is required to use a filter structure other than Direct Form.				
Floating point inheritance takes precedence over the data types on the 'Data Type Attributes' pane. When the block input is floating point, all block data types match the input.				
Main Data Type Attributes				
Coefficient minimum: Coefficient maximum:				
Output minimum: Output maximum:				
Coefficient data type: Inherit: Same word length as input >>				
Product output data type: Inherit: Inherit via internal rule >>				
Accumulator data type: Inherit: Same as product output >>				
Output data type: Inherit: Same as accumulator >>				
Lock scaling against changes by the autoscaling tool				
Integer rounding mode: Floor				
Saturate on integer overflow				
OK Cancel Help Apply				

Coefficient minimum

Specify the minimum value that a filter coefficient should have. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Coefficient maximum

Specify the maximum value that a filter coefficient should have. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tap sum data type

Specify the tap sum data type of a direct form symmetric or direct form antisymmetric filter, which is the data type the filter uses when it sums the inputs prior to multiplication by the coefficients. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as input
- A built-in integer, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is either Direct form symmetric or Direct form antisymmetric.

Click the **Show data type assistant** button button to display the **Data Type Assistant**, which helps you set the **Tap sum data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Coefficient data type

Specify the coefficient data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same word length as input
- A built-in integer, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \longrightarrow to display the Data Type Assistant, which helps you set the **Coefficient data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Product output data type

Specify the product output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button by to display the Data Type Assistant, which helps you set the **Product output data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Accumulator data type

Specify the accumulator data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as product output
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Accumulator data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

State data type

Specify the state data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- A built-in integer, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

This parameter is only visible when the selected filter structure is Lattice MA.

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **State data type** parameter.

See "Using the Data Type Assistant" in *Simulink User's Guide* for more information.

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as accumulator
- A built-in data type, for example, int8
- A data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \longrightarrow to display the Data Type Assistant, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate on integer overflow

Select to have overflows saturate. Otherwise, they wrap.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Characteristics Direct Feedthrough Ye

	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of initial states
	States	See "Specifying Initial States" on page 2-293
-	Dimensionalized	Yes
	Zero Crossing	No

Purpose Implement discrete state-space system

Discrete

Description

Library

y(n)=Cx(n)+Du(n) x(n+1)=Ax(n)+Bu(n) The Discrete State-Space block implements the system described by x(n+1) = Ax(n) + Bu(n)y(n) = Cx(n) + Du(n)

where u is the input, x is the state, and y is the output. The matrix coefficients must have these characteristics, as illustrated in the following diagram:

- A must be an n-by-n matrix, where n is the number of states.
- B must be an n-by-m matrix, where m is the number of inputs.
- C must be an r-by-n matrix, where r is the number of outputs.
- D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector width is determined by the number of columns in the B and D matrices. The output vector width is determined by the number of rows in the C and D matrices.

Simulink software converts a matrix containing zeros to a sparse matrix for efficient multiplication.

Data TypeThe Discrete State Space block accepts and outputs a real signal of
type single or double.

Parameters and Dialog Box The **Main** tab of the Discrete State-Space block dialog box appears as follows:

Discrete Discrete x(n+1)	on Block Par State Space- state-space m = Ax(n) + Bu(r Cx(n) + Du(n)	odel:)	crete State-Sj	bace	X
Main	State Attribu	tes			
A:					
1					
B:					
C:					
1					
D:					
1					
Initial con	ditions:				
0		5 15			
Sample tir	ne (-1 for inhe	nted):			
<u> </u>					
		OK	Cancel	Help	Apply

A, B, C, D

The matrix coefficients, as defined in the preceding equations.

Initial conditions

The initial state vector. The default is 0. Simulink software does not allow the initial states of this block to be inf or NaN.

Sample time

The time interval between samples. See Specifying Sample Time in the "How Simulink Works" chapter of the Simulink documentation.

The **State Attributes** tab of the Discrete State-Space block dialog box appears as follows:

Function Block Parameters: Discrete State-Space	x
Discrete State Space	-
Discrete state-space model: x(n+1) = Ax(n) + Bu(n) y(n) = Cx(n) + Du(n)	
Main State Attributes	
State name:	
State name must resolve to Simulink signal object	
Real-Time Workshop storage class: Auto	
Real-Time Workshop storage type qualifier:	
	•
OK Cancel Help Apply	

State name

Use this parameter to assign a unique name to each state. The default is ' '. If left blank, no name is assigned. Consider the following when using this parameter:

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. You can have fewer names than states, but you cannot have more names than states.

For example, you can specify two names in a system with four states. Simulink assigns the first name to the first two states and the second name to the last two.

• To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

This parameter enables **State name must resolve to Simulink signal object** when you click the **Apply** button.

State name must resolve to Simulink signal object

Select this check box to require that the state name resolve to the Simulink signal object. This check box is cleared by default.

This parameter is enabled by State name.

Selecting this check box enables **Real-Time Workshop storage class**.

Real-Time Workshop storage class

From the list, select state storage class.

Auto

Auto is the appropriate storage class for states that you do not need to interface to external code.

	ExportedGlobal State is stored in a global variable			
	ImportedExtern <i>model_</i> private.h declares the state as an extern variable.			
	<pre>ImportedExternPointer model_private.h declares the state as an extern pointer.</pre>			
	This parameter is enabled by State name .			
	Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables Real-Time Workshop storage type qualifier .			
	During simulation, the block uses the following values:			
	• The initial value of the signal object to which the state name is resolved			
	• Min and Max values of the signal object			
See "Block State Storage and Interfacing" in the Real-Time Workshop User's Guide for more information.				
Characteristics	Direct Feedthrough	Only if $D \neq 0$		
	Sample Time	Specified in the Sample time parameter		
	Scalar Expansion	Yes, of the initial conditions		
	States	Determined by the size of A		
	Dimensionalized	Yes		
Zero Crossing No				

Discrete-Time Integrator

Discrete

Purpose	Perform	discrete-time	integration or	accumulation of signal
---------	---------	---------------	----------------	------------------------

Library

Description

 $\left| \frac{K T_{s}}{z \cdot 1} \right|$

You can use the Discrete-Time Integrator block in place of the Integrator block to create a purely discrete system.

For the Discrete-Time Integrator block, you can:

- Define initial conditions on the block dialog box or as input to the block.
- Define an input gain (K) value.
- Output the block state.
- Define upper and lower limits on the integral.
- Reset the state depending on an additional reset input.

These features are described below.

Integration and Accumulation Methods

The block can integrate or accumulate using the Forward Euler, Backward Euler, and Trapezoidal methods. For a given step n, Simulink software updates y(n) and x(n+1). In integration mode, T is the block's sample time (delta T in the case of triggered sample time). In accumulation mode, T = 1; the block's sample time determines when the block's output is computed but not the output's value. K is the gain value. Values are clipped according to upper or lower limits.

• Forward Euler method (the default), also known as Forward Rectangular, or left-hand approximation.

For this method, 1/s is approximated by T/(z-1). The resulting expression for the output of the block at step n is

 $y(n) = y(n-1) + K^{T}u(n-1)$

Let $x(n+1) = x(n) + K^*T^*u(n)$. The block uses the following steps to compute its output:

Step 0: y(0) = x(0) = IC (clip if necessary) x(1) = y(0) + K*T*u(0)Step 1: y(1) = x(1) x(2) = x(1) + K*T*u(1)Step n: y(n) = x(n)x(n+1) = x(n) + K*T*u(n) (clip if necessary)

With this method, input port 1 does not have direct feedthrough.

• Backward Euler method, also known as Backward Rectangular or right-hand approximation.

For this method, 1/s is approximated by T*z/(z-1). The resulting expression for the output of the block at step n is

 $y(n) = y(n-1) + K^{*}T^{*}u(n)$

Let x(n) = y(n-1). The block uses the following steps to compute its output

Step 0: y(0) = x(0) = IC (clipped if necessary) x(1) = y(0)

or, depending on Use initial condition as initial and reset value for parameter:

Step 0: x(0) = IC (clipped if necessary) x(1) = y(0) = x(0) + K*T*u(0)Step 1: y(1) = x(1) + K*T*u(1) x(2) = y(1)Step n: y(n) = x(n) + K*T*u(n)x(n+1) = y(n) With this method, input port 1 has direct feedthrough.

• Trapezoidal method. For this method, 1/s is approximated by

T/2*(z+1)/(z-1)

When T is fixed (equal to the sampling period), let

 $x(n) = y(n-1) + K^{T}/2 * u(n-1)$

The block uses the following steps to compute its output

Step 0: x(0) = IC (clipped if necessary) x(1) = y(0) + K*T/2 * u(0)

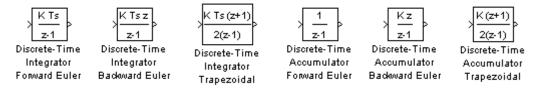
or, depending on Use initial condition as initial and reset value for parameter:

Step 0: y(0) = x(0) = IC (clipped if necessary) x(1) = y(0) = x(0) + K*T/2*u(0)Step 1: y(1) = x(1) + K*T/2 * u(1) x(2) = y(1) + K*T/2 * u(1)Step n: y(n) = x(n) + K*T/2 * u(n)x(n+1) = y(n) + K*T/2 * u(n)

Here, x(n+1) is the best estimate of the next output. It isn't quite the state, in the sense that x(n) = y(n).

If T is variable (i.e. obtained from the triggering times), the block uses the following algorithm to compute its outputs

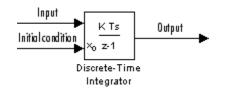
Step 0: y(0) = x(0) = IC (clipped if necessary) x(1) = y(0)


or, depending on Use initial condition as initial and reset value for parameter:

Step 0: y(0) = x(0) = IC (clipped if necessary)

 $\begin{array}{rcl} x(1) &= y(0) = x(0) + K^{*}T/2^{*}u(0) \\ \\ \text{Step 1:} & y(1) &= x(1) + T/2 &* (u(1) + u(0)) \\ & x(2) &= y(1) \end{array} \\ \\ \\ \text{Step n:} & y(n) &= x(n) + T/2 &* (u(n) + u(n-1)) \\ & x(n+1) &= y(n) \end{array}$

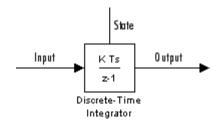
With this method, input port 1 has direct feedthrough.


The block reflects the selected integration or accumulation method.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them from an external signal:

- To define the initial conditions as a block parameter, specify the **Initial condition source** parameter as **internal** and enter the value in the **Initial condition** parameter field.
- To provide the initial conditions from an external source, specify the **Initial condition source** parameter as external. An additional input port appears under the block input, as shown in this figure.

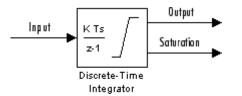

Using the State Port

In two situations, you must use the state port instead of the output port:

- When the output of the block is fed back into the block through the reset port or the initial condition port, causing an algebraic loop. For an example of this situation, see the sldemo_bounce model.
- When you want to pass the state from one conditionally executed subsystem to another, which can cause timing problems. For an example of this situation, see the sldemo_clutch model.

You can correct these problems by passing the state through the state port rather than the output port. Although the values are the same, Simulink software generates them at slightly different times, which protects your model from these problems. You output the block state by selecting the **Show state port** check box.

By default, the state port appears on the top of the block.

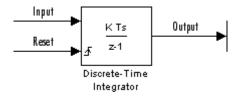


Limiting the Integral

To prevent the output from exceeding specifiable levels, select the **Limit output** check box and enter the limits in the appropriate parameter fields. Doing so causes the block to function as a limited integrator. When the output reaches the limits, the integral action is turned off to prevent integral wind up. During a simulation, you can change the limits but you cannot change whether the output is limited. The output is determined as follows:

- When the integral is less than or equal to the **Lower saturation limit** and the input is negative, the output is held at the **Lower saturation limit**.
- When the integral is between the **Lower saturation limit** and the **Upper saturation limit**, the output is the integral.
- When the integral is greater than or equal to the **Upper saturation limit** and the input is positive, the output is held at the **Upper saturation limit**.

To generate a signal that indicates when the state is being limited, select the **Show saturation port** check box. A saturation port appears below the block output port, as shown in this figure.

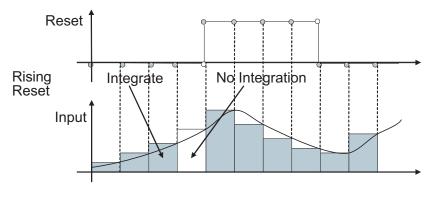


The signal has one of three values:

- 1 indicates that the upper limit is being applied.
- 0 indicates that the integral is not limited.
- -1 indicates that the lower limit is being applied.

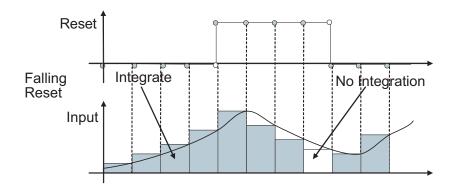
Resetting the State

The block can reset its state to the specified initial condition, based on an external signal. To cause the block to reset its state, select one of the **External reset** parameter choices. A trigger port appears below the block's input port and indicates the trigger type, as shown in this figure.

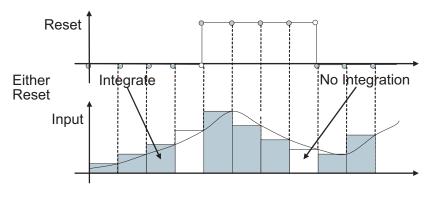

The reset port has direct feedthrough. If the block output is fed back into this port, either directly or through a series of blocks with direct feedthrough, an algebraic loop results. To resolve this loop, feed the output of the block's state port into the reset port instead. To access the block's state, select the **Show state port** check box.

Reset Trigger Types

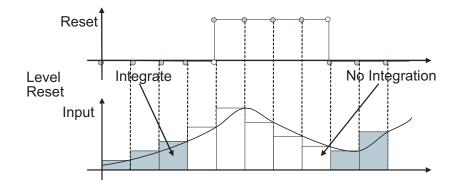
The **External reset** parameter lets you determine the attribute of the reset signal that triggers the reset. The trigger options include:


• rising

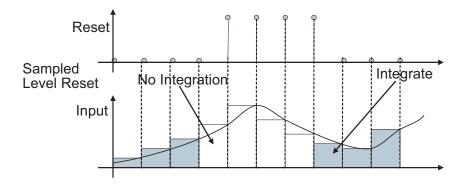
Resets the state when the reset signal has a rising edge. For example, the following figure shows the effect that a rising reset trigger has on backward Euler integration.


• falling

Resets the state when the reset signal has a falling edge. For example, the following figure shows the effect that a falling reset trigger has on backward Euler integration.

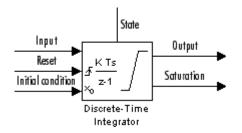

• either

Resets the state when the reset signal rises or falls. For example, the following figure shows the effect that an either reset trigger has on backward Euler integration.


• level

Resets and holds the output to the initial condition while the reset signal is nonzero. For example, the following figure shows the effect that a level reset trigger has on backward Euler integration.

• sampled level


Resets the output to the initial condition when the reset signal is nonzero. For example, the following figure shows the effect that a sampled level reset trigger has on backward Euler integration.

Note The sampled level reset option requires fewer computations and hence is more efficient than the level reset option. However, the sampled level reset option might introduce a discontinuity when integration resumes.

Selecting All Options

When you select all options, the icon looks like this.

Using Simplified Initialization Mode

If you use simplified initialization mode, the behavior of the Discrete-Time Integrator block differs from its behavior in classic initialization mode. The new initialization behavior is more robust, and provides more consistent behavior in these cases:

- In algebraic loops
- On enable and disable
- When comparing results using triggered sample time against results using explicit sample time, where the block is triggered at the same rate as the explicit sample time

In addition, the simplified initialization behavior makes it easier to convert Continuous-Time Integrator blocks to Discrete-Time Integrator blocks, since the initial conditions have the same meaning for both blocks. For more information on classic and simplified initialization modes, see "Underspecified initialization detection".

Initial Conditions in Simplified Initialization Mode

When you use simplified initialization mode, the **Initial conditions** parameter is applied only to the integrator output.

In addition, the **Use initial condition as initial and reset value for** parameter is disabled. The initial condition is always used as the initial and reset value for the output.

Input-Output Equations in Simplified Initialization Mode

When you use simplified initialization mode, the block starts from first time step n = 0 with initial output y(0) = IC (clipped if necessary).

For a given step n > 0 with simulation time t(n), Simulink updates output y(n) as follows:

• Forward Euler Method:

 $y(n) = y(n-1) + K^{*}[t(n)-t(n-1)]^{*}u(n-1)$

• Backward Euler Method:

 $y(n) = y(n-1) + K^{*}[t(n)-t(n-1)]^{*}u(n)$

• Trapezoidal Method:

 $y(n) = y(n-1) + K^{*}[t(n)-t(n-1)]^{*}[u(n)+u(n-1)]/2$

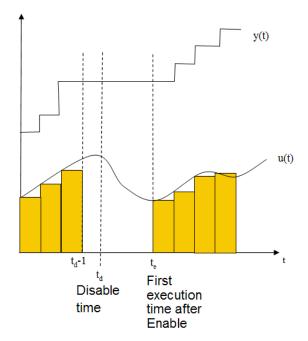
Simulink automatically selects a state-space realization of these input-output equations depending on the block sample time, which can be explicit or triggered. When using explicit sample time, t(n) - t(n-1) reduces to the sample time T for all n > 0.

Enable and Disable Behavior in Simplified Initialization Mode

When you use simplified initialization mode, the enable and disable behavior of the block is simplified as follows:

At disable time t_d :

 $y(t_d) = y(t_d-1)$


At enable time t_e :

• If parent subsystem resets on enable:

 $y(t_e) = IC$

• In all other cases (see below):

```
y(t_e) = y(t_d)
```


Iterator Subsystems

When using simplified initialization mode, you cannot place the Discrete-Time Integrator block within an Iterator Subsystem.

In simplified initialization mode, Iterator subsystems do not maintain elapsed time, so Simulink reports an error if any block needing elapsed time, such as the Discrete-Time Integrator, is placed inside an Iterator Subsystem.

Data TypeThe Discrete-Time Integrator block accepts real signals of any numeric
data type supported by Simulink software, including fixed-point data
types.

Parameters and Dialog Box

The **Main** pane of the Discrete-Time Integrator block dialog box appears as follows:

🙀 Function Block Parameters: Discrete-Time Integrator	×			
Discrete-Time Integrator				
Discrete-time integration or accumulation of the input signal.				
Main Signal Attributes State Attributes				
Integrator method: Integration: Forward Euler	•			
Gain value:				
1.0				
External reset: none				
Initial condition source: internal				
Initial condition:				
o				
Use initial condition as initial and reset value for: State and output				
Sample time (-1 for inherited):				
J1				
Limit output				
Upper saturation limit:				
jinf				
Lower saturation limit: -inf				
Show saturation port				
Show state port				
☐ Ignore limit and reset when linearizing				
, Ingroto linik and reset when integraing				
OK Cancel Help A	Vpply			
	עוקקי			

The **Signal Attributes** pane of the Discrete-Time Integrator block dialog box appears as follows:

🖥 Function Block Parame	ters: Discrete	Time Integrato		×
Discrete-Time Integrator				
Discrete-time integration or accumulation of the input signal.				
Main Signal Attributes State Attributes				
Output minimum:		Output maximum:	:	
0		0		
Output data type: Inherit:	Inherit via interr	al rule	•	>>
Integer rounding mode: Floo	or			•
📕 Saturate on integer overfl	low			
0	ОК	Cancel	Help	Apply

During simulation, the block uses the following values:

- The initial value of the signal object to which the state name is resolved
- Min and Max values of the signal object

See "Block State Storage and Interfacing" in the Real-Time Workshop User's Guide for more information.

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Integrator method

Specify the integration or accumulation method.

Settings

Default: Integration: Forward Euler

Integration: Forward Euler Integrator method is Forward Euler.

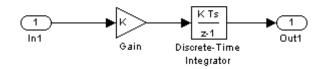
Integration: Backward Euler Integrator method is Backward Euler.

Integration: Trapezoidal Integrator method is Trapezoidal.

Accumulation: Forward Euler Accumulation method is Forward Euler.

Accumulation: Backward Euler Accumulation method is Backward Euler.

Accumulation: Trapezoidal Accumulation method is Trapezoidal.


Command-Line Information

Gain value

Specify a value by which to multiply the integrator input.

Settings

- Default: 1.0
- Specify a value by which to multiply the integrator input. Specifying a value other than 1.0 (the default) is semantically equivalent to connecting a signal to the input of the integrator via a Gain block, i.e., to

• Using this parameter to specify the input gain eliminates a multiplication operation in the generated code. Realizing this benefit, however, requires that this parameter be nontunable. Accordingly, the Real-Time Workshop software generates a warning during code generation if the Model Parameter Configuration dialog box for this model declares this parameter to be tunable. If you want to tune the input gain, set this parameter to 1.0 and use an external Gain block to specify the input gain.

Command-Line Information

External reset

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Settings

Default: none

none

Do not reset the state to initial conditions.

rising

Reset the state when the reset signal has a rising edge.

falling

Reset the state when the reset signal has a falling edge.

either

Reset the state when the reset signal rises or falls.

level

Reset and holds the output to the initial condition while the reset signal is nonzero.

sampled level

Reset the output to the initial condition when the reset signal is nonzero.

Command-Line Information

Initial condition source

Get the initial conditions of the states.

Settings

Default: internal

internal

Get the initial conditions of the states from the **Initial condition** parameter.

external

Get the initial conditions of the states from an external block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter.

Command-Line Information

Initial condition

Specify the states' initial conditions.

Settings

Default: 0

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

This parameter is enabled by setting **Initial condition source** to internal.

This parameter is disabled by setting **Initial condition source** to external.

Command-Line Information

Use initial condition as initial and reset value for

Specify whether to apply the initial condition as the initial and reset value for the state and output, or the state only.

Note If you are using simplified initialization mode, this parameter is disabled. The initial condition is always used as the initial and reset value for the output. For more information, see "Underspecified initialization detection".

Settings Default: State and output State and output Set the following for initial y(0) = ICx(0) = ICor at reset y(n) = IC

x(n) = IC

State only (most efficient) Set the following for initial

x(0) = IC

or at reset

x(n) = IC

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Limit output

Limit the block's output to a value between the **Lower saturation limit** and **Upper saturation limit** parameters.

Settings

Default: Off

Limit the block's output to a value between the **Lower** saturation limit and **Upper saturation limit** parameters.

C Off

Do not limit the block's output to a value between the **Lower** saturation limit and **Upper saturation limit** parameters.

Dependencies

This parameter enables Upper saturation limit.

This parameter enables Lower saturation limit.

Command-Line Information

Upper saturation limit

Specify the upper limit for the integral.

Settings

Default: inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

This parameter is enabled by Limit output.

Command-Line Information

Lower saturation limit

Specify the lower limit for the integral.

Settings

Default: -inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

This parameter is enabled by Limit output.

Command-Line Information

Show saturation port

Add a saturation output port to the block.

Settings Default: Off

🔽 On

Add a saturation output port to the block.

C Off

Do not add a saturation output port to the block.

Command-Line Information

Show state port

Add an output port to the block for the block's state.

Settings

Default: Off

🔽 On

Add an output port to the block for the block's state.

C Off

Do not add an output port to the block for the block's state.

Command-Line Information

Ignore limit and reset when linearizing

Cause Simulink linearization commands to treat this block as not resettable and as having no limits on its output, regardless of the settings of the block reset and output limitation options.

Settings

Default: Off

🔽 On

Cause Simulink linearization commands to treat this block as not resettable and as having no limits on its output, regardless of the settings of the block reset and output limitation options.

C Off

Do not cause Simulink linearization commands to treat this block as not resettable and as having no limits on its output, regardless of the settings of the block reset and output limitation options.

Tips

Ignoring the limit and resetting allows you to linearize a model around an operating point. This point may cause the integrator to reset or saturate.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings

Default: Off

₽_{On}

Lock scaling of outputs.

$\Box_{\rm Off}$

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output** data type or Data type parameter.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Saturate on integer overflow

Specify whether overflows saturate.

Settings

Default: Off

🔽 On

Overflows saturate.

C Off

Overflows do not saturate.

Tips

- When you select this check box, saturation applies to every internal operation on the block, not just the output or result.
- In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Command-Line Information

State name

Use this parameter to assign a unique name to each state.

Settings

Default: ' '

• If left blank, no name is assigned.

Tips

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.
- For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Dependencies

This parameter enables **State name must resolve to Simulink signal object** when you click the **Apply** button.

Command-Line Information

State name must resolve to Simulink signal object

Require that state name resolve to Simulink signal object.

Settings

Default: Off

Require that state name resolve to Simulink signal object.

C Off

Do not require that state name resolve to Simulink signal object.

Dependencies

This parameter is enabled by **State name**.

Selecting this check box enables **Real-Time Workshop storage class**.

Command-Line Information

Real-Time Workshop storage class

Select state storage class.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to external code.

ExportedGlobal

State is stored in a global variable

ImportedExtern

model_private.h declares the state as an extern variable.

ImportedExternPointer

model_private.h declares the state as an extern pointer.

Dependencies

This parameter is enabled by **State name**.

Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables **Real-Time Workshop storage type qualifier**.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

"Block State Storage Classes" in the Real-Time Workshop User's Guide.

Real-Time Workshop storage type qualifier

Specify Real-Time storage type qualifier.

Settings

Default: ' '

If left blank, no qualifier is assigned.

Dependencies

This parameter is enabled by setting **Real-Time Workshop storage class** to ExportedGlobal, ImportedExtern, or ImportedExternPointer.

Command-Line Information

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA, Simulink software chooses the output data type without regard to hardware constraints. Otherwise, Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

Inherit: Inherit from 'Constant value'

Use data type of **Constant value** parameter. This option appears for some blocks.

Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2^0,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

- Slope and bias Enter slope and bias.
- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2[^]0

Specify any positive real number.

Dependencies

This parameter is enabled by selecting **Scaling** > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics	Direct Feedthrough	Yes, of the reset and external initial condition source ports. The input has direct feedthrough for every integration method except Forward Euler and accumulation Forward Euler.
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of parameters
	States	Inherited from driving block and parameter
	Dimensionalized	Yes
	Zero Crossing	No

Purpose Implement discrete transfer function

Library Discrete

Description

The Discrete Transfer Fcn block implements the *z*-transform transfer function described by the following equations:

$$H(z) = \frac{num(z)}{den(z)} = \frac{num_0 z^n + num_1 z^{n-1} + \dots + num_m z^{n-m}}{den_0 z^n + den_1 z^{n-1} + \dots + den_n}$$

where m+1 and n+1 are the number of numerator and denominator coefficients, respectively. *num* and *den* contain the coefficients of the numerator and denominator in descending powers of *z*. *num* can be a vector or matrix, *den* must be a vector, and both are specified as parameters on the block dialog box. The order of the denominator must be greater than or equal to the order of the numerator.

Block input is scalar; output width is equal to the number of rows in the numerator.

The Discrete Transfer Fcn block represents the method typically used by control engineers, representing discrete systems as polynomials in z. The Discrete Filter block represents the method typically used by signal processing engineers, who describe digital filters using polynomials in z^{-1} (the delay operator). The two methods are identical when the numerator is the same length as the denominator.

The Discrete Transfer Fcn block displays the numerator and denominator within its icon depending on how they are specified. See Transfer Fcn for more information.

Data Type Support

The Discrete Transfer Function block accepts and outputs real signals of type single or double.

Parameters and Dialog Box

🙀 Function Block Parameters: Discrete Transfer Fcn 🛛 🗙		
Discrete Transfer Fon		
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of z.		
Main State Attributes		
Numerator coefficient:		
[1]		
Denominator coefficient:		
[1 0.5]		
Sample time (-1 for inherited):		
1		
OK Cancel Help Apply		

Numerator coefficient

The row vector of numerator coefficients. A matrix with multiple rows can be specified to generate multiple output. The default is [1].

Denominator coefficient

The row vector of denominator coefficients. The default is [10.5].

Sample time

The time interval between samples. The default is 1. See Specifying Sample Time in the "How Simulink Works" chapter of the Simulink documentation.

The **State Attributes** pane of the Discrete Transfer Fcn block dialog box appears as follows:

Function Block Parameters: Discrete Transfer Fcn	×	
Discrete Transfer Fcn		
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of z.		
Main State Attributes		
State name:		
☐ State name must resolve to Simulink signal object		
Real-Time Workshop storage class: Auto]	
Real-Time Workshop storage type qualifier:		
	-	
OK Cancel Help Apply		

State name

Use this parameter to assign a unique name to each state. The default is ' '. If left blank, no name is assigned. Consider the following when using this parameter:

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.

- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.
- For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

This parameter enables **State name must resolve to Simulink signal object** when you click the **Apply** button.

State name must resolve to Simulink signal object

Select this checkbox to require that state name resolve to Simulink signal object. This check box is cleared by default.

This parameter is enabled by State name.

Selecting this check box enables **Real-Time Workshop storage class**.

Real-Time Workshop storage class

From the list, select state storage class.

Auto

Auto is the appropriate storage class for states that you do not need to interface to external code.

ExportedGlobal

State is stored in a global variable

ImportedExtern

model_private.h declares the state as an extern variable.

ImportedExternPointer

model_private.h declares the state as an extern pointer.

This parameter is enabled by **State name**.

Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables **Real-Time Workshop storage type qualifier**.

During simulation, the block uses the following values:

- The initial value of the signal object to which the state name is resolved
- Min and Max values of the signal object

See "Block State Storage and Interfacing" in the Real-Time Workshop User's Guide for more information.

Characteristics	Direct Feedthrough	Only if the lengths of the Numerator and Denominator parameters are equal
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	States	Length of Denominator parameter -1
	Dimensionalized	No
	Zero Crossing	No

Discrete Zero-Pole

Purpose Model system defined by zeros and poles of discrete transfer function

Library Discrete

Description

The Discrete Zero-Pole block models a discrete system defined by the zeros, poles, and gain of a z-domain transfer function. This block assumes that the transfer function has the following form

$$H(z) = K \frac{Z(z)}{P(z)} = K \frac{(z - Z_1)(z - Z_2)...(z - Z_m)}{(z - P_1)(z - P_2)...(z - P_n)}$$

where Z represents the zeros vector, P the poles vector, and K the gain. The number of poles must be greater than or equal to the number of zeros $(n \ge m)$. If the poles and zeros are complex, they must be complex conjugate pairs.

The block displays the transfer function depending on how the parameters are specified. See Zero-Pole for more information.

Data TypeThe Discrete Zero-Pole block accepts and outputs real signals of type
double.

X

Parameters and Dialog Box

Function B	lock Parame	eters: Discre	te Zero-Pole
------------	-------------	---------------	--------------

- Discrete Zero-Pole-

Matrix expression for zeros. Vector expression for poles and gain. Output width equals the number of columns in zeros matrix, or one if zeros is a vector.

Main State Attributes
Zeros:
[1]
Poles:
[0 0.5]
Gain: 1
Sample time (-1 for inherited):
OK Cancel Help Apply

Zeros

The matrix of zeros. The default is [1].

Poles

The vector of poles. The default is [0 0.5].

Gain

The gain. The default is 1.

Sample time

The time interval between samples. See Specifying Sample Time in the "How Simulink Works" chapter of the Simulink documentation. The **State Attributes** pane of the Discrete Zero-Pole block dialog box appears as follows:

Function Block Parameters: Discrete Zero-Pole
Discrete Zero-Pole
Matrix expression for zeros. Vector expression for poles and gain. Output width equals the number of columns in zeros matrix, or one if zeros is a vector.
Main State Attributes
State name:
☐ State name must resolve to Simulink signal object
Real-Time Workshop storage class: Auto
Real-Time Workshop storage type qualifier:
OK Cancel Help Apply

State name

Use this parameter to assign a unique name to each state. The default is ' '. If left blank, no name is assigned. Consider the following when using this parameter:

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.

- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.
- For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

This parameter enables **State name must resolve to Simulink signal object** when you click the **Apply** button.

State name must resolve to Simulink signal object

Select this checkbox to require that state name resolve to Simulink signal object. This check box is cleared by default.

This parameter is enabled by State name.

Selecting this check box enables **Real-Time Workshop storage** class.

Real-Time Workshop storage class

From the list, select state storage class.

Auto

Auto is the appropriate storage class for states that you do not need to interface to external code.

ExportedGlobal

State is stored in a global variable

ImportedExtern

model_private.h declares the state as an extern variable.

	<pre>ImportedExternPointer model_private.h declares the state as an extern pointer.</pre>		
	This parameter is enabled by State name .		
	Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables Real-Time Workshop storage type qualifier .		
	During simulation, the block uses the following values:		
	The initial value of the signal object to which the state name is resolvedMin and Max values of the signal object		
	See "Block State Storage and Interfacing" in the Real-Time Workshop User's Guide for more information.		
Characteristics	Direct Feedthrough	Yes, if the number of zeros and poles are equal	
	Sample Time	Specified in the Sample time parameter	
	Scalar Expansion	No	
	States	Length of Poles vector	

No

No

Dimensionalized

Zero Crossing

Display

Sinks

Library

Description

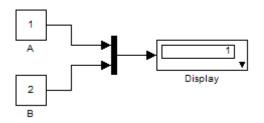
The Display block shows the value of its input on its icon.

You control the display format using the **Format** parameter:

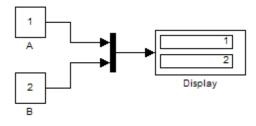
- short displays a 5-digit scaled value with fixed decimal point
- long displays a 15-digit scaled value with fixed decimal point
- short_e displays a 5-digit value with a floating decimal point
- long_e displays a 16-digit value with a floating decimal point
- bank displays a value in fixed dollars and cents format (but with no \$ or commas)
- hex (Stored Integer) displays the stored integer value of a fixed-point input in hexadecimal format
- binary (Stored Integer) displays the stored integer value of a fixed-point input in binary format
- decimal (Stored Integer) displays the stored integer value of a fixed-point input in decimal format
- octal (Stored Integer) displays the stored integer value of a fixed-point input in octal format

If the signal input to a Display block has an enumerated data type (see "Using Enumerated Data"):

- The block displays enumerated values, not the values' underlying integers.
- Setting the **Format** to any of the **Stored** Integer settings causes an error.


The amount of data displayed and the time steps at which the data is displayed are determined by the **Decimation** block parameter and the SampleTime property:

• The **Decimation** parameter enables you to display data at every nth sample, where n is the decimation factor. The default decimation, 1, displays data at every time step.


Note The Display block updates its display at the initial time, even when the **Decimation** value is greater than one.

• The SampleTime property, settable with set_param, enables you to specify a sampling interval at which to display points. This property is useful when you are using a variable-step solver where the interval between time steps might not be the same. The default value of -1 causes the block to ignore the sampling interval when determining the points to display.

If the block input is an array, you can resize the block to show more than just the first element. You can resize the block vertically or horizontally; the block adds display fields in the appropriate direction. A black triangle indicates that the block is not displaying all input array elements. For example, the following figure shows a model that passes a vector (1-D array) to a Display block. The black triangle on the Display block indicates more data to be displayed.

The following figure shows the resized block displaying both input elements.

Note The Display block shows only the first 200 elements of a one-dimensional (vector) signal and only the first 20 rows and 10 columns of a two-dimensional (matrix) signal.

Display Abbreviations

The following abbreviations appear on the Display block to help you identify the format of the number being displayed.

Symbol	Description
(SI)	This alerts you to the fact that the number being displayed is the stored integer value. This symbol does not appear when the signal is of an integer data type.
hex	The number being displayed is in hexadecimal format.
bin	The number being displayed is in binary format.
oct	The number being displayed is in octal format.

Floating Display

To use the block as a floating display, select the **Floating display** check box. The block's input port disappears and the block displays

the value of the signal on a selected line. If you select the **Floating display** option, you must turn off the signal storage reuse feature in your Simulink software. See "Signal storage reuse" in the "Running Simulations" chapter of the Simulink documentation.

Note The floating display does not support multidimensional signals. If you connect a multidimensional signal to a floating display, the display generates an error.

Data TypeThe Display block accepts and outputs real or complex signals of any
data type supported by Simulink software, including fixed-point and
enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

-less	2
play	
meric display of input values.	
rameters	
rmat: short	-
ecimation:	
Floating display	
OK Cancel Help	Apply

Parameters and Dialog Box

Format

Specify the format of the data displayed, as discussed in Description. The default is short.

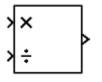
Decimation

Specify how often to display data. The default value, 1, displays every input point.

Floating display

If selected, the block's input port disappears, which enables the block to be used as a floating Display block.

Characteristics	SampleTime	Use set_param to specify the SampleTime property
	Dimensionalized	Yes

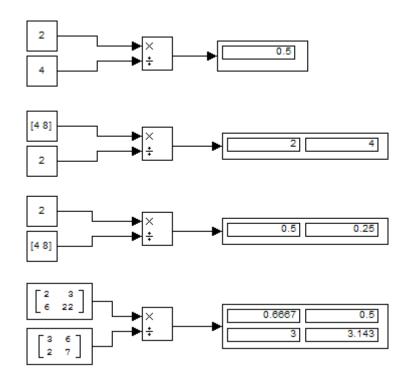

Divide

Purpose	Divide one input by another
---------	-----------------------------

Library

Math Operations

Description


The Divide block outputs the result of dividing its first input by its second. The inputs can be scalars, a scalar and a nonscalar, or two nonscalars that have the same dimensions. The Divide block is functionally a Product block that has two block parameter values preset:

- Multiplication: Element-wise(.*)
- Number of Inputs: */

Setting non-default values for either of those parameters can change a Divide block to be functionally equivalent to a Product block or a Product of Elements block. See the documentation of those two blocks for more information.

ParametersThe Divide block has the same parameters and dialog box as theandProduct block. If all you need is to divide two inputs to create an output,Dialogyou can use the Divide block with default parameter values. If you needBoxadditional capabilities, see the Product block documentation, which
also describes the capabilities of the Divide block's "Signal Attributes
Pane" on page 2-770.

Examples These examples show the output of the Divide block for some typical inputs using default block parameter values.

DocBlock

Purpose Create text that documents model and save text with model

Library

Model-Wide Utilities

Description

The DocBlock allows you to create and edit text that documents a model, and save that text with the model. Double-clicking an instance of the block creates a temporary file containing the text associated with this block and opens the file in an editor. Use the editor to modify the text and save the file. Simulink software stores the contents of the saved file in the model file.

The DocBlock supports HTML, Rich Text Format (RTF), and ASCII text document types. The default editors for these different document types are

- HTML Microsoft[®] Word (if available). Otherwise, the DocBlock opens HTML documents using the editor specified on the **Editor/Debugger Preferences** pane of the Preferences dialog box.
- RTF Microsoft Word (if available). Otherwise, the DocBlock opens RTF documents using the editor specified on the **Editor/Debugger Preferences** pane of the Preferences dialog box.
- Text The DocBlock opens text documents using the editor specified on the **Editor/Debugger Preferences** pane of the Preferences dialog box.

Use the docblock command to change the default editors.

Note Simulink software embeds DocBlock documents in the model file (see Chapter 9, "Model File Format"). This can greatly increase the size of a model file, for example, if the RTF document contains bitmapped images, and can require more time to open and save the model.

Data TypeNot applicable.Support

Parameters and Dialog Box

Double-clicking an instance of the DocBlock opens an editor. To access the DocBlock parameter dialog box, select the block in the Model Editor and then select **Mask Parameters** from either the **Edit** menu or the block's context menu.

😽 Block Parameters: DocBlock	×
DocBlock (mask) (link)	
Use this block to save long descriptive text with the mode will open an editor.	el. Double-clicking the block
-Parameters	
RTW Embedded Coder Flag	
Document Type Text	
OK Cancel	Help Apply

RTW Embedded Coder Flag (Real-Time Workshop[®] Embedded Coder[™] license required)

Enter a template symbol name in this field. Real-Time Workshop Embedded Coder software uses this symbol to add comments to the code generated from the model. See "Adding Global Comments" in the *Real-Time Workshop Embedded Coder Module Packaging Features* documentation for more information.

Document Type

Specifies the type of document associated with the DocBlock. The options are

- Text (the default)
- RTF
- HTML

Characteristics Not applicable

Purpose	Generate dot product of two vectors
---------	-------------------------------------

Math Operations

Description

Library

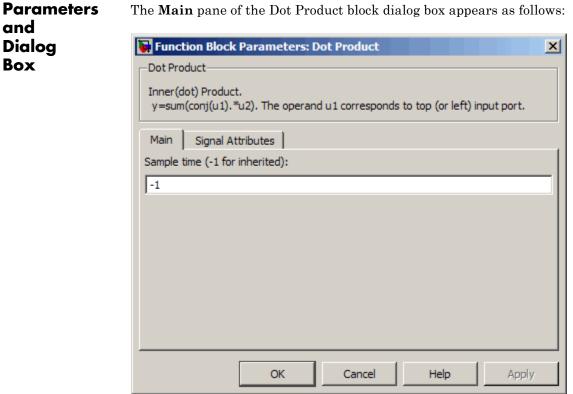
The Dot Product block generates the dot product of the vectors at its inputs. The scalar output, y, is equal to the MATLAB operation

y = sum(conj(u1) .* u2)

where u1 and u2 represent the vectors at the block's top and bottom inputs, respectively. (See "How to Rotate a Block" in the Simulink User's Guide for a description of the port order for various block orientations.) The inputs can be vectors, column vectors (single-column matrices), or scalars. If both inputs are vectors or column vectors, they must be the same length. If u1 and u2 are both column vectors, the block outputs the equivalent of the MATLAB expression u1 '*u2.

The elements of the input vectors can be real- or complex-valued signals. The signal type (complex or real) of the output depends on the signal types of the inputs.

Input 1	Input 2	Output
real	real	real
real	complex	complex
complex	real	complex
complex	complex	complex


To perform element-by-element multiplication without summing, use the Product block.

Data Type Support

The Dot Product block accepts and outputs signals of any numeric data type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink".

Dot Product

The Signal Attributes pane of the Dot Product block dialog box appears as follows:

Function Block Parameters: Dot Produc	t X	
Dot Product		
Inner(dot) Product. y=sum(conj(u1).*u2). The operand u1 corresp	oonds to top (or left) input port.	
Main Signal Attributes		
Require all inputs to have the same data typ	e	
Output minimum: Outp	put maximum:	
Output data type: Inherit: Inherit via internal rule >>		
Integer rounding mode: Floor	•	
Saturate on integer overflow		
OK Cance	I Help Apply	

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink User's Guide for more information.

Require all inputs to have same data type

Select to require all inputs to have the same data type.

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

• Simulation range checking (see "Checking Signal Ranges")

• Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate on integer overflow

Select to have overflows saturate.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated

Characteristics

5	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	States	0
	Dimensionalized	Yes
	Zero Crossing	No

Embedded MATLAB Function

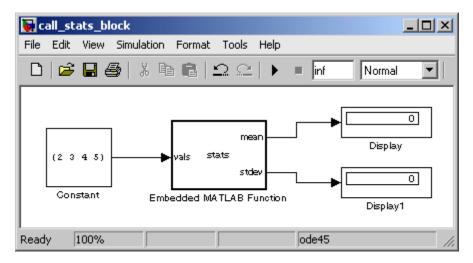
User-Defined Functions

Include MATLAB code in models that generate embeddable C code

Library

Purpose

Description


Embedded MATLAB Function An Embedded MATLAB[™] Function block lets you compose a MATLAB function within a Simulink model like the following example:

```
1
      function [mean, stdev] = stats(vals)
2
3
      % calculates a statistical mean and a standard
4
      % deviation for the values in vals.
5
6
      eml.extrinsic('plot');
7
8 -
      len = length(vals);
9
      mean = avg(vals,len);
10 -
      stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
11 -
      plot(vals, '-+');
12
13
      function mean = avg(array, size)
14 -
      mean = sum(array)/size;
```

The MATLAB function you create executes for simulation and generates code for a Real-Time Workshop target. If you are new to the Simulink and MATLAB products, see "Using the Embedded MATLAB Function Block" in the Simulink documentation for a comprehensive overview including a step-by-step example.

You create the MATLAB function in the **Embedded MATLAB Editor**. To learn about this editor's capabilities see "Embedded MATLAB Function Editor".

You specify input and output data to the Embedded MATLAB Function block in the function header as arguments and return values. Notice that the argument and return values of the preceding example function correspond to the inputs and outputs of the block in the Simulink model.

The Embedded MATLAB Function block supports a subset of the language for which it can generate efficient embeddable code. For details about the Embedded MATLAB subset, see "Working with the Embedded MATLAB Subset" in the Embedded MATLAB documentation.

To generate embeddable code, the Embedded MATLAB Function block relies on an analysis that determines the size and class of each variable. This analysis imposes the following additional restrictions on the way in which the above features may be used.

- **1** The first definition of a variable must define both its class and size. The class and size of a variable cannot be changed once it has been set.
- **2** Whether data is complex or real is determined by the first definition. Subsequent definitions may assign real numbers into complex storage but may not assign complex numbers into real storage.

The preceding limitations require you to code in a certain style. Some common idioms to avoid are listed in "Using Matrix Indexing Operations" and "Working with Complex Numbers" in the Embedded MATLAB documentation. In addition to language restrictions, Embedded MATLAB Function blocks support only a subset of the functions available in MATLAB. A list of supported functions is given in the "Embedded MATLAB Function Library Reference" in the Embedded MATLAB documentation. These functions include functions in common categories like

- Arithmetic functions like plus, minus, and power
- Matrix operations like size, and length
- Advanced matrix operations like lu, inv, svd, and chol
- Trigonometric functions like sin, cos, sinh, and cosh

to name just a few. See "Embedded MATLAB Function Library — Categorical List" in the Embedded MATLAB documentation for a complete list of function categories.

Note Although Embedded MATLAB software attempts to produce exactly the same results as MATLAB software, there will be occasions when they will differ due to rounding errors. These numerical differences, which may be a few eps initially, might be magnified after repeated operations. Reliance on the behavior of nan is not recommended. Different C compilers may yield different results for the same computation.

To support visualization of data, Embedded MATLAB Function blocks support calls to MATLAB functions for simulation only. See "Calling MATLAB Functions" in the Embedded MATLAB documentation to understand some of the limitations of this capability, and how it is integrated into Embedded MATLAB analysis. If these calls do not directly affect any of the Simulink inputs or outputs, they are eliminated from the generated code when generating code with Real-Time Workshop.

You can declare an Embedded MATLAB input to be a Simulink parameter instead of a port in the Model Explorer. The Embedded

	for inputs, outputs, and param explicitly using the Model Expl "Sizing Function Arguments", a MATLAB Functions", for more you use in Embedded MATLAB	
	Note that recursive calls are n functions.	ot allowed in Embedded MATLAB
Data Type Support	The Embedded MATLAB Function block accepts inputs of any type supported by Simulink software, except enumerated types. For a discussion on the variable types supported by Embedded MATLAB functions in Simulink software, refer to "Data Types Supported by Simulink" in the Simulink documentation.	
		point support in Embedded MATLAB, ed-Point Embedded MATLAB Subset" in umentation.
		tion block supports Simulink frames. See ignal Processing Blockset documentation
Parameters and Dialog Box	The Block Parameters dialog box for an Embedded MATLAB Function block is identical to the Block Parameters dialog box for a Subsystem block. See the reference page for the Subsystem, Atomic Subsystem, Nonvirtual Subsystem, CodeReuse Subsystem blocks for an identification of each field.	
Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes
	Dimensionalized	Yes

Embedded MATLAB Function

Multidimensionalized	Yes
Zero Crossing	No

Purpose	Add enabling port to subsystem
---------	--------------------------------

Library Ports & Subsystems

Description

Adding an Enable block to a subsystem makes it an enabled subsystem. An enabled subsystem executes while the input received at the Enable port is greater than zero.

At the start of simulation, Simulink software initializes the states of blocks inside an enabled subsystem to their initial conditions. When an enabled subsystem restarts (executes after having been disabled), the **States when enabling** parameter determines what happens to the states of blocks contained in the enabled subsystem:

- reset resets the states to their initial conditions (zero if not defined).
- held holds the states at their previous values.

You can output the enabling signal by selecting the **Show output port** check box. Selecting this option allows the system to process the enabling signal.

A subsystem can contain no more than one Enable block.

Data Type Support

The data type of the input of the Enable port, i.e., the enable port that appears on the subsystem in which the Enable block resides, can be any numeric data type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation.

Enable

Parameters and Dialog Box

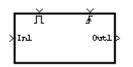
Block Parameters: Enable		
- Enable Port		
Place this block in a subsystem to create an enabled subsystem.		
-Parameters		
States when enabling: held		
Show output port		
Enable zero-crossing detection		
OK Cancel Help Apply		

States when enabling

Specifies how to handle internal states when the subsystem becomes reenabled.

Show output port

If selected, Simulink software draws the Enable block output port and outputs the enabling signal.


Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Sample Time	Determined by the signal at the enable port
	Dimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled.

- **Purpose** Represent subsystem whose execution is enabled and triggered by external input
- Library Ports & Subsystems

Description

This block is a Subsystem block that is preconfigured to serve as the starting point for creating an enabled and triggered subsystem. For more information, see "Triggered and Enabled Subsystems" in the online Simulink help.

Enabled Subsystem

Purpose	Represent subsystem whose execution is enabled by external input	
Library	Ports & Subsystems	
Description	This block is a Subsystem block that is preconfigured to serve as the starting point for creating an enabled subsystem. For more information, see "Enabled Subsystems" in the "Creating a Model" chapter of the Simulink documentation.	

Purpose Create branches of block diagram that apply only to simulation or only to code generation

Library Signal Routing

Description This block outputs the signal at its Sim port only if the model that contains it is being simulated. It outputs the signal at its RTW port only if code is being generated from the model. This allows you to create branches of a model's block diagram that apply only to simulation or only to code generation. The table below describes various scenarios where either the Sim or RTW port applies.

Scenario	Output
Normal mode simulation	Sim
Accelerator mode simulation	Sim
Rapid Accelerator mode simulation	RTW
Simulation of a referenced model (Normal or Accelerator modes)	Sim
Simulation of a referenced model (Processor-in-the-loop (PIL) mode)	RTW (uses the same code generated for a referenced model)
External mode simulation	RTW
Standard code generation	RTW
Code generation of a referenced model	RTW

Real-Time Workshop software does not generate code for blocks connected to the Sim port if these conditions hold:

• You select the **Inline parameters** check box on the **Optimization** pane of the Configuration Parameters dialog box.

	• The blocks connected to the Sim port do not have external signals.		
	If you enable block reduction optimization, Simulink software eliminates blocks in the branch connected to the block's RTW port when compiling the model for simulation. For information about block reduction, see "Block reduction" in the online Simulink documentation.		
	Note Real-Time Workshop code generation eliminates the blocks connected to the Sim branch only if the Sim branch has the same signal dimensions as the RTW branch. Regardless of whether it eliminates the Sim branch, Real-Time Workshop uses the sample times on the Sim branch as well as the RTW branch to determine the fundamental sample time of the generated code and may, in some cases, generate sample-time handling code that applies only to sample times specified on the Sim branch.		
Data Type Support	The Environment Controller block accepts signals of any data type supported by Simulink software. It outputs the type at its input.		
Parameters	Block Parameters: Environment Controller		
and Dialog	Environment Controller (mask) (link)		
Dialog Box	Output the simulation (Sim) or Real-Time Workshop (RTW) port depending on the current environment. With optimizations enabled, unnecessary blocks leading to the unused port are not executed.		
	<u>QK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>		

Characteristics	Multidimensionalized	Yes

Purpose Output selection of contiguous bits from input signal

Logic and Bit Operations

Library

Description

The Extract Bits block allows you to output a contiguous selection of bits from the stored integer value of the input signal. Use the **Bits to extract** parameter to define the method for selecting the output bits.

• Select Upper half to output the half of the input bits that contain the most significant bit. If there is an odd number of bits in the input signal, the number of output bits is given by the equation

number of output bits = ceil(number of input bits/2)

• Select Lower half to output the half of the input bits that contain the least significant bit. If there is an odd number of bits in the input signal, the number of output bits is given by the equation

number of output bits = ceil(number of input bits/2)

- Select Range starting with most significant bit to output a certain number of the most significant bits of the input signal. Specify the number of most significant bits to output in the **Number** of bits parameter.
- Select Range ending with least significant bit to output a certain number of the least significant bits of the input signal. Specify the number of least significant bits to output in the **Number of bits** parameter.
- Select Range of bits to indicate a series of contiguous bits of the input to output in the **Bit indices** parameter. You indicate the range in [start end] format, and the indices of the input bits are labeled contiguously starting at 0 for the least significant bit.

Extract Bits

Data Type Support	The Extract Bits block accepts inputs of any numeric data type supported by Simulink software, including fixed-point data types. Floating-point inputs are passed through the block unchanged. Boolean inputs are treated as uint8 signals.
	Note Performing bit operations on a signed integer is difficult. You can avoid difficulty by converting the data type of your input signals to unsigned integer types.
Deversetova	For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.
Parameters and Dialog Box	Function Block Parameters: Extract Bits Extract Bits (mask) (link) Output selected bits from each of the fixed-point input samples. Selecting "Upper half" or "Lower half" results in a positive number of bits in the output word length, according to the equation numOutputBits = ceil(numInputBits / 2). Parameters Bits to extract: Upper half Output scaling mode: Preserve fixed-point scaling
	OK Cancel Help Apply

Bits to extract

Select the method for extracting bits from the input signal.

Number of bits

(Not shown on dialog above.) Select the number of bits to output from the input signal. Signed integer data types can have no less then two bits in them. Unsigned data integer types can be as short as a single bit.

This parameter is only visible if you select Range starting with most significant bit or Range ending with least significant bit for the **Bits to extract** parameter.

Bit indices

(Not shown on dialog above.) Specify a contiguous range of bits of the input signal to output. Specify the range in [start end] format. The indices are assigned to the input bits starting with 0 at the least significant bit.

This parameter is only visible if you select Range of bits for the **Bits to extract** parameter.

Output scaling mode

Select the scaling mode to use on the output bits selection:

- When you select Preserve fixed-point scaling, the fixed-point scaling of the input is used to determine the output scaling during the data type conversion.
- When you select Treat bit field as an integer, the fixed-point scaling of the input is ignored, and only the stored integer is used to compute the output data type.

Example Consider an input signal that is represented in binary by 110111001:

- If you select Upper half for the **Bits to extract** parameter, the output is 11011 in binary.
- If you select Lower half for the **Bits to extract** parameter, the output is 11001 in binary.

- If you select Range starting with most significant bit for the **Bits to extract** parameter, and specify 3 for the **Number of bits** parameter, the output is 110 in binary.
- If you select Range ending with least significant bit for the **Bits to extract** parameter, and specify 8 for the **Number of bits** parameter, the output is 10111001 in binary.
- If you select Range of bits for the Bits to extract parameter, and specify [4 7] for the Bit indices parameter, the output is 1011 in binary.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited
	Scalar Expansion	N/A
	States	None
	Dimensionalized	Inherited
	Multidimensionalized	Yes
	Zero Crossing	No

Purpose Apply specified expression to input

Library

Description Th

The Fcn block applies the specified mathematical expression to its input. The expression can be made up of one or more of these components:

- u The input to the block. If u is a vector, u(i) represents the ith element of the vector; u(1) or u alone represents the first element.
- Numeric constants

User-Defined Functions

- Arithmetic operators (+ * / ^)
- Relational operators (== != > < >= <=) The expression returns 1 if the relation is true; otherwise, it returns 0.
- Logical operators (&& || !) The expression returns 1 if the relation is true; otherwise, it returns 0.
- Parentheses
- Mathematical functions abs, acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, hypot, ln, log, log10, pow, power, rem, sgn, sin, sinh, sqrt, tan, and tanh.

Note The Fcn block does not support round and fix. Use the Rounding Function block to apply these rounding modes.

 Workspace variables — Variable names that are not recognized in the preceding list of items are passed to MATLAB for evaluation. Matrix or vector elements must be specifically referenced (e.g., A(1,1) instead of A for the first element in the matrix). The Fcn block observes the following rules of operator precedence:

1 ()
2 ^
3 + - (unary)
4 !
5 * /
6 + 7 > < <= >=
8 == !=
9 &&
10 ||

The expression differs from a MATLAB expression in that the expression cannot perform matrix computations. Also, this block does not support the colon operator (:).

Block input can be a scalar or vector. The output is always a scalar. For vector output, consider using the Math Function block. If a block input is a vector and the function operates on input elements individually (for example, the sin function), the block operates on only the first vector element.

The Fcn block accepts and outputs signals of type single or double.

Data Type Support

Parameters and Dialog Box

🙀 Function Block Parameters: Fcn	×		
Fon General expression block. Use "u" as the input variable name. Example: sin(u[1] * exp(2.3 * -u[2]))			
Parameters			
Expression:			
sin(u(1)*exp(2.3*(-u(2))))			
Sample time (-1 for inherited):			
-1			
OK Cancel Help Apply			

Expression

The mathematical expression applied to the input. Expression components are listed above. The expression must be mathematically well formed (i.e., matched parentheses, proper number of function arguments, etc.).

Note You cannot tune the expression during accelerated-mode simulation (see "Accelerating Models"), in referenced models executing in Accelerator mode (see "Referencing a Model", or in generated code.

The Fcn block does not support custom storage classes. See "Using Custom Storage Classes".

Sample time (-1 for inherited)

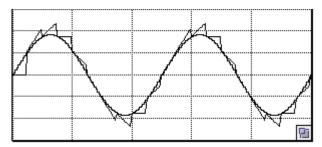
Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics

Direct Feedthrough	Yes
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	No
Zero Crossing	No

Purpose Implement first-order sample-and-hold

Library


Discrete

Description

The First-Order Hold block implements a first-order sample-and-hold that operates at the specified sampling interval. This block has little value in practical applications and is included primarily for academic purposes.

This figure compares the output from a Sine Wave block and a First-Order Hold block.

Data TypeThe First-Order Hold block accepts and outputs signals of type double.Support

Parameters and Dialog Box

🙀 Function Block Parameters: First-Order Hold
First-Order Hold (mask) (link)
First-order hold.
Parameters
Sample time:
1
OK Cancel Help Apply

Sample time

The time interval between samples. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	States	1 continuous and 1 discrete per input element
	Dimensionalized	Yes
	Zero Crossing	No

Purpose	Implement discrete-time state space
---------	-------------------------------------

Library Additional Math & Discrete / Additional Discrete

Description

y(n)=Cx(n)+Du(n) x(n+1)=Ax(n)+Bu(n) The Fixed-Point State-Space block implements the system described by

y(n) = Cx(n) + Du(n)

 $x(n+1) = \mathbf{A}x(n) + \mathbf{B}u(n)$

where u is the input, x is the state, and y is the output. Both equations have the same data type.

The matrices A, B, C and D have the following characteristics:

- A must be an n-by-n matrix, where n is the number of states.
- B must be an n-by-m matrix, where m is the number of inputs.
- C must be an r-by-n matrix, where r is the number of outputs.
- D must be an r-by-m matrix.

In addition:

- The state x must be an n-by-1 vector.
- The input u must be an m-by-1 vector.
- The output y must be an r-by-1 vector.

The block accepts one input and generates one output. The block determines the input vector width by the number of columns in the B and D matrices. Similarly, the block determines the output vector width by the number of rows in the C and D matrices.

Data Type Support

The Fixed-Point State-Space block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

The **Main** pane of the Fixed-Point State-Space block dialog box appears as follows:

🛃 Functi	on Block Parameters: Fixed-Point State-Space	×
-Fixed-Po	int State-Space (mask) (link)	
Discrete	time State-Space Realization	
Main	Signal Attributes	
State Mat	rix A:	
[2.6020	-2.2793 0.6708; 1 0 0; 0 1 0]	
Input Mat	rix B:	
[1; 0; 0]		
Output M	atrix C:	
[0.0184	0.0024 0.0055]	
Direct Fee	edthrough Matrix D:	
[0.0033]		
Initial con	dition for state:	
0.0		
	OK Cancel Help	Apply

State Matrix A

Specify the matrix of states.

Input Matrix B

Specify the column vector of inputs.

Output Matrix C

Specify the column vector of outputs.

Direct Feedthrough Matrix D

Specify the matrix for direct feedthrough.

Initial condition for state

Specify the initial condition for the state.

The **Signal Attributes** pane of the Fixed-Point State-Space block dialog box appears as follows:

Function Block Parameters: Fixed-Point State-Space	×		
Fixed-Point State-Space (mask) (link)			
Discrete-time State-Space Realization			
Main Signal Attributes			
Data type for internal calculations (e.g. fixdt(1, 16), fixdt('single')):			
fixdt('double')			
Scaling for State Equation AX+BU (Slope, e.g. 2^-9):			
2^0			
Scaling for Output Equation CX+DU (Slope, e.g. 2^-9):			
2^0			
Lock output scaling against changes by the autoscaling tool			
Integer rounding mode: Floor	⊡		
Saturate to max or min when overflows occur			
OK Cancel Help A	oply		

Data type for internal calculations

Specify the data type for internal calculations.

Scaling for State Equation AX+BU

Specify the scaling for state equations.

Scaling for Output Equation CX+DU

Specify the scaling for output equations.

Lock output scaling against changes by the autoscaling tool If you select this check box, the output scaling is locked.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	Yes	
	Scalar Expansion	Yes, of initial conditions	

Purpose Repeatedly execute contents of subsystem at current time step until iteration variable exceeds specified iteration limit

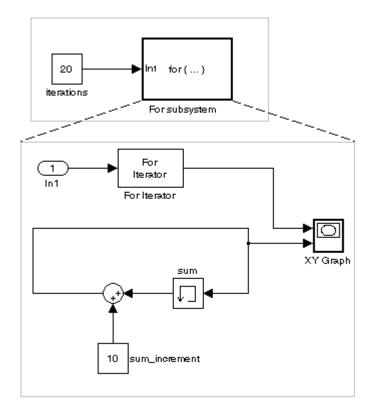
Ports & Subsystems/For Iterator Subsystem

Description

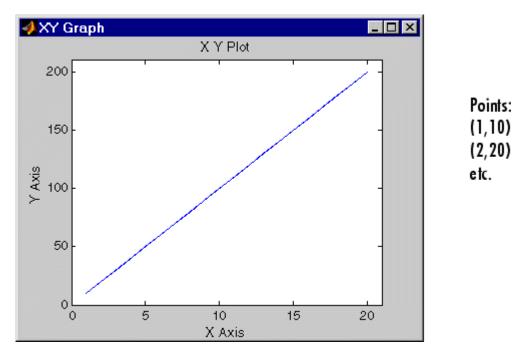
For Iterator

Library

The For Iterator block, when placed in a subsystem, repeatedly executes the contents of the subsystem at the current time step until an iteration variable exceeds a specified iteration limit. You can use this block to implement the block diagram equivalent of a for loop in the C programming language.


The output of a For Iterator subsystem can not be a function-call signal. Simulink software will display an error message if the simulation is run or the diagram updated.

The block's parameter dialog allows you to specify the maximum value of the iteration variable or an external source for the maximum value and an optional external source for the next value of the iteration variable. If you do not specify an external source for the next value of the iteration variable, the next value is determined by incrementing the current value:


 $i_{n+1} = i_n + 1$

The model in the following figure uses a For Iterator block to increment an initial value of zero by 10 over 20 iterations at every time step.

For Iterator

The following figure shows the result.

The For Iterator subsystem in this example is equivalent to the following C code.

```
sum = 0;
iterations = 20;
sum_increment = 10;
for (i = 0; i < iterations; i++) {
  sum = sum + sum_increment;
}
```

Note Placing a For Iterator block in a subsystem makes it an atomic subsystem if it is not already an atomic subsystem.

For Iterator

Data Type Support

The following rules apply to the data type of the number of iterations (N) input port:

- The input port accepts data of mixed numeric types.
- If the input port value is noninteger, it is first truncated to an integer.
- Internally, the input value is cast to an integer of the type specified for the iteration variable output port.
- If no output port is specified, the input port value is cast to type int32.
- If the input port value exceeds the maximum value of the output port's type, it is truncated to that maximum value.

Data output for the iterator value can be selected as double, int32, int16, or int8 in the Block Properties dialog.

The following rules apply to the iteration variable input port.

- It can appear only if the iteration variable output port is enabled.
- The data type of the iteration variable input port is the same as the data type of the iteration variable output port.

×

Parameters and Dialog Box

Source Block Parameters: For Iterator

-For Iterator-

Run the blocks in this subsystem for a number of iterations. The iteration limit may be specified either in the block's dialog or through an external input port. If the iteration variable is incremented externally, then the next iteration value is read in through an external input port, otherwise it is incremented by one. The iteration continues to run until the iteration variable exceeds the iteration limit. If the output port is shown, it will output the current iteration number starting at zero or one. When the iteration is started, any states in the subsystem may be either reset to their initial value or held at their previous value.

Parameters	
States when starting: held	-
Iteration limit source: internal	•
Iteration limit:	
5	
📁 Set next i (iteration variable) externally	
✓ Show iteration variable	
Index mode One-based	•
Iteration variable data type: int32	•
OK Cancel	Help

States when starting

Set this field to reset if you want the states of the For subsystem to be reinitialized before the first iteration at each time step. Otherwise, set this field to held (the default) to make sure that these subsystem states retain their values from the last iteration at the previous time step.

Iteration limit source

If you set this field to internal, the value of the Number of iterations field determines the number of iterations. If you set this field to external, the signal at the For Iterator block's N port determines the number of iterations. The iteration limit source must reside outside the For Iterator subsystem.

Iteration limit

Set the number of iterations for the For Iterator block to this value. This field appears only if you selected internal for the **Source of number of iterations** field.

Set next i (iteration variable) externally

This option can be selected only if you select the **Show iteration variable** option. If you select this option, the For Iterator block displays an additional input for connecting an external iteration variable source. The value of the input at the current iteration is used as the value of the iteration variable at the next iteration.

Show iteration variable

If you select this check box, the For Iterator block outputs its iteration value.

Index mode

If you set this field to Zero-based, the iteration number starts at zero. If you set this field to One-based, the iteration number starts at one.

Iteration variable data type

Set the type for the iteration value output from the iteration number port to double, int32, int16, or int8.

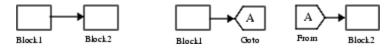
Characteristics	Direct Feedthrough	No	
	Sample Time	Inherited from driving blocks	
	Scalar Expansion	No	

Dimensionalized	No
Zero Crossing	No

For Iterator Subsystem

Purpose	Represent subsystem that executes repeatedly during simulation time step
Library	Ports & Subsystems
Description	The For Iterator Subsystem block is a Subsystem block that is preconfigured to serve as a starting point for creating a subsystem that executes repeatedly during a simulation time step.
	For more information, see the For Iterator block in the online Simulink block reference and "Modeling Control Flow Logic" in the Simulink documentation.
	When using simplified initialization mode, you cannot place any block

needing elapsed time within an Iterator Subsystem. In simplified initialization mode, Iterator subsystems do not maintain elapsed time, so Simulink will report an error if any such block (such as the Discrete-Time Integrator block) is placed within the subsystem. For more information on simplified initialization modes, see "Underspecified initialization detection".


Purpose Accept input from Goto block

Library Signal Routing

Description The From block accepts a signal from a corresponding Goto block, then passes it as output. The data type of the output is the same as that of the input from the Goto block. From and Goto blocks allow you to pass a signal from one block to another without actually connecting them. To associate a Goto block with a From block, enter the Goto block's tag in the **Goto Tag** parameter.

A From block can receive its signal from only one Goto block, although a Goto block can pass its signal to more than one From block.

This figure shows that using a Goto block and a From block is equivalent to connecting the blocks to which those blocks are connected. In the model at the left, Block1 passes a signal to Block2. That model is equivalent to the model at the right, which connects Block1 to the Goto block, passes that signal to the From block, then on to Block2.

The visibility of a Goto block tag determines the From blocks that can receive its signal. For more information, see Goto and Goto Tag Visibility. The block indicates the visibility of the Goto block tag:

- A local tag name is enclosed in brackets ([]).
- A scoped tag name is enclosed in braces ({}).
- A global tag name appears without additional characters.

Data Type Support

The From block outputs real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

From

Parameters and Dialog Box

Source block Parameter	5.11011		<u>~</u>
-From			
Receive signals from the Goto block with the specified tag. If the tag is defined as 'scoped' in the Goto block, then a Goto Tag Visibility block must be used to define the visibility of the tag. After 'Update Diagram', the block icon displays the selected tag name (local tags are enclosed in brackets, [], and scoped tag names are enclosed in braces, {}).			
Parameters			
Goto Tag: 🧕		•	Update Tags
Goto Source: <i>none</i>			
Icon Display: Tag			-
	ОК	Cancel	Help

-

Goto Tag

The tag of the Goto block that forwards its signal to this From block. To change the tag, select a new tag from this control's drop-down list. The drop-down list displays the Goto tags that the From block can currently see. An item labeled <More Tags...> appears at the end of the list the first time you display the list in a Simulink session. Selecting this item causes the block to update the tags list to include the tags of Goto blocks residing in library subsystems referenced by the model containing this From block. Simulink software displays a progress bar while building the list of library tags. Simulink software saves the updated tags list for the duration of the Simulink session or until the next time you select the adjacent **Update Tags** button. You need to update the tags list again in the current session only if the libraries referenced by the model have changed since the last time you updated the list.

Update Tags

Updates the list of tags visible to this From block, including tags residing in libraries referenced by the model containing this From block.

Goto Source

Path of the Goto block connected to this From block. Clicking the path displays and highlights the Goto block.

Icon Display

Specifies the text to display on the From block's icon. The options are the block's tag, the name of the signal that the block represents, or both the tag and the signal name.

	- • -•	
Chara	cteristics	Sam

Sample Time	Inherited from block driving the Goto block
Dimensionalized	Yes
Multidimensionalized	Yes

From File

Purpose	Read data	from MAT-file
---------	-----------	---------------

Sources

Library

Description

untitled.mat

The From File block reads scalar or vector data of type double from a MAT-file outputs the data as a signal. The block's icon shows the pathname of the file supplying the data. Simulink software reads the MAT-file into memory at the start of the simulation, automatically uncompressing it if it had previously been saved by MATLAB in a compressed format. Therefore:

- Enough memory must be available at the start of simulation to contain the complete uncompressed MAT-file.
- A From File block cannot read data from a MAT-file that is being written by a To File block during the current simulation.

The MAT-file contains the stored data as a matrix of two or more rows. The first element of each column contains a simulation time. The remainder of each column contains scalar or vector data for the time shown at the top of the column, one element for each data point in the input. The time values in the first row must increase monotonically. The matrix in the file has this form:

$$\begin{bmatrix} t_1 & t_2 & \dots t_{final} \\ u \mathbf{1}_1 & u \mathbf{1}_2 & \dots u \mathbf{1}_{final} \\ \dots & & \\ u n_1 & u n_2 & \dots u n_{final} \end{bmatrix}$$

The width of the output depends on the number of rows in the MAT-file. The block uses the time data at the top of each column to determine when to output the data values in the column, but does not output the time value itself. This means that given a MAT-file containing m rows, the block outputs a vector of length m-1, consisting of data from all but the first row of each column.

See "Importing Data from a Workspace" for guidelines on choosing time vectors for discrete systems.

Missing and Duplicate Time Stamps

If an output value is needed at a time that falls between two values in the MAT-file, the value is linearly interpolated between the appropriate values. If the required time is less than the first time value or greater than the last time value in the MAT-file, Simulink software extrapolates, using the first two or last two data points to compute a value.

If the matrix includes two or more columns at the same time value, the output is the data point for the first such column encountered. For example, for a matrix that has this data:

time values: 0 1 2 2 data points: 2 3 4 5

At time 2, the output is 4, the data point for the first column encountered at that time value.

Using Data Saved by a To File Block

The From File block can read data written by a To File block without any modifications to the data or other special provisions.

Using Data Saved by a To Workspace Block

The From File block can read data written by a To Workspace block subject to the following requirements:

- The data must include the simulation times. The easiest way to include time data in the simulation output is to specify a variable for time on the **Data Import/Export** pane of the **Configuration Parameters** dialog box. See "Data Import/Export Pane" for more information.
- The data must be the transposition of the data saved to the workspace by the To Workspace block. Before saving the data to a MAT-file, transpose it to the form expected by the From File block.

From File

Parameters

and Dialog Box • The data in the file must be scalar or vector data of type double.

Data TypeThe From File block can read data only in MAT-file format. The block
can output only vector and scalar data of type double. The block cannot
output matrix signals or complex data.

🙀 Source Block P	arameters: Fr	om File	2	
From File				
Read time and output values from the first matrix in the specified MAT file. The matrix must contain time values in row one. Additional rows correspond to output elements. Interpolates between columns.				
- Parameters				
File name:				
untitled.mat				
Sample time:				
0				
<u> </u>			1	
	OK	Cancel	Help	

File name

The fully qualified pathname or file name of the MAT-file that contains the data used as input. On UNIX[®] systems, the pathname can start with a tilde (~) character signifying your home directory. The default file name is untitled.mat. If you specify an unqualified file name, Simulink software assumes that the MAT-file resides in the MATLAB working directory. (To determine the working directory, enter pwd at the MATLAB command line.) If Simulink software cannot find the specified file name in the working directory, it displays an error message.

Sample time

The sample period and offset of the data read from the file. The default is 0, which specifies continuous sample time: the MAT-file is read at the base (fastest) rate of the model. See "How to Specify the Sample Time" for more information.

If the specified **Sample time** requires data at a time for which the MAT-file contains no matching time stamp, Simulink software extrapolates or interpolates to obtain the needed data, as described in "Missing and Duplicate Time Stamps" on page 2-433. If the MAT-file contains columns with time stamps that the specified **Sample time** never requires, the data points in columns with those time stamps are ignored.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	Dimensionalized	1-D array only
	Zero Crossing	No

See Also "Importing and Exporting Data", From Workspace, To File, To Workspace

From Workspace

Sources

Library

Description

simin

The From Workspace block reads data from a workspace and outputs the data as a signal. The block's **Data** parameter specifies the workspace data using a MATLAB expression that evaluates to one of the following:

- A two-dimensional matrix:
 - The first element of each matrix row is a time stamp.
 - The rest of each row is a scalar or vector of signal values.

The leftmost element of each row is the time stamp of the value(s) in the rest of the row.

- A structure in Structure with Time format, which contains:
 - A vector named time, which contains time stamps
 - An array or matrix named signals.values, which contains scalars or vectors of signal values.

The n'th time element is the time stamp of the n'th signals.values element. See "Importing Data from a Workspace" for a description of Structure with Time format.

• A Simulink.Timeseries object.

The From Workspace icon displays the expression specified in the **Data** parameter. The Simulink software evaluates this expression as described in "Resolving Symbols".

The format of a matrix or structure read by a From Workspace block is the same as that used to load root-level input port data from the workspace. You must use the Structure with Time format or a time series object to load matrix (2-D) data from the workspace. See "Importing Data from a Workspace" for guidelines on choosing time vectors for discrete systems. See the documentation of the sim command for some data import capabilities that are available only for programmatic simulation.

Limitation: You cannot use a From Workspace block to import fixed-point data that is contained in a structure. Consider using a Simulink.Timeseries object instead of a structure.

Using Data Saved by a To File Block

The From Workspace block requires data written by the To File block to be transposed before the From Workspace block can read it. The source file contains consecutive time stamps at the beginnings of columns, followed by the corresponding data. The transposed data contains consecutive time stamps at the beginning of rows, followed by the corresponding data. To provide the required format, use MATLAB commands to load and transpose (') the MAT-file (see "Reshaping a Matrix"). You can then use a From Workspace block to access the data loaded into the workspace. Resave the transposed data if needed to avoid retransposing it again later.

Using Data Saved by a To Workspace Block

The From Workspace block requires data written by a To Workspace block to be written in Structure with Time format. Use this format to save sample-based data if you intend to use a From Workspace block to read the data back into another simulation. See "Importing Data from a Workspace" for a description of Structure with Time format.

Limitation: You cannot use a From Workspace block to import fixed-point data that is contained in a structure. Consider using a Simulink.Timeseries object instead of a structure.

Interpolating Missing Data Values

If you select the **Interpolate data** option, the block uses linear Lagrangian interpolation to compute data values for time steps that occur between time steps for which the workspace supplies data. In particular, the block linearly interpolates a missing data point from the two known data points between which it falls. For example, suppose the block reads the following time series from the workspace:

time:	1	2	3	4
signal:	253	254	?	256

The block would output:

time: 1 2 3 4 signal: 253 254 **255** 256

If you clear the **Interpolate data** option, the block uses the most recent data value supplied from the workspace to provide any missing data values. For example, the result of the incomplete set of signal values shown above would be:

time: 1 2 3 4 signal: 253 254 **254** 256

Interpolating Integer Data

If the input data type is an integer type and an interpolated data point exceeds the data type's range, the block sets the missing data point to be the maximum value that the data type can represent. Similarly, if the interpolated or extrapolated value is less than the minimum value that the data type can represent, the block sets the missing data point to the minimum value that the data type can represent. For example, suppose that the data type is uint8 and the value interpolated for a missing data point is 256.

time: 1 2 3 4 signal: 253 254 255 ?

In this case, the block sets the value of the missing point to 255, the largest value that can be represented by the uint8 data type:

time:	1	2	3	4
signal:	253	254	255	255

Interpolating Boolean Data

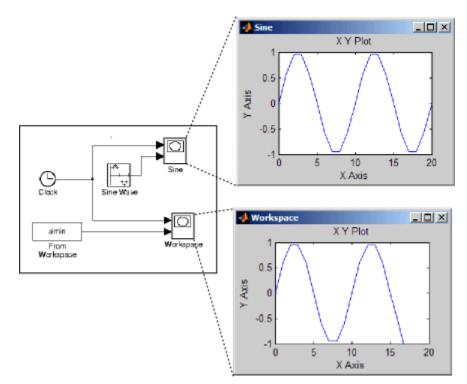
If the input data is boolean, the block uses the value of the nearest workspace data point as the value of missing data point when determining missing data points that fall between the first and last known points. For example, suppose the workspace supplies values at time steps 1 and 4 but not at 2 and 3:

time: 1 2 3 4 signal: 1 ? ? 0

In this case, the block would use the value of data point 1 as the value of data point 2 and the value of data point 4 as the value of data point 3:

time: 1 2 3 4 signal: 1 1 0 0

The block uses the value of the last known data point as the value of time steps that occur after the last known data point.


Specifying Output After Final Data

The block's **Form output after final data value by** and **Interpolate data** parameters work together to determine the block's output after the last time step for which workspace data is available. The following table describes the block output based on the values of the two options:

Form Output Option	Interpolate Option	Block Output After Final Data
Extrapolate	On	Extrapolated from final data value
	Off	Error
Setting to zero	On	Zero
	Off	Zero
Holding final value	On	Final value from workspace
	Off	Final value from workspace

Form Output Option	Interpolate Option	Block Output After Final Data
Cyclic repetition	On	Error
	Off	Repeated from workspace if the workspace data is in structure-without-time format. Error otherwise.

For example, if **Form output after final data value by** is **Extrapolate and Interpolate data** is selected, the block uses the last two known data points to extrapolate data points that occur after the last known point. Consider the following model.

In this model, the From Workspace block reads data from the workspace consisting of the output of the Simulink Sine block sampled at one-second intervals. The workspace contains the first 16 samples of the output. The top and bottom X-Y plots display the output of the Sine Wave and From Workspace blocks, respectively, from 0 to 20 seconds. The straight line in the output of the From Workspace block reflects the block's linear extrapolation of missing data points at the end of the simulation.

Detecting Zero-Crossings

If the input array contains more than one entry for the same time step, Simulink software detects a zero crossing at that time step. For example, suppose the input array has this data:

time: 0 1 2 2 3 signal: 2 3 4 5 6

At time 2, there is a zero crossing from input signal discontinuity. The effect of this zero crossing depends on the value of the **Enable zero crossing detection** parameter. See "Zero-Crossing Detection" for more information.

Data Type Support

The From Workspace block accepts from the workspace and outputs real or complex signals of any type supported by Simulink software, including fixed-point and enumerated data types. Real signals of type double can be in either structure or matrix format. Complex signals and real signals of any type other than double must be in structure format.

Limitation: You cannot use a From Workspace block to import fixed-point data that is contained in a structure. Consider using a Simulink.Timeseries object instead of a structure.

From Workspace

Parameters and Dialog Box

Source Block Parameters: From Workspace		
From Workspace		
Read data values specified in array or structure format from MATLAB's workspace. Array (or matrix) format: 1-D signal: var =[TimeValues DataValues] For 2-D signal use structure format Structure format: var.time=[TimeValues] var.signals.values=[DataValues]		
var.signals.dimensions=[DimValues]		
Select interpolation to interpolate or extrapolate at time steps for which data does		
not exist.		
simin Sample time:		
0		
Interpolate data		
Enable zero-crossing detection		
Form output after final data value by: Extrapolation		
OK Cancel Help		

Data

An expression that evaluates to an array or a structure containing an array of simulation times and corresponding signal values. For example, suppose that the workspace contains a column vector of times named T and a column vector of corresponding signal values named U. Entering the expression $[T \ U]$ for this parameter yields the required input array. If the required signal-versus-time array or structure already exists in the workspace, enter the name of the structure or matrix in this field.

Sample time

Sample rate of data from the workspace. See "How to Specify the Sample Time" in the online documentation for more information.

Interpolate data

This option causes the block to linearly interpolate at time steps for which no corresponding workspace data exists. Otherwise, the current output equals the output at the most recent time for which data exists.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Form output after final data value by

Select method for generating output after the last time point for which data is available from the workspace.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled.

See Also "Importing and Exporting Data", From File, To File, To Workspace

Function-Call Generator

Purpose	Execute function-call subsystem specified number of times at specified rate
Library	Ports & Subsystems
Description	The Function-Call Generator block executes a function-call subsystem (for example, a Stateflow [®] state chart configured as a function-call system) at the rate specified by the block's Sample time parameter. To execute multiple function-call subsystems in a prescribed order, first connect a Function-Call Generator block to a Demux block that has as many output ports as there are function-call subsystems to be controlled. Then connect the output ports of the Demux block to the systems to be controlled. The system connected to the first demux port executes first, the system connected to the second demux port executes second, and so on.
Data Type Support	The Function-Call Generator block outputs a signal of type fcn_call.

Parameters	Source Block Parameters: Function-Call Generator			
and Dialog	Function-Call Generator (mask) (link)			
Box	This block implements an iterator operation. On each time-step as defined by the sample time field, this block will execute the function-call subsystem(s) that it drives for the specified number of iterations.			
	Demux the block's output to execute multiple function-call subsystems in a prescribed order. The system connected to first demux port is executed first, the system connected to second demux port is executed second, and so on.			
	Parameters			
	Sample time:			
	1			
	Number of iterations:			
	1			
	OK Cancel Help			

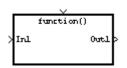
Sample time

The time interval between samples. See "How to Specify the Sample Time" in the online documentation for more information.

Number of iterations

Number of times to execute the block per time step. The value of this parameter may be a vector where each element of the vector specifies a number of times to execute a function-call subsystem. The total number of times that a function-call subsystem executes per time step equals the sum of the values of the elements of the generator signal entering its control port. For example, suppose you specify the number of iterations to be [2 2] and connect the output of this block to the control port of a function-call subsystem. In this case, the function-call subsystem executes four times at each time step.

Characteristics


Direct Feedthrough	No
Sample Time	Specified in the Sample time parameter
Scalar Expansion	No
Dimensionalized	Yes
Zero Crossing	No

Purpose Represent subsystem that can be invoked as function by another block

Library

Ports & Subsystems

Description

The Function-Call Subsystem block is a Subsystem block that is preconfigured to serve as a starting point for creating a function-call subsystem. For more information, see "Function-Call Subsystems" in the "Creating a Model" chapter of the Simulink documentation.

Gain

Purpose	Multiply input by constant		
Library	Math Operations		
Description	The Gain block multiplies the input by a constant value (gain). The input and the gain can each be a scalar, vector, or matrix.		
	You specify the value of the gain in the Gain parameter. The Multiplication parameter lets you specify element-wise or matrix multiplication. For matrix multiplication, this parameter also lets you indicate the order of the multiplicands.		
	The gain is converted from doubles to the data specified in the block mask offline using round-to-nearest and saturation. The input and gain are then multiplied, and the result is converted to the output data type using the specified rounding and overflow modes.		
Data Type Support	The Gain block accepts a real or complex scalar, vector, or matrix of any numeric data type supported by Simulink software. The Gain block supports fixed-point data types. If the input of the Gain block is real and the gain is complex, the output is complex.		
	For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.		

Parameters and Dialog Box

The **Main** pane of the Gain block dialog box appears as follows:

🙀 Function Block Parameters: Gain 🛛 🔀		
Gain		
Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).		
Main Signal Attributes Parameter Attributes		
Gain:		
1		
Multiplication: Element-wise(K.*u)		
Sample time (-1 for inherited):		
-1		
OK Cancel Help Apply		

The **Signal Attributes** pane of the Gain block dialog box appears as follows:

Function Block Parameters: Gain			
Gain			
Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).			
Main Signal Attributes Parameter Attributes			
Output minimum: Output maximum:			
Output data type: Inherit: Inherit via internal rule >>			
Integer rounding mode: Floor			
Saturate on integer overflow			
OK Cancel Help Apply			

The **Parameter Attributes** pane of the Gain block dialog box appears as follows:

🙀 Function Block Parame	ters: Gain		×
Gain			
Element-wise gain (y = K.*u)	or matrix gain (y = K*u or	y = u*K).	
Main Signal Attributes	Parameter Attributes		
Parameter minimum:	Paramete	er maximum:	
0	0		
Parameter data type: Inherit:	Inherit via internal rule	•	>>
	OK Cancel	Help	Apply

Gain

Specify the value by which to multiply the input.

Settings

Default: 1

Minimum: value of Parameter minimum parameter

Maximum: value of Parameter maximum parameter

The gain may be a scalar, vector, or matrix.

Command-Line Information

Multiplication

Specify the multiplication mode.

Settings

Default: Element-wise(K.*u)

Element-wise(K.*u)

Each element of the input is multiplied by each element of the gain. The block performs expansions, if necessary, so that the input and gain have the same dimensions.

Matrix(K*u)

The input and gain are matrix multiplied with the input as the second operand.

Matrix(u*K)

The input and gain are matrix multiplied with the input as the first operand.

Matrix(K*u)(u vector)

The input and gain are matrix multiplied with the input as the second operand. This mode is identical to Matrix(K*u), except for how dimensions are determined.

Suppose that K is an m-by-n matrix. Matrix(K*u)(u vector) sets the input to a vector of length n and the output to a vector of length m. In contrast, Matrix(K*u) uses propagation to determine dimensions for the input and output. For an m-by-n gain matrix, the input can propagate to an n-by-q matrix, and the output becomes an m-by-q matrix.

Command-Line Information

Sample time (-1 for inherited)

Specify the time interval between samples.

Settings

Default: -1

To inherit the sample time, set this parameter to -1.

See "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA, Simulink software chooses the output data type without regard to hardware constraints. Otherwise, Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

Inherit: Inherit from 'Constant value'

Use data type of **Constant value** parameter. This option appears for some blocks.

Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2^0,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

⊡On

Lock scaling of outputs.

 \Box_{Off}

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Saturate on integer overflow

Specify whether overflows saturate.

Settings Default: Off

🔽 On

Overflows saturate.

C Off

Overflows do not saturate.

Tips

- When you select this check box, saturation applies to every internal operation on the block, not just the output or result.
- In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Command-Line Information

Parameter minimum

Specify the minimum value of the gain.

Settings

Default: []

The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Command-Line Information

Parameter maximum

Specify the maximum value of the gain.

Settings

Default: []

The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Automatic scaling of fixed-point data types

Command-Line Information

Parameter data type

Specify the data type of the Gain parameter.

Settings Default:

```
Inherit: Inherit via internal rule
     A rule that inherits a data type
Inherit: Same as input
     Use data type of sole input signal
double
     Data type is double
single
     Data type is single
int8
     Data type is int8
uint8
     Data type is uint8
int16
     Data type is int16
uint16
     Data type is uint16
int32
     Data type is int32
uint32
     Data type is uint32
fixdt(1,16)
     Data type is fixdt(1,16)
fixdt(1,16,0)
     Data type is fixdt(1,16,0)
```

fixdt(1,16,2⁰,0) Data type is fixdt(1,16,2⁰,0)

<data type expression>
 The name of a data type object, for example
 Simulink.NumericType

Command-Line Information

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias

Enter slope and bias.

- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting **Scaling** > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the Simulink User's Guide for more information.

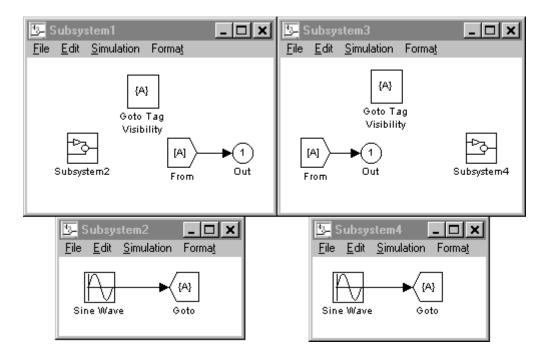
Characteristics	Direct Feedthrough	Yes			
	Sample Time	Specified in the Sample time parameter			
	Scalar Expansion	Yes, of input and Gain parameter for Element-wise(K.*u) multiplication			
	Dimensionalized	Yes			
	Multidimensionalized	Yes, only if the Multiplication parameter specifies Element-wise(K.*u)			
	Zero Crossing	No			

0

Goto

Purpose	Pass block input to From blocks			
Library	Signal Routing			
Description	The Goto block passes its input to its corresponding From blocks. The input can be a real- or complex-valued signal or vector of any data type. From and Goto blocks allow you to pass a signal from one block to another without actually connecting them.			
	A Goto block can pass its input signal to more than one From block, although a From block can receive a signal from only one Goto block.			

A Goto block can pass its input signal to more than one From block, although a From block can receive a signal from only one Goto block. The input to that Goto block is passed to the From blocks associated with it as though the blocks were physically connected. Goto blocks and From blocks are matched by the use of Goto tags, defined in the **Tag** parameter.


The **Tag Visibility** parameter determines whether the location of From blocks that access the signal is limited:

- local, the default, means that From and Goto blocks using the same tag must be in the same subsystem. A local tag name is enclosed in brackets ([]).
- scoped means that From and Goto blocks using the same tag must be in the same subsystem or at any level in the model hierarchy below the Goto Tag Visibility block that does not entail crossing a nonvirtual subsystem boundary, i.e., the boundary of an atomic, conditionally executed, or function-call subsystem or a model reference. A scoped tag name is enclosed in braces ({}).
- global means that From and Goto blocks using the same tag can be anywhere in the model except in locations that span nonvirtual subsystem boundaries.

The rule that From-Goto block connections cannot cross nonvirtual subsystem boundaries has the following exception. A Goto block connected to a state port in one conditionally executed subsystem is visible to a From block inside another conditionally executed subsystem. For more information about conditionally executed subsystems, see "Creating Conditional Subsystems" in the "Creating a Model" chapter of the Simulink documentation.

Note A scoped Goto block in a masked system is visible only in that subsystem and in the nonvirtual subsystems it contains. Simulink software generates an error if you run or update a diagram that has a Goto Tag Visibility block at a higher level in the block diagram than the corresponding scoped Goto block in the masked subsystem.

Use local tags when the Goto and From blocks using the same tag name reside in the same subsystem. You must use global or scoped tags when the Goto and From blocks using the same tag name reside in different subsystems. When you define a tag as global, all uses of that tag access the same signal. A tag defined as scoped can be used in more than one place in the model. This example shows a model that uses two scoped tags with the same name (A).

Data Type Support

The Goto block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

🙀 Sink Block Parameters: Goto			X		
Goto					
Send signals to From blocks that have the specified tag. If tag visibility is 'scoped', then a Goto Tag Visibility block must be used to define the visibility of the tag. The block icon displays the selected tag name (local tags are enclosed in brackets, [], and scoped tag names are enclosed in braces, {}).					
Parameters					
Goto Tag: A	Tag Visibility:	local	-		
Corresponding From blocks:			<u>refresh</u>		
Icon Display: Tag			-		
ОК	Cancel	Help	Apply		

Tag

The Goto block identifier. This parameter identifies the Goto block whose scope is defined in this block.

Tag Visibility

The scope of the Goto block tag: local, scoped, or global. The default is local.

Corresponding From blocks

List of the From blocks connected to this Goto block. Double-clicking any entry in this list displays and highlights the corresponding From block.

Icon Display

Specifies the text to display on the block's icon. The options are the block's tag, the name of the signal that the block represents, or both the tag and the signal name.

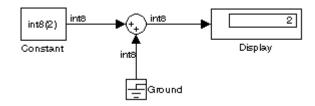
Characteristics	Sample Time	Inherited from driving block			
	Dimensionalized	Yes			
	Multidimensionalized	Yes			

Purpose	Define scope of Goto block tag					
Library	Signal Routing					
Description [A]	The Goto Tag Visibility block defines the accessibility of Goto block tags that have scoped visibility. The tag specified as the Goto tag parameter is accessible by From blocks in the same subsystem that contains the Goto Tag Visibility block and in subsystems below it in the model hierarchy.					
	A Goto Tag Visibility block is required for Goto blocks whose Tag Visibility parameter value is scoped . No Goto Tag Visibility block is needed if the tag visibility is either local or global . The block shows the tag name enclosed in braces ({}).					
Data Type Support	Not applicable.					
Parameters and Dialog Box	Block Parameters: Goto Tag Visibility Image: Content of the second o					
	OK Cancel Help Apply					

Goto tag

The Goto block tag whose visibility is defined by the location of this block.

Characteristics	Sample Time	N/A			
	Dimensionalized	N/A			


Purpose Ground unconnected input port

Library Sources

DescriptionThe Ground block can be used to connect blocks whose input ports are not connected to other blocks. If you run a simulation with blocks having unconnected input ports, Simulink software issues warning messages. Using Ground blocks to ground those blocks avoids warning messages. The Ground block outputs a signal with zero value. The data type of the signal is the same as that of the port to which it is connected.

Data Type Support

The Ground block outputs a signal of the same numeric data type as the port to which it is connected. For example, consider the following model:

In this example, the output of the Constant block determines the data type (int8) of the port to which the Ground block is connected. That port in turn determines the type of the signal output by the Ground block.

The Ground block supports all data types supported by Simulink software, including fixed-point data types.

Ground

Parameters and Dialog Box

×					
Used to "ground" input signals. (Prevents warnings about unconnected input ports.) Outputs zero.					

Characteristics	Sample Time	Inherited from driven block		
	Dimensionalized	Yes		
	Multidimensionalized	Yes		

Hit Crossing

Purpose Detect crossing point

Library

Discontinuities

Description

The Hit Crossing block detects when the input reaches the **Hit** crossing offset parameter value in the direction specified by the **Hit** crossing direction property.

The block accepts one input of type double. If you select the **Show output port** check box, the block output indicates when the crossing occurs. If the input signal is exactly the value of the offset value after the hit crossing is detected, the block continues to output a value of 1. If the input signals at two adjacent points bracket the offset value (but neither value is exactly equal to the offset), the block outputs a value of 1 at the second time step. If the **Show output port** check box is *not* selected, the block ensures that the simulation finds the crossing point but does not generate output. If the input signal is constant and equal to the offset value, the block outputs 1 only if the **Hit crossing direction** property is set to either.

When the block's **Hit crossing direction** property is set to **either**, the block serves as an "Almost Equal" block, useful in working around limitations in finite mathematics and computer precision. Used for these reasons, this block might be more convenient than adding logic to your model to detect this condition.

The hardstop and sldemo_clutch demos illustrate the use of the Hit Crossing block. In the hardstop demo, the Hit Crossing block is in the Friction Model subsystem. In the sldemo_clutch demo, the Hit Crossing block is in the Friction Mode Logic/Lockup Detection subsystem.

Data Type Support

The Hit Crossing block outputs a signal of type Boolean if Boolean logic signals are enabled (see "Implement logic signals as boolean data (vs. double)"). Otherwise, the block outputs a signal of type double.

Parameters and Dialog Box

_	
	🙀 Function Block Parameters: Hit Crossing
	Hit Crossing
	Detects when the input signal reaches the Hit crossing offset parameter value in the direction specified by the Hit crossing direction parameter. If the input signal crosses the offset value in the specified direction, the block outputs 1 at the crossing time. If the input signal reaches the offset value in the specified direction and then remains at the offset value, the block outputs 1 from the hit time till the time when signal leaves the offset value. If the input signal is constant and equal to the offset value, the block outputs 1 only if the direction is either. For variable-step solvers, Simulink takes a time step before and after the hit crossing time.
	Parameters
	Hit crossing offset:
	0
	Hit crossing direction: either
	Show output port
	Enable zero-crossing detection

X

-

Apply

-	 	 	 	 	

Hit crossing offset

-1

The value whose crossing is to be detected.

OK.

Hit crossing direction

The direction from which the input signal approaches the hit crossing offset for a crossing to be detected.

Cancel

Help

Show output port

If selected, draw an output port.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics

Direct Feedthrough	Yes		
Sample Time	Inherited from driving block		
Scalar Expansion	Yes		
Dimensionalized	Yes		
Zero-Crossing Detection	Yes, if enabled.		

Purpose	Set initial value of signal
Library	Signal Attributes
Description	The IC block sets the init e.g., the value of the sign
× [1]	block does this by output

The IC block sets the initial condition of the signal at its input port, e.g., the value of the signal at the simulation start time (t_{start}) . The block does this by outputting the specified initial condition when you start the simulation, regardless of the actual value of the input signal. Thereafter, the block outputs the actual value of the input signal.

Note If an IC block inherits or specifies a nonzero sample time offset (t_{offset}) , the IC block outputs its initial value at time t,

 $t = n * t_{period} + t_{offset}$

where n is the smallest integer such that $t \ge t_{start}$.

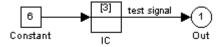
That is, the IC block outputs its initial value the first time blocks with sample time $[t_{period}, t_{offset}]$ execute, which can be after t_{start} .

The IC block is useful for providing an initial guess for the algebraic state variables in a loop. For more information, see "Algebraic Loops" in the "How Simulink Works" chapter of *Simulink User's Guide*.

Data TypeThe IC block accepts and outputs signals of any Simulink built-in and
fixed-point data type. The Initial value parameter accepts any built-in
data type supported by Simulink software.

Parameters and Dialog Box

🙀 Function Block Parameters: IC
Initial Condition
Initial condition for signal.
Parameters
Initial value:
1
Sample time (-1 for inherited):
-1
OK Cancel Help Apply


Initial value

Specify the initial value for the input signal.

Sample time (-1 for inherited)

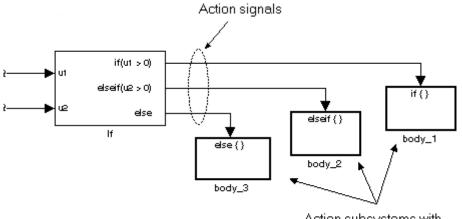
Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Examples The following diagram illustrates how the IC block initializes a signal labeled "test signal."

At t = 0, the signal value is 3. Afterward, the signal value is 6.

Characteristics

5	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of parameter only
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No


Library Ports & Subsystems

Description

The If block, along with If Action subsystems containing Action Port blocks, implements standard C-like if-else logic.

The following shows a completed if-else control flow statement.

Action subsystems with Action Port blocks inside

In this example, the inputs to the If block determine the values of conditions represented as output ports. Each output port is attached to an If Action subsystem. The conditions are evaluated top down starting with the if condition. If a condition is true, its If Action subsystem is executed and the If block does not evaluate any remaining conditions.

The preceding if-else control flow statement can be represented by the following pseudocode.

```
if (u1 > 0) {
   body_1;
}
```

lf

```
else if (u2 > 0){
   body_2;
}
else {
   body_3;
}
```

You construct a Simulink if-else control flow statement like the preceding example as follows:

- 1 Place an If block in the current system.
- **2** Open the **Block Parameters** dialog of the If block and enter as follows:
 - Enter the **Number of inputs** field with the required number of inputs necessary to define conditions for the if-else control flow statement.

Elements of vector inputs can be accessed for conditions using (row, column) arguments. For example, you can specify the fifth element of the vector u2 in the condition u2(5) > 0 in an **If expression** or **Elseif expressions** field.

• Enter the expression for the if condition of the if-else control flow statement in the **If expression** field.

This creates an if output port for the If block with a label of the form if (condition). This is the only required If Action signal output for an If block.

• Enter expressions for any elseif conditions of the if-else control flow statement in the **Elseif expressions** field.

Use a comma to separate one condition from another. Entering these conditions creates an output port for the If block for each condition, with a label of the form elseif(condition). elseif ports are optional and not required for operation of the If block. • Check the **Show else condition** check box to create an else output port.

The else port is optional and not required for the operation of the If block.

3 Create If Action subsystems to connect to each of the if, else, and elseif ports.

These consist of a subsystem with an Action Port block. When you place an Action Port block inside each subsystem, an input port named Action is added to the subsystem.

4 Connect each if, else, and elseif port of the If block to the Action port of an If Action subsystem.

When you make the connection, the icon for the If Action block is renamed to the type of the condition that it attaches to.

Note During simulation of an if-else control flow statement, the Action signal lines from the If block to the If Action subsystems turn from solid to dashed.

5 In each If Action subsystem, enter the Simulink blocks appropriate to the body to be executed for the condition it handles.

Note All blocks in an If Action Subsystem must run at the same rate as the driving If block. You can achieve this by setting each block's sample time parameter to be either inherited (-1) or the same value as the If block's sample time.

In the preceding example, the If Action subsystems are named body_1, body_2, and body_3.

Data	Туре
Supp	ort

Inputs u1, u2, ..., un can be scalars or vectors of any built-in Simulink data type and must all be of the same data type. The inputs cannot be of any user-defined type, such as an enumerated type. Outputs from the if, else, and elseif ports are Action signals to If Action subsystems that are created with Action Port blocks and subsystems. See Action Port.

Parameters and Dialog Box

🙀 Function Block Parameter	rs: If		×
-If Block			
IF expression Run the Action Subsystem of ELSEIF expression Run the Action Subsystem of ELSE Run the Action Subsystem of END The number of Elseif output por number of comma-separated E The If and Elseif expressions of <, <=, ==, ~=, >, >=, &,], ~, [on the input port signals named	connected to 2nd outp connected to last output ints in the block is equa lseif expressions enter an use these MATLAE (), unary-minus	ut port ut port al to the ed in the dialog.	
Parameters Number of inputs:			
2			
If expression (e.g. u1 ~= 0):			
(u1 > 0) (u2 > 0.5)			
Elseif expressions (comma-sep	arated list, e.g. u2 ~=	0, u3(2) < u2):	
Show else condition			
Enable zero crossing detec	tion		
Sample time (-1 for inherited):			
-1			
ОК	Cancel	Help	Apply

lf

Number of inputs

The number of inputs to the If block. These appear as data input ports labeled with a 'u' character followed by a number, $1, 2, \ldots, n$, where n equals the number of inputs that you specify.

If expression

The condition for the if output port. This condition appears on the If block adjacent to the if output port. The if expression can use any of the following operators: <. <=, ==, ~=, >, >=, &, |, ~, (), unary-minus. The If Action subsystem attached to the if port executes if its condition is true. The expression must not contain data type expressions, e.g., int8(6), and must not reference workspace variables whose data type is other than double or single.

Note You cannot tune the **If expression** during accelerated-mode simulation (see "Accelerating Models"), in referenced models executing in Accelerator mode, or in code generated from the model. The If block also does not support custom storage classes.

Elseif expressions

A string list of elseif conditions delimited by commas. These conditions appear below the if port and above the else port if you select the **Show else condition** check box. elseif expressions can use any of the following operators: <, <=, ==, ~=, >, >=, &, |, ~, (), unary-minus. The If Action subsystem attached to an elseif port executes if its condition is true and all of the if and elseif conditions are false. The expression must not contain data type expressions, e.g., int8(6), and must not reference workspace variables whose data type is other than double or single.

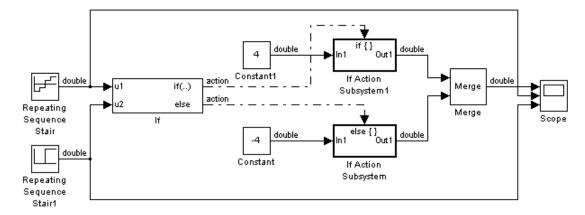
Note You cannot tune the **Elseif expression** during accelerated-mode simulation (see "Accelerating Models"), in referenced models executing in Accelerator mode, or in code generated from the model. The If block also does not support custom storage classes.

Show else condition

If you select this check box, an else port is created. The If Action subsystem attached to the else port executes if the if port and all the elseif ports are false.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.


Sample time

Specify the sample time of the input signal. See "How to Specify the Sample Time" in the online documentation for more information.

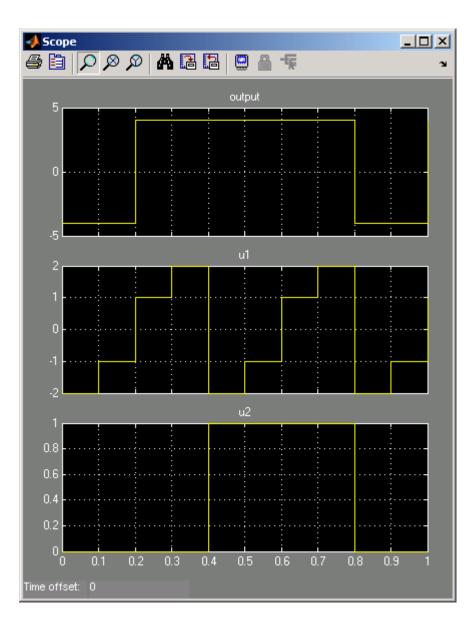
Examples The If block does not directly support fixed-point data types. However, you can use the Compare To Constant block to work around this limitation.

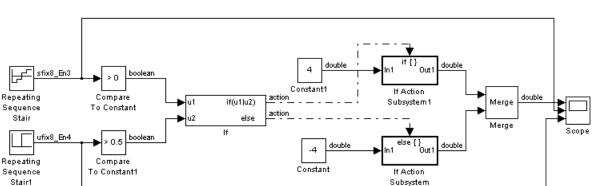
For example, consider the following floating-point model.

lf

In this model, the If Action subsystems use their default configurations. The block and simulation parameters for the model are set to their default values except as follows:

Block or Dialog	Parameter	Setting
Configuration Parameters Dialog — Solver pane	Start time	0.0
	Stop time	1.0
	Туре	Fixed-step
	Solver	Discrete (no continuous states)
	Fixed-step size	.1
Repeating Sequence Stair	Vector of output values	[-2 -1 1 2].'
Repeating Sequence Stair1	Vector of output values	[0 0 0 0 1 1 1 1].'
If	Number of inputs	2


rameter	Setting
expression	(u1 > 0) (u2 > 0.5)
ow else	selected


	If expression	(u1 > 0) (u2 > 0.5)
	Show else condition	selected
Constant	Constant value	- 4
Constant1	Constant value	4
Scope	Number of axes	3
	Time range	1

Par

Block or Dialog

For this model, if input u1 is greater than 0 or input u2 is greater than 0.5, the output is 4. Otherwise, the output is -4. The Scope block shows the output, u1, and u2 as depicted here:

The same model can be implemented using fixed-point data types:

The Repeating Sequence stair blocks are now outputting fixed-point data types.

The Compare To Constant blocks implement two parts of the **If** expression that is used in the If block in the floating-point version of the model, (u1 > 0) and (u2 > 0.5). The OR operation, (u1|u2), can still be implemented inside the If block. For a fixed-point model, the expression must be partially implemented outside of the If block as it is here.

The block and simulation parameters for the fixed-point model are the same as for the floating-point model with the following exceptions and additions:

Block	Parameter	Setting
Compare To Constant	Operator	>
	Constant value	0
	Output data type mode	Boolean

Block	Parameter	Setting
	Enable zero crossing detection	unselected
Compare To Constant1	Operator	>
	Constant value	0.5
	Output data type mode	Boolean
	Enable zero crossing detection	unselected
If	Number of inputs	2
	If expression	u1 u2

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled

Purpose Represent subsystem whose execution is triggered by If block

Library

Ports & Subsystems

Description

The If Action Subsystem block is a Subsystem block that is preconfigured to serve as a starting point for creating a subsystem whose execution is triggered by an If block.

Note All blocks in an If Action Subsystem must run at the same rate as the driving If block. You can achieve this by setting each block's sample time parameter to be either inherited (-1) or the same value as the If block's sample time.

For more information, see the If block and Modeling with Control Flow Blocks in the "Creating a Model" chapter of the Simulink documentation.

Increment Real World

Purpose	Increase real world value of signal by one		
Library	Additional Math & Discrete / Additional Math: Increment - Decrement		
Description	The Increment Real World block increases the real world value of the signal by one. Overflows always wrap.		
Data Type Support	The Increment Real World block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.		
Parameters and Dialog Box	Function Block Parameters: Increment Real World Real World Value Increment (mask) (link) Increase the Real World Value of Signal by 1.0 Overflows will always wrap. OK Cancel Help Apply		

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	No
See Also	Decrement Real World, Increment Stored Integer	

Increment Stored Integer

Purpose	Increase stored integer value of signal by one			
Library	Additional Math & Discrete / Additional Math: Increment - Decrement			
Description	The Increment Stored Integer block increases the stored integer value of a signal by one.			
> Q++ >	Floating-point signals are also increased by one, and overflows always wrap.			
Data Type Support	The Increment Stored Integer block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.			
Parameters and Dialog Box	Function Block Parameters: Increment Stored Integer X Stored Integer Value Increment (mask) (link) Increase the Stored Value of Signal by 1 Floating Point signals are increased by 1.0 Overflows will always wrap. OK Cancel Help Apply			
Characteristics	Direct Feedthrough Yes Scalar Expansion No			

See Also Decrement Stored Integer, Increment Real World

Index Vector

Purpose	Switch output between	different inputs based	on value of first input
---------	-----------------------	------------------------	-------------------------

Library Signal Routing

Description

The Index Vector block is an implementation of the Multiport Switch block. See Multiport Switch for more information.

Purpose Create input port for subsystem or external input

Library Ports & Subsystems, Sources

Description Inport blocks are the links from outside a system into the system.

Simulink software assigns Inport block port numbers according to these rules:

- It automatically numbers the Inport blocks within a top-level system or subsystem sequentially, starting with 1.
- If you add an Inport block, it is assigned the next available number.
- If you delete an Inport block, other port numbers are automatically renumbered to ensure that the Inport blocks are in sequence and that no numbers are omitted.
- If you copy an Inport block into a system, its port number is *not* renumbered unless its current number conflicts with an Inport block already in the system. If the copied Inport block port number is not in sequence, you must renumber the block or you will get an error message when you run the simulation or update the block diagram.

You can specify the dimensions of the input to the Inport block using the **Port dimensions** parameter, or let Simulink software determine it automatically by providing a value of -1.

The **Sample time** parameter is the rate at which the signal is coming into the system. A value of -1 causes the block to inherit its sample time from the block driving it. You might need to set this parameter for Inport blocks in a top-level system or in models where Inport blocks are driven by blocks whose sample times cannot be determined. See "How to Specify the Sample Time" for more information.

Inport Blocks in a Top-Level System

Inport blocks in a top-level system have two uses:

- To supply external inputs from the workspace, use either the **Configuration Parameters** dialog (see "Importing Data from a Workspace") or the ut argument of the sim command (see sim) to specify the inputs.
- To provide a means for perturbation of the model by the linmod and trim analysis functions, use Inport blocks to define the points where inputs are injected into the system.

Limitation: You cannot use a top-level (root) inport to supply fixed-point data that is contained in a structure. Consider using a Simulink.Timeseries object instead of a structure.

Inport Blocks in a Subsystem

Inport blocks in a subsystem represent inputs to the subsystem. A signal arriving at an input port on a Subsystem block flows out of the associated Inport block in that subsystem. The Inport block associated with an input port on a Subsystem block is the block whose **Port number** parameter matches the relative position of the input port on the Subsystem block. For example, the Inport block whose **Port number** parameter is 1 gets its signal from the block connected to the topmost port on the Subsystem block.

If you renumber the **Port number** of an Inport block, the block becomes connected to a different input port, although the block continues to receive its signal from the same block outside the subsystem.

The Inport block name appears in the Subsystem icon as a port label. To suppress display of the label, select the Inport block and choose **Hide Name** from the **Format** menu.

You can use a subsystem inport to supply fixed-point data in a structure or in any other format.

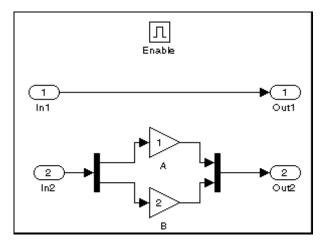
Creating Duplicate Inports

You can create any number of duplicates of an Inport block. The duplicates are graphical representations of the original intended to simplify block diagrams by eliminating unnecessary lines. The duplicate has the same port number, properties, and output as the original. Changing a duplicate's properties changes the original's properties and vice versa.

To create a duplicate of an Inport block,

- 1 Select the block.
- **2** Select **Copy** from the Simulink **Edit** menu or from the block's context menu.
- **3** Position the mouse cursor in the model's block diagram where you want to create the duplicate.
- **4** Select **Paste Duplicate Inport** from the Simulink **Edit** menu or the block diagram's context menu.

Connecting Buses to Root Level Inports


If you want a root level Inport of a model to produce a bus signal, you must select the Inport's **Specify properties via bus object** parameter and set the Inport's **Bus object for validating input bus** parameter to the name of a bus object that defines the bus that the Inport produces. If the bus contains mixed data types, the Inport's data type must be auto. See "Using Bus Objects" for more information.

Data TypeThe Inport block accepts complex or real signals of any data typeSupportsupported by Simulink software, including fixed-point and enumerated
data types. For a discussion on the data types supported by Simulink
software, see "Data Types Supported by Simulink".

Limitation: You cannot use a top-level (root) inport to supply fixed-point data that is contained in a structure. Consider using a Simulink.Timeseries object instead of a structure.

The numeric and data types of the block's output are the same as those of its input. You can specify the signal type, data type, and sampling mode of an external input to a root-level Inport block using the **Signal type**, **Data type**, and **Sampling mode** parameters.

The elements of a signal array connected to a root-level Inport block must be of the same numeric and data types. Signal elements connected to a subsystem input port can be of differing numeric and data types except in the following circumstance: If the subsystem contains an Enable or Trigger block or is an Atomic Subsystem and the input port, or an element of the input port, is connected directly to an output port, the input elements must be of the same type. For example, consider the follow enabled subsystem.

In this example, the elements of a signal vector connected to In1 must be of the same type. The elements connected to In2, however, can be of differing types.

Parameters and Dialog Box

Source Block Parameters: In1	×
Provide an input port for a subsystem or model. For Triggered Subsystems, 'Latch input by delaying outside signal' produces the value of the subsystem input at the previous time step. For Function-call Subsystems, 'Latch input by copying inside signal' copies the Input block's output to a buffer before the contents of the subsystem are executed. The other parameters can be used to explicitly specify the input signal attributes.	nt
Main Signal Attributes	
Port number:	
1	
Icon display: Port number	-
Latch input by delaying outside signal	
Latch input by copying inside signal	
✓ Interpolate data	
OK Cancel Help	

The Main pane of the Inport block dialog appears as follows:

The **Signal Attributes** pane of the Inport block dialog appears as follows:

당 Source Bloc	k Paramete	rs: In1				×
_ Inport	Inport					
Provide an input port for a subsystem or model. For Triggered Subsystems, 'Latch input by delaying outside signal' produces the value of the subsystem input at the previous time step. For Function-call Subsystems, 'Latch input by copying inside signal' copies the Inport block's output to a buffer before the contents of the subsystem are executed. The other parameters can be used to explicitly specify the input signal attributes.						
Main Sign	al Attributes					
E Specify prop	perties via bus	object				
Bus object for v	alidating input	: bus:				
BusObject						
🔲 Output as no	onvirtual bus					
Port dimensions	(-1 for inherite	ed):				
-1						
Sample time (-1	for inherited):					
-1						
Minimum:			Maximum	:		
0			0			
Data type: Inhe	erit: auto				•	>>
Signal type: au	to					•
Sampling mode	auto					•
			ОК		Cancel	Help

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Port number

Specify the port number of the block.

Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears on the parent subsystem or model block.

Command-Line Information

Icon display

Specify the information to be displayed on the icon of this input port.

Settings

Default: Port number

Signal name

Display the name of the signal connected to this port (or signals if the input is a bus).

- Port number Display port number of this port.
- Port number and signal name Display both the port number and the names of the signals connected to this port.

Command-Line Information

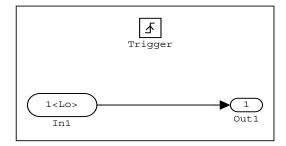
Latch input by delaying outside signal

Output the value of the input signal at the previous time step.

Settings

Default: Off

🔽 On


Output the value of the input signal at the previous time step.

C Off

Do not output the value of the input signal at the previous time step.

Tips

- This option applies only to triggered subsystems and is enabled only if the Inport block resides in a triggered subsystem.
- Selecting this check box enables Simulink software to resolve data dependencies among triggered subsystems that are part of a loop.
- Type sl_subsys_semantics at the MATLAB prompt for examples using latched inputs with triggered subsystems.
- The Inport block indicates that this option is selected by displaying <Lo>.

Command-Line Information

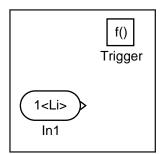
Latch input by copying inside signal

Copy the block's signal output into a buffer before executing the contents of the subsystem and use this copy as the block's output during execution of the subsystem.

Settings

Default: Off

🔽 On


Copy the block's signal output into a buffer before executing the contents of the subsystem and use this copy as the block's output during execution of the subsystem.

C Off

Do not copy the block's signal output into a buffer before executing the contents of the subsystem to use as the block's output during execution of the subsystem.

Tips

- This parameter applies only to function-call subsystems and is enabled only if the Inport block resides in a function-call subsystem.
- This parameter ensures that the subsystem's inputs, including those generated within the subsystem's context, will not change during execution of the subsystem.
- The Inport block indicates that this option is selected by displaying .

Command-Line Information

Interpolate data

Cause the block to interpolate or extrapolate output at time steps for which no corresponding workspace data exists when loading data from the workspace.

Settings

Default: On

🔽 On

Cause the block to interpolate or extrapolate output at time steps for which no corresponding workspace data exists when loading data from the workspace.

C Off

Do not cause the block to interpolate or extrapolate output at time steps for which no corresponding workspace data exists when loading data from the workspace.

Command-Line Information

Specify properties via bus object

Use a bus object to define the structure of the bus that is input or output by this block.

Settings

Default: Off

🔽 On

Use a bus object to define the structure of the bus that is input or output by this block.

C Off

Do not use a bus object to define the structure of the bus that is input or output by this block.

Tips

Selecting this parameter is required if the bus is nonvirtual (including a nonvirtual bus that was converted from a virtual bus as described in "Automatic Bus Conversion") and is optional otherwise.

Dependencies

This parameter enables **Bus object for validating input bus**.

This parameter enables **Output as nonvirtual bus in parent model**.

Command-Line Information

Bus object for validating input bus

Specify the name of the bus object that defines the structure that a bus must have to be connected to this port.

Settings

Default: BusObject

A bus object is an instance of class Simulink.Bus that is defined in the base workspace.

Tips

At the beginning of a simulation or when you update the model's diagram, Simulink software checks whether the bus connected to this port has the specified structure. If not, Simulink software displays an error message.

Dependencies

This parameter is enabled by Specify properties via bus object.

Command-Line Information

Output as nonvirtual bus

Output a nonvirtual bus.

Settings

Default: Off

🔽 On

Output a nonvirtual bus.

C Off

Output a virtual bus.

Tips

- Select this option if you want code generated from this model to use a C structure to define the structure of the bus signal output by this block.
- All signals in a nonvirtual bus must have the same sample time, even if the elements of the associated bus object specify inherited sample times. Any bus operation that would result in a nonvirtual bus that violates this requirement generates an error. Therefore, if you select this option all signals in the bus must have the same sample time. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus, to allow the signal or bus to be included in a nonvirtual bus.

Dependencies

This parameter is enabled by Specify properties via bus object.

Command-Line Information

Port dimensions (-1 for inherited)

Specify the dimensions of the input signal to the block.

Settings

Default: -1

Valid values are:

- 1	Dimensions are inherited from input signal
n	Vector signal of width n accepted
[m n]	Matrix signal having ${\tt m}$ rows and ${\tt n}$ columns accepted

Dependencies

This parameter is enabled by clearing **Specify properties via bus object**.

Command-Line Information

Sample time (-1 for inherited)

Specify the time interval between samples.

Settings

Default: -1

To inherit the sample time, set this parameter to -1.

See "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

⊡On

Lock scaling of outputs.

COff

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Signal type

Specify the numeric type of the external input.

Settings

Default: auto

auto

Accept either real or complex as the numeric type.

real

Specify the numeric type as a real number.

complex

Specify the numeric type as a complex number.

Command-Line Information

Sampling mode

Specify whether the output signal is Sample based or Frame based.

Settings

Default: auto

auto

Accept any sampling mode.

Sample based

The output signal is sample-based.

Frame based

The output signal is frame-based.

Tips

To generate frame-based signals, you must have the Signal Processing Blockset product installed.

Command-Line Information

Minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Data type

Specify the output data type of the external input.

Settings **Default:** Inherit: auto Inherit: auto A rule that inherits a data type double Data type is double. single Data type is single. int8 Data type is int8. uint8 Data type is uint8. int16 Data type is int16. uint16 Data type is uint16. int32 Data type is int32. uint32 Data type is uint32. boolean Data type is boolean. fixdt(1,16,0) Data type is fixed point fixdt(1,16,0). fixdt(1,16,2^0,0) Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name> Data type is enumerated.

<data type expression>
 The name of a data type object, for example
 Simulink.NumericType

Tips

This parameter can also be an expression that evaluates to a data type, for example, float('single')

Command-Line Information

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias Enter slope and bias.

Best precision Specify best-precision values. This option appears for some blocks.

Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Characteristics	Sample Time	Specified in the Sample time parameter		
	Dimensionalized	Yes		
	Multidimensionalized	Yes		

Integer Delay

Purpose Delay signal N sample periods

Discrete

Library

Description

The Integer Delay block delays its input by N sample periods.

The block accepts one input and generates one output, both of which can be scalar or vector. If the input is a vector, all elements of the vector are delayed by the same sample period.

Data Type Support

The Integer Delay block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Parameters and Dialog Box

🙀 Function Block Parameters: Integer Delay 🛛 🔀
Integer Delay (mask) (link)
Delay a signal N sample periods.
Parameters
Initial condition:
0.0
Sample time:
-1
Number of delays:
4
OK Cancel Help Apply

Initial condition

The initial output of the simulation. The **Initial condition** parameter is converted from a double to the input data type offline using round-to-nearest and saturation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Number of delays

The number of periods to delay the input signal.

Note This number cannot exceed the maximum value of a 32-bit integer divided by the input data type size (in bytes).

Characteristics	Direct Feedthrough	No		
	Sample Time	Specified in the Sample time parameter		
	Scalar Expansion	Yes, of input or initial conditions		

Integrator

Purpose	Integrate signal
---------	------------------

Library

Continuous

Description

The Integrator block outputs the integral of its input at the current time step. The following equation represents the output of the block y as a function of its input u and an initial condition y_0 , where y and u are vector functions of the current simulation time t.

$$y(t) = \int_{t_0}^t u(t)dt + y_0$$

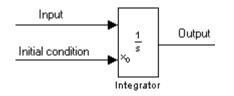
Simulink software can use a number of different numerical integration methods to compute the Integrator block's output, each with advantages in particular applications. Use the **Solver** pane of the Configuration Parameters dialog box (see "Solver Pane") to select the technique best suited to your application.

Simulink software treats the Integrator block as a dynamic system with one state, its output. The Integrator block's input is the state's time derivative.

$$x = y(t)$$
$$x_0 = y_0$$
$$\dot{x} = u(t)$$

The selected solver computes the output of the Integrator block at the current time step, using the current input value and the value of the state at the previous time step. To support this computational model, the Integrator block saves its output at the current time step for use by the solver to compute its output at the next time step. The block also provides the solver with an initial condition for use in computing the block's initial state at the beginning of a simulation run. The default value of the initial condition is 0. The block's parameter dialog box allows you to specify another value for the initial condition or create an initial value input port on the block.

Use the parameter dialog box to:

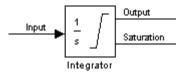

- Define upper and lower limits on the integral
- Create an input that resets the block's output (state) to its initial value, depending on how the input changes
- Create an optional state output so that the value of the block's output can trigger a block reset

Use the Discrete-Time Integrator block to create a purely discrete system.

Defining Initial Conditions

You can define the initial conditions as a parameter on the block dialog box or input them from an external signal:

- To define the initial conditions as a block parameter, specify the **Initial condition source** parameter as internal and enter the value in the **Initial condition** field.
- To provide the initial conditions from an external source, specify the **Initial condition source** parameter as external. An additional input port appears under the block input.

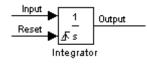

Note If the integrator limits its output (see "Limiting the Integral" on page 2-547), the initial condition must fall inside the integrator's saturation limits. If the initial condition is outside the block's saturation limits, the block displays an error message.

Limiting the Integral

To prevent the output from exceeding specifiable levels, select the **Limit output** check box and enter the limits in the appropriate parameter fields. This action causes the block to function as a limited integrator. When the output reaches the limits, the integral action is turned off to prevent integral wind up. During a simulation, you can change the limits but you cannot change whether the output is limited. The block determines output as follows:

- When the integral is less than or equal to the **Lower saturation limit**, the output is held at the **Lower saturation limit**.
- When the integral is between the **Lower saturation limit** and the **Upper saturation limit**, the output is the integral.
- When the integral is greater than or equal to the **Upper saturation limit**, the output is held at the **Upper saturation limit**.

To generate a signal that indicates when the state is being limited, select the **Show saturation port** check box. A saturation port appears below the block output port.

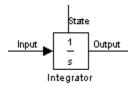

The signal has one of three values:

- 1 indicates that the upper limit is being applied.
- 0 indicates that the integral is not limited.
- -1 indicates that the lower limit is being applied.

When you select this check box, the block has three zero crossings: one to detect when it enters the upper saturation limit, one to detect when it enters the lower saturation limit, and one to detect when it leaves saturation.

Resetting the State

The block can reset its state to the specified initial condition based on an external signal. To cause the block to reset its state, select one of the **External reset** choices. A trigger port appears below the block's input port and indicates the trigger type.


- Select rising to reset the state when the reset signal rises from a zero to a positive value or from a negative to a positive value.
- Select falling to reset the state when the reset signal falls from a positive value to zero or from a positive to a negative value.
- Select either to reset the state when the reset signal changes from a zero to a nonzero value or changes sign.
- Select level to reset the state when the reset signal is nonzero at the current time step or changes from nonzero at the previous time step to zero at the current time step.
- Select level hold to reset the state when the reset signal is nonzero at the current time step.

The reset port has direct feedthrough. If the block output feeds back into this port, either directly or through a series of blocks with direct feedthrough, an algebraic loop results (see "Algebraic Loops"). Use the Integrator block's state port to feed back the block's output without creating an algebraic loop.

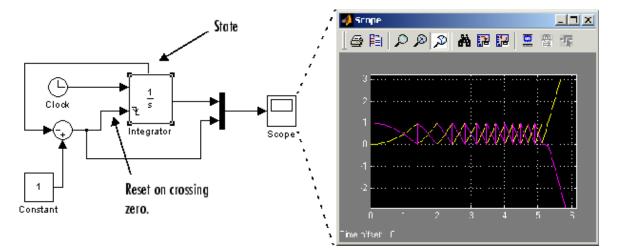
Note To be compliant with the Motor Industry Software Reliability Association (MISRA[®]) software standard, your model must use Boolean signals to drive the external reset ports of Integrator blocks.

About the State Port

Selecting the **Show state port** check box on the Integrator block's parameter dialog box causes an additional output port, the state port, to appear at the top of the Integrator block.

The output of the state port is the same as the output of the block's standard output port except for the following case. If the block is reset in the current time step, the output of the state port is the value that would have appeared at the block's standard output if the block had not been reset. The state port's output appears earlier in the time step than the output of the Integrator block's output port. Use the state port to avoid creating algebraic loops in these modeling scenarios:

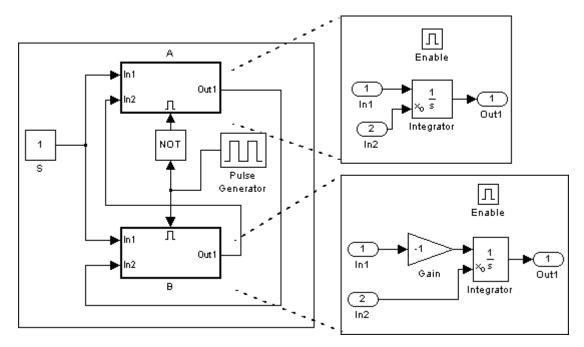
- Self-resetting integrators (see "Creating Self-Resetting Integrators" on page 2-550)
- Handing off a state from one enabled subsystem to another (see "Handing Off States Between Enabled Subsystems" on page 2-551)


Note When updating a model, Simulink software checks that the state port applies to one of these two scenarios. If not, an error message appears. Also, you cannot log the output of this port in a referenced model that executes in Accelerator mode. If logging is enabled for the port, Simulink software generates a "signal not found" warning during execution of the referenced model.

Creating Self-Resetting Integrators

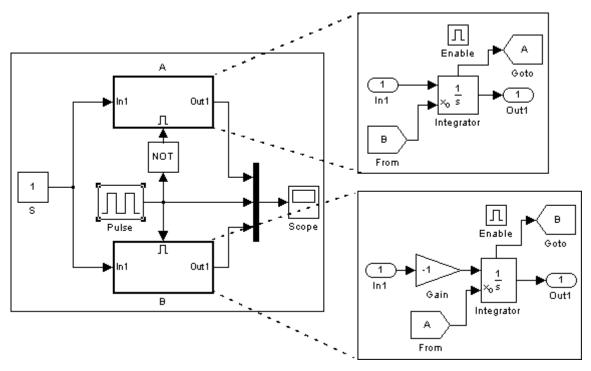
The Integrator block's state port helps you avoid an algebraic loop when creating an integrator that resets itself based on the value of its output. Consider, for example, the following model.

This model tries to create a self-resetting integrator by feeding the integrator's output, subtracted from 1, back into the integrator's reset port. However, the model creates an algebraic loop. To compute the integrator block's output, Simulink software needs to know the value of the block's reset signal, and vice versa. Because the two values are mutually dependent, Simulink software cannot determine either. Therefore, an error message appears if you try to simulate or update this model.


The following model uses the integrator's state port to avoid the algebraic loop.

In this version, the value of the reset signal depends on the value of the state port. The value of the state port is available earlier in the current time step than the value of the integrator block's output port. Thus, Simulink software can determine whether the block needs to be reset before computing the block's output, thereby avoiding the algebraic loop.

Handing Off States Between Enabled Subsystems

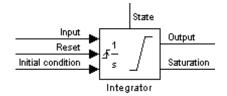

The state port helps you avoid an algebraic loop when passing a state between two enabled subsystems. Consider, for example, the following model.

Integrator

In this model, a constant input signal drives two enabled subsystems that integrate the signal. A pulse generator generates an enabling signal that causes execution to alternate between the two subsystems. The enable port of each subsystem is set to reset, which causes the subsystem to reset its integrator when it becomes active. Resetting the integrator causes the integrator to read the value of its initial condition port. The initial condition port of the integrator in each subsystem is connected to the output port of the integrator in the other subsystem.

This connection is intended to enable continuous integration of the input signal as execution alternates between two subsystems. However, the connection creates an algebraic loop. To compute the output of A, Simulink software needs to know the output of B, and vice versa. Because the outputs are mutually dependent, Simulink software cannot compute them. Therefore, an error message appears if you try to simulate or update this model.

The following version of the same model uses the integrator state port to avoid creating an algebraic loop when handing off the state.


In this model, the initial condition of the integrator in A depends on the value of the state port of the integrator in B, and vice versa. The values of the state ports are updated earlier in the simulation time step than the values of the integrator output ports. Thus, Simulink software can compute the initial condition of either integrator without knowing the final output value of the other integrator. For another example of using the state port to hand off states between conditionally executed subsystems, see the sldemo_clutch model. **Note** Simulink software does not permit three or more enabled subsystems to hand off a model state. If Simulink software detects that a model is handing off a state among more than two enabled subsystems, it generates an error.

Specifying the Absolute Tolerance for the Block's Outputs

By default Simulink software uses the absolute tolerance value specified in the Configuration Parameters dialog box (see "Specifying Variable-Step Solver Error Tolerances") to compute the output of the Integrator block. If this value does not provide sufficient error control, specify a more appropriate value in the **Absolute tolerance** field of the Integrator block's dialog box. The value that you specify is used to compute all of the block's outputs.

Selecting All Options

When you select all options, the block icon looks like this.

Data Type Support

The Integrator block accepts and outputs signals of type double on its data ports. Its external reset port accepts signals of type double or Boolean.

Integrator

Parameters and Dialog Box

Function Block Paran	neters: Integ	rator		
Integrator			 	
Continuous-time integratio	on of the input	signal.		
Parameters				
External reset: none				-
Initial condition source:	internal			-
Initial condition:				
0				
🗌 Limit output				
Upper saturation limit:				
inf				
Lower saturation limit:				
-inf				
🔲 Show saturation port				
🔲 Show state port				
Absolute tolerance:				
auto				
🔲 Ignore limit and reset	when linearizin	g		
🔽 Enable zero-crossing d	detection			
State Name: (e.g., 'positi	ion')			
"				
		1	 	
0	ОК	Cance	Help	Apply

External reset

Reset the states to their initial conditions when a trigger event occurs in the reset signal.

Settings

Default: none

none

Do not reset the state to initial conditions.

rising

Reset the state when the reset signal rises from a zero to a positive value or from a negative to a positive value.

falling

Reset the state when the reset signal falls from a positive value to zero or from a positive to a negative value.

either

Reset the state when the reset signal changes from a zero to a nonzero value or changes sign.

level

Reset the state when the reset signal is nonzero at the current time step or changes from nonzero at the previous time step to zero at the current time step.

level hold

Reset the state when the reset signal is nonzero at the current time step.

Command-Line Information

Initial condition source

Get the initial conditions of the states.

Settings

Default: internal

internal

Get the initial conditions of the states from the **Initial condition** parameter.

external

Get the initial conditions of the states from an external block.

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

Selecting internal enables the Initial condition parameter.

Selecting external disables the Initial condition parameter.

Command-Line Information

Initial condition

Specify the states' initial conditions.

Settings

Default: 0

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Tips

Simulink software does not allow the initial condition of this block to be inf or NaN.

Dependencies

This parameter is enabled by setting **Initial condition source** to internal.

This parameter is disabled by setting **Initial condition source** to external.

Command-Line Information

Limit output

Limit the block's output to a value between the **Lower saturation limit** and **Upper saturation limit** parameters.

Settings

Default: Off

🔽 On

Limit the block's output to a value between the **Lower** saturation limit and **Upper saturation limit** parameters.

C Off

Do not limit the block's output to a value between the **Lower** saturation limit and **Upper saturation limit** parameters.

Dependencies

This parameter enables Upper saturation limit.

This parameter enables Lower saturation limit.

Command-Line Information

Upper saturation limit

Specify the upper limit for the integral.

Settings

Default: inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

This parameter is enabled by Limit output.

Command-Line Information

Lower saturation limit

Specify the lower limit for the integral.

Settings

Default: -inf

Minimum: value of Output minimum parameter

Maximum: value of Output maximum parameter

Dependencies

This parameter is enabled by Limit output.

Command-Line Information

Show saturation port

Add a saturation output port to the block.

Settings Default: Off

Default: Of

🔽 On

Add a saturation output port to the block.

C Off

Do not add a saturation output port to the block.

Command-Line Information

Show state port

Add an output port to the block for the block's state.

Settings

Default: Off

🔽 On

Add an output port to the block for the block's state.

C Off

Do not add an output port to the block for the block's state.

Command-Line Information

Absolute tolerance

Compute the block's outputs with respect to absolute tolerance.

Settings

Default: auto

- If you enter auto, Simulink software determines the absolute tolerance
- If you enter a numeric value, Simulink software uses the specified value to compute the block's outputs.

Tips

Note that a numeric value overrides the setting for the absolute tolerance in the **Configuration Parameters** dialog box.

Command-Line Information

Ignore limit and reset when linearizing

Cause Simulink linearization commands to treat this block as unresettable and as having no limits on its output, regardless of the settings of the block's reset and output limitation options.

Settings

Default: Off

🔽 On

Cause Simulink linearization commands to treat this block as unresettable and as having no limits on its output, regardless of the settings of the block's reset and output limitation options.

C Off

Do not cause Simulink linearization commands to treat this block as unresettable and as having no limits on its output, regardless of the settings of the block's reset and output limitation options.

Tips

This allows you to linearize a model around an operating point that causes the integrator to reset or saturate.

Command-Line Information

Enable zero-crossing detection

Use zero crossings to detect and take a time step at any of the following events: reset, entering or leaving an upper saturation state, entering or leaving a lower saturation state.

Settings

Default: On

🔽 On

Use zero crossings to detect and take a time step at any of the following events: reset, entering or leaving an upper saturation state, entering or leaving a lower saturation state.

C Off

Do not use zero crossings to detect and take a time step at any of the following events: reset, entering or leaving an upper saturation state, entering or leaving a lower saturation state.

Tips

If this option, **Limit output**, and zero-crossing detection for the model as a whole are selected, the Integrator block uses zero crossings as described. See "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation for more information.

Command-Line Information

State Name (e.g., 'position')

Use this to assign a unique name to each state.

Settings

Default: ' '

• If left blank, no name is assigned.

Tips

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.
- For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Command-Line Information

Characteristics	Direct Feedthrough	Yes, of the reset and external initial condition source ports
	Sample Time	Continuous

Scalar Expansion	Yes, of parameters
States	Inherited from driving block or parameter
Dimensionalized	Yes
Zero Crossing	Yes, if enabled and you select the Limit output option, one for detecting reset, one each to detect upper and lower saturation limits, one when leaving saturation

Purpose Use output of Prelookup block to accelerate approximation of N-dimensional function

Library

Lookup Tables

Description

The Interpolation Using Prelookup block is intended for use with the Prelookup block. The Prelookup block calculates the index and interval fraction that specifies how its input value relates to the breakpoint data set. You feed the resulting index and fraction values into an Interpolation Using Prelookup block to interpolate an *n*-dimensional table. This combination of blocks performs the equivalent operation that a single instance of the Lookup Table (n-D) block performs. However, the Prelookup and Interpolation Using Prelookup blocks offer greater flexibility that can provide more efficient simulation and code generation.

To use this block, you must define a set of output values as the **Table data** parameter. In normal use, these table values correspond to the breakpoint data sets specified in Prelookup blocks. The Interpolation Using Prelookup block generates its output by looking up or estimating table values based on the index and interval fraction values (denoted on the block as k and f, respectively) fed into the block by each Prelookup block:

- If the inputs match the values of indices specified in breakpoint data sets, the Interpolation Using Prelookup block outputs the table value at the intersection of the row, column, and higher dimension breakpoints.
- If the inputs do not match the values of indices specified in breakpoint data sets, the Interpolation Using Prelookup block generates output by interpolating appropriate table values. If the inputs are beyond the range of breakpoint data sets, the Interpolation Using Prelookup block can extrapolate its output value.

The Interpolation Using Prelookup block can perform interpolation on a portion of its table. The **Number of sub-table selection dimensions** parameter lets you specify that interpolation occur only on a subset of its

Table data parameter. For example, if your 3-D table data constitutes a stack of 2-D tables to be interpolated, set the **Number of sub-table selection dimensions** parameter to 1. The block displays an input port (labeled as sel) used to select and interpolate the 2-D tables.

Data Type Support

The Interpolation Using Prelookup block accepts real signals of any numeric data type supported by Simulink software, except Boolean. The Interpolation Using Prelookup block supports fixed-point data types for signals, table data, and intermediate results.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

The **Main** pane of the Interpolation Using Prelookup block dialog box appears as follows:

5	Function Block Parameters: Interpolation Using Prelookup				
_Ir	nterpolation_n-D				
	Perform interpolation (or extrapolation) on an n-dimensional table using precalculated indices and fraction values.				
	Use 'Number of table dimensions' and 'Table data' to specify an n-dimensional table that represents a function of 'n' variables.				
0 0 1. 5	'Number of subtable selection dimensions' lets you specify that the block interpolates only a subset of table data. If you specify 'k' as its value, the block displays 'n-k' pairs of index and fraction inputs and 'k' subtable selection inputs. Its default value is 0, i.e., interpolate the entire table. Use the selection inputs to specify the indices of the subtable to be interpolated. You may use Prelookup blocks to compute the index, fraction, and selection inputs.				
	dain Constantinues Table and the Tables of Antonio data and the				
	Main Signal Attributes Table Attributes Intermediate Attributes				
Nu	Number of table dimensions: 2				
Та	Table data: sqrt([1:11]' * [1:11]) Edit				
In	Interpolation method: Linear				
Ex	Extrapolation method: Linear				
Ac	Action for out of range input: None				
Check index in generated code					
Nu	Number of sub-table selection dimensions: 0				
Sa	Sample time (-1 for inherited): -1				
	<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>				

Number of table dimensions

The number of dimensions that the **Table data** parameter must have. This determines the number of independent variables for the table and hence the number of inputs to the block. Enter an integer between 1 and 30 into this field.

Table data

The table of output values. During simulation, the matrix size must match the dimensions defined by the **Number** of table dimensions parameter. Note that during block diagram editing, you can enter an empty matrix (specified as []) or an undefined workspace variable as the **Table** data parameter. Use this behavior to postpone specifying a correctly-dimensioned matrix for the **Table data** parameter and continue editing the block diagram. For information about how to construct multidimensional arrays in MATLAB software, see "Multidimensional Arrays" in the MATLAB online documentation.

Click the **Edit** button to open the Lookup Table Editor (see "Lookup Table Editor" in the Simulink documentation).

Interpolation method

None - Flat or Linear. See "Interpolation Methods" in the Simulink documentation for more information.

Extrapolation method

None - Clip or Linear. See "Extrapolation Methods" in the Simulink documentation for more information. The **Extrapolation method** parameter is visible only if you select Linear as the **Interpolation method** parameter.

Note The Interpolation Using Prelookup block does not support Linear extrapolation if its input or output signals specify integer or fixed-point data types.

Action for out of range input

Specifies whether to produce a warning or error message if the input is out of range. The options are:

- None the default, no warning or error message
- Warning display a warning message in the MATLAB Command Window and continue the simulation
- Error halt the simulation and display an error message in the Simulation Diagnostics Viewer

Check index in generated code (Real-Time Workshop license required)

Specifies whether Real-Time Workshop software generates code that checks the validity of the index values fed to this block.

Valid index input may reach last index

Specifies how the index and interval fraction inputs to the block (labeled respectively as k and f on the block) access the last elements of the *n*-dimensional table specified by the **Table data** parameter. If enabled, the block returns the value of the last element in a particular dimension of its table when k indexes the last table element in the corresponding dimension and f is 0. If disabled, the block returns the value of the last element in a particular dimension dimension and f is 1. Note that index values are zero-based.

This parameter is visible only if the **Interpolation method** specifies Linear and the **Extrapolation method** is None - Clip.

Note If you enable the **Valid index input may reach last index** parameter for an Interpolation Using Prelookup block, you must also enable the **Use last breakpoint for input at or above upper limit** parameter for all Prelookup blocks that feed it. This action allows the blocks to use the same indexing convention when accessing the last elements of their **Breakpoint data** and **Table data** parameters.

Number of sub-table selection dimensions

Specifies the number of dimensions of the subtable used to compute this block's output. Specify 0 (the default) to interpolate the entire table, which disables subtable selection.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink documentation for more information.

The **Signal Attributes** pane of the Interpolation Using Prelookup block dialog box appears as follows:

Function Block Parameters: Interpolation Using Prelookup	2			
-Interpolation_n-D				
Perform interpolation (or extrapolation) on an n-dimensional table using precalculated indices and fraction values.				
Use 'Number of table dimensions' and 'Table data' to specify an n-dimensional table that represents a function of 'n' variables.				
'Number of subtable selection dimensions' lets you specify that the block interpolates only a subset of table data. If you specify 'k' as its value, the block displays 'n-k' pairs of index and fraction inputs and 'k' subtable selection inputs. Its default value is 0, i.e., interpolate the entire table. Use the selection inputs to specify the indices of the subtable to be interpolated. You may use Prelookup blocks to compute the index, fraction, and selection inputs.				
Main Signal Attributes Table Attributes Intermediate Attributes				
Output minimum: Output maximum:				
Output data type: Inherit: Inherit from 'Table data'				
Lock scaling against changes by the autoscaling tool				
Integer rounding mode: Floor				
Saturate on integer overflow				
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>				

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Lock scaling against changes by the autoscaling tool

Select to lock scaling of data.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Block parameters such as **Table data** are always rounded to the nearest representable value. To control the rounding of a block parameter, enter an expression using a MATLAB rounding function into the mask field.

Saturate on integer overflow

Select to have overflows saturate. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

The **Table Attributes** pane of the Interpolation Using Prelookup block dialog box appears as follows:

🙀 Function Block Parameters: Interpolation Using Prelookup 🛛 🗙				
Interpolation_n-D				
Perform interpolation (or extrapolation) on an n-dimensional table using precalculated indices and fraction values.				
Use 'Number of table dimensions' and 'Table data' to specify an n-dimensional table that represents a function of 'n' variables.				
'Number of subtable selection dimensions' lets you specify that the block interpolates only a subset of table data. If you specify 'k' as its value, the block displays 'n-k' pairs of index and fraction inputs and 'k' subtable selection inputs. Its default value is 0, i.e., interpolate the entire table. Use the selection inputs to specify the indices of the subtable to be interpolated. You may use Prelookup blocks to compute the index, fraction, and selection inputs.				
Main Signal Attributes Table Attributes Intermediate Attributes				
Table minimum: Image: Table maximum:				
Table data type: Inherit: Same as output >>				
OK <u>C</u> ancel <u>H</u> elp <u>Apply</u>				

Table minimum

Specify the minimum value for table data. The default value, [], is equivalent to -Inf.

Table maximum

Specify the maximum value for table data. The default value, [], is equivalent to Inf.

Table data type

Specify the table data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as output
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Table data type** parameter.

Tip Specify a table data type different from the output data type for these cases:

- Lower memory requirement for storing table data that uses a smaller type than the output signal
- Sharing of prescaled table data between two Interpolation Using Prelookup blocks with different output data types
- Sharing of custom storage table data in Real-Time Workshop generated code for blocks with different output data types

The **Intermediate Attributes** pane of the Interpolation Using Prelookup block dialog box appears as follows:

Function Block	Parameters: In	terpolation U	sing Prelookup	
Interpolation_n-D-				
Perform interpolati indices and fractior		on) on an n-dime	ensional table using pr	ecalculated
Use 'Number of tab that represents a f			specify an n-dimension	nal table
only a subset of ta of index and fraction i.e., interpolate the subtable to be interpolate	ble data. If you sp on inputs and 'k' su e entire table. Use rpolated.	becify 'k' as its v ubtable selection the selection in	pecify that the block in value, the block display n inputs. Its default va puts to specify the inc fraction, and selection	s 'n-k' pairs alue is 0, lices of the
Main Signal At	' <u> </u>		Intermediate Attribute	1
ntermediate result:	ata type: Inhe	erit: Inherit via	internal rule 💌	>>
	<u>0</u> K	<u>C</u> ancel	Help	Apply

Intermediate results data type

Specify the intermediate results data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as output
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button display the Data Type Assistant, which helps you set the Intermediate results data type parameter.

Tip Use this parameter to specify higher precision for internal computations than for table data or output data.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes
	Dimensionalized	Yes
	Zero Crossing	No

See Also Prelookup

Interval Test

Purpose Determine if signal is in specified interval

Library

Logic and Bit Operations

Description

The Interval Test block outputs TRUE if the input is between the values specified by the **Lower limit** and **Upper limit** parameters. The block outputs FALSE if the input is outside those values. The output of the block when the input is equal to the **Lower limit** or the **Upper limit** is determined by whether the boxes next to **Interval closed on left** and **Interval closed on right** are selected in the dialog box.

Data Type Support The Interval Test block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Parameters and Dialog Box

🙀 Function Block Parameters: Interval Test 🛛 🛛 🔀			
- Interval Test (mask) (link)			
If the input is in the interval between the lower limit and the upper limit, then the output is TRUE, otherwise it is FALSE.			
Parameters			
Interval closed on right			
Upper limit:			
0.5			
✓ Interval closed on left			
Lower limit:			
-0.5			
Output data type mode: boolean			
OK Cancel Help Apply			

Interval closed on right

When you select this check box, the **Upper limit** is included in the interval for which the block outputs TRUE.

Upper limit

The upper limit of the interval for which the block outputs TRUE.

Interval closed on left

When you select this check box, the **Lower limit** is included in the interval for which the block outputs TRUE.

Lower limit

The lower limit of the interval for which the block outputs TRUE.

Output data type mode

Select the output data type; boolean or uint8.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Interval Test Dynamic

Interval Test Dynamic

Purpose Determine if signal is in specified interval

Library

Logic and Bit Operations

Description

The Interval Test Dynamic block outputs TRUE if the input is between the values of the external signals up and lo. The block outputs FALSE if the input is outside those values. The output of the block when the input is equal to the signal up or the signal lo is determined by whether the boxes next to **Interval closed on left** and **Interval closed on right** are selected in the dialog box.

Data Type Support

The Interval Test Dynamic block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Parameters and Dialog Box

🙀 Funct	ion Block	Parameters:	Interval Test I	Dynamic	×
_ Interval	Test Dyna	amic (mask) (link)			
		e interval betwee therwise it is FAL		and the upper lin	nit, then the
- Parame	ters				
🔽 Inte	val closed	d on right			
🔽 Inte	val closed	d on left			
Output	data type	mode: boolean			-
·		01	Connect	U-1-	1 A 1
		OK	Cancel	Help	Apply

Interval closed on right

When you select this check box, the value of the signal connected to the block's "up" input port is included in the interval for which the block outputs TRUE.

Interval closed on left

When you select this check box, the value of the signal connected to the block's "lo" input port is included in the interval for which the block outputs TRUE.

Output data type mode

Select the output data type; boolean or uint8.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Interval Test

Purpose Use Level-2 M-file S-function in model

Library

User-Defined Functions

Description

This block allows you to use a Level-2 M-file S-function (see "Writing Level-2 M-File S-Functions") in a model. To do this, create an instance of this block in the model. Then enter the name of the Level-2 M-File S-function in the **M-file name** field of the block's parameter dialog box.

Note Use the S-Function block to include a Level-1 M-file S-function in a block.

If the Level-2 M-file S-function defines any additional parameters, you can enter them in the **Parameters** field of the block's parameter dialog box. Enter them as MATLAB expressions that evaluate to their values in the order defined by the M-file S-function. Use commas to separate each expression.

If a model includes a Level-2 M-File S-Function block, and an error occurs in the S-function, the Level-2 M-File S-Function block displays M-file stack trace information for the error in a dialog box. Click **OK** to remove the dialog box.

Data TypeDepends on the M-file that defines the behavior of a particular instanceSupportof this block.

Parameters
and
Dialog
Box

Block Parameters: M-file (level-2) S-Function M-file-S-Function	
User-definable block written using the MATLAB S-Function API. Specify the nam an M-File containing a MATLAB S-Function below. Use the Parameters field to s a comma-separated list of parameters for this block.	
Parameters	
M-file name:	
mlfile	
Parameters:	
OK Cancel Help Ap	ply

M-file name

Name of an M-file that defines the behavior of this block. The M-file must follow the Level-2 standard for writing M-file S-functions (see "Writing Level-2 M-File S-Functions").

Parameters

Values of the parameters of this block.

Characteristics

Direct Feedthrough	Depends on the M-file S-function
Sample Time	Depends on the M-file S-function
Scalar Expansion	Depends on contents M-file S-function
Dimensionalized	Depends on the M-file S-function

Multidimensionalized	Yes
Zero Crossing	No

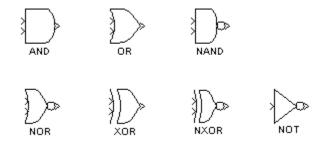
Logical Operator

Purpose Perform specified logical operation on input

Library

Logic and Bit Operations

Description



The Logical Operator block performs the specified logical operation on its inputs. An input value is TRUE (1) if it is nonzero and FALSE (0) if it is zero.

You select the Boolean operation connecting the inputs with the **Operator** parameter list. If you select rectangular as the **Icon shape** property, the block updates to display the name of the selected operator. The supported operations are given below.

Operation	Description
AND	TRUE if all inputs are TRUE
OR	TRUE if at least one input is TRUE
NAND	TRUE if at least one input is FALSE
NOR	TRUE when no inputs are TRUE
XOR	TRUE if an odd number of inputs are TRUE
NXOR	TRUE if an even number of inputs are TRUE
NOT	TRUE if the input is FALSE

If you select distinctive as the **Icon shape**, the block's appearance indicates its function. Simulink software displays a distinctive shape for the selected operator, conforming to the IEEE Standard Graphic Symbols for Logic Functions:

The number of input ports is specified with the **Number of input ports** parameter. The output type is specified with the **Output data type** parameter. An output value is 1 if TRUE and 0 if FALSE.

Note The output data type should represent zero exactly. Data types that satisfy this condition include signed and unsigned integers, and any floating-point data type.

The size of the output depends on input vector size and the selected operator:

• If the block has more than one input, any nonscalar inputs must have the same dimensions. For example, if any input is a 2-by-2 array, all other nonscalar inputs must also be 2-by-2 arrays.

Scalar inputs are expanded to have the same dimensions as the nonscalar inputs.

If the block has more than one input, the output has the same dimensions as the inputs (after scalar expansion) and each output element is the result of applying the specified logical operation to the corresponding input elements. For example, if the specified operation is AND and the inputs are 2-by-2 arrays, the output is a 2-by-2 array whose top left element is the result of applying AND to the top left elements of the inputs, etc.

•	For a single vector input, the block applies the operation (except the
	NOT operator) to all elements of the vector. The output is always a
	scalar.

• The NOT operator accepts only one input, which can be a scalar or a vector. If the input is a vector, the output is a vector of the same size containing the logical complements of the input vector elements.

When configured as a multi-input XOR gate, this block performs an addition- modulo-two operation as mandated by the IEEE Standard for Logic Elements.

Data Type Support

The Logical Operator block accepts real signals of any numeric data type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

The **Main** pane of the Logical Operator block dialog box appears as follows:

Function Block Parameters: Logical Operator
Logical Operator
Logical operators. For a single input, operators are applied across the input vector. For multiple inputs, operators are applied across the inputs.
Main Signal Attributes
Operator: AND
Number of input ports:
2
Icon shape: rectangular
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

The **Signal Attributes** pane of the Logical Operator block dialog box appears as follows:

🙀 Function Block Parameters: Logical Operator	×
C-Logical Operator	
Logical operators. For a single input, operators are applied across the input vector. For multiple inputs, operators are applied across the inputs.	
Main Signal Attributes	
Require all inputs and output to have the same data type	
Output data type: boolean 💌 >>	
OK Cancel Help Apply	

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Operator

Select logical operator to apply to block inputs.

Settings

Default: AND

AND

TRUE if all inputs are TRUE

OR

TRUE if at least one input is TRUE

NAND

TRUE if at least one input is FALSE

NOR

TRUE when no inputs are TRUE

XOR

TRUE if an odd number of inputs are TRUE

NXOR

TRUE if an even number of inputs are TRUE

NOT

TRUE if the input is FALSE

Command-Line Information

Number of input ports

Specify number of block inputs.

Settings Default: 2

• The value must be appropriate for the selected operator.

Command-Line Information

Icon shape

Specify shape of the block icon.

Settings

Default: rectangular

rectangular

Result in a rectangular block that displays the name of the selected operator.

distinctive

Use the graphic symbol for the selected operator as specified by the IEEE standard.

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Require all inputs and output to have the same data type

Require all inputs and the output to have the same data type.

Settings

Default: Off

🔽 On

Require all inputs and the output to have the same data type.

C Off

Do not require all inputs and the output to have the same data type.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: boolean

Inherit: Logical (see Configuration Parameters: Optimization)

Use the **Implement logic signals as boolean data** model configuration parameter (see "Implement logic signals as boolean data (vs. double)") to specify the output data type.

Note This option is intended to support models created before the boolean option became available. Use one of the other options, preferably boolean, for new models.

```
boolean
```

Output data type is boolean.

```
fixdt(1,16)
```

Output data type is fixdt(1,16).

<data type expression>

Use the name of a data type object (for example, Simulink.NumericType)

Tip To enter a built-in data type (double, single, int8, uint8, int16, uint16, int32, or uint32), enclose the expression in single quotes. For example, enter 'double' instead of double.

Command-Line Information

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

- Slope and bias Enter slope and bias.
- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics

Direct Feedthrough	Yes
Sample Time	Specified in the Sample time parameter
Scalar Expansion	Yes, of inputs
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Lookup Table

Purpose	Approximate one-dimensional function
Library	Lookup Tables
Description	The Lookup Table block computes an approximation to some function $y = f(x)$ given data vectors x and y.
	Note To map two inputs to an output, use the Lookup Table (2-D) block.

The length of the x and y data vectors provided to this block must match. Also, the x data vector must be *strictly monotonically increasing* (i.e., the value of the next element in the vector is greater than the value of the preceding element) after conversion to the input's fixed-point data type. However, the x data vector may be *monotonically increasing* (i.e., the value of the next element in the vector is greater than or equal to the value of the preceding element) if all of the following apply:

- The input and output signals are both either single or double.
- The lookup method is Interpolation-Extrapolation.

Tip Evenly-spaced input data can make Real-Time Workshop generated code division-free. For more information, see fixpt_evenspace_cleanup in the Simulink documentation and "Identify questionable fixed-point operations" in the Real-Time Workshop documentation.

For more information about size and monotonicity requirements, see "Characteristics of Lookup Table Data" in *Simulink User's Guide*. To learn how to model a discontinuous function using a Lookup Table block, see "Representation of Discontinuities in Lookup Tables".

You define the table by specifying the Vector of input values parameter as a 1-by-n vector and the Table data parameter as a

1-by-n vector. The block generates output based on the input values using one of these methods selected from the **Lookup method** parameter list:

- Interpolation-Extrapolation This is the default method; it performs linear interpolation and extrapolation of the inputs.
 - If a value matches the block's input, the output is the corresponding element in the output vector.
 - If no value matches the block's input, then the block performs linear interpolation between the two appropriate elements of the table to determine an output value. If the block input is less than the first or greater than the last input vector element, then the block extrapolates using the first two or last two points.

Note If the **Lookup method** parameter specifies Interpolation-Extrapolation, Real-Time Workshop code generation can occur for this block only if its input and output signals have the same floating-point data type.

- Interpolation-Use End Values This method performs linear interpolation as described above but does not extrapolate outside the end points of the input vector. Instead, the end-point values are used.
- Use Input Nearest This method does not interpolate or extrapolate. Instead, the element in x nearest the current input is found. The corresponding element in y is then used as the output.

Note If the input value is exactly halfway between two points in the **Vector of input values**, the nearest input is the point with the higher numerical value.

Suppose that you define the **Vector of input values** as [0 2] and the **Table data** as [0 1]. If your input value is 1, the Use Input Nearest method chooses the nearest input to be 2, and the corresponding output is 1.

- Use Input Below This method does not interpolate or extrapolate. Instead, the element in x nearest and below the current input is found. The corresponding element in y is then used as the output. If there is no element in x below the current input, then the nearest element is found.
- Use Input Above This method does not interpolate or extrapolate. Instead, the element in x nearest and above the current input is found. The corresponding element in y is then used as the output. If there is no element in x above the current input, then the nearest element is found.

Note Note that there is no difference among the Use Input Nearest, Use Input Below, and Use Input Above methods when the input x corresponds exactly to table breakpoints.

The Lookup Table icon displays a graph of the input vector versus the output vector. If you change a parameter on the block's dialog box, the graph is automatically redrawn when you click the **OK** or **Apply** button.

To avoid parameter saturation errors, the Simulink Fixed Point software's automatic scaling script employs a special rule for the Lookup Table block. autofixexp modifies the scaling by using the output lookup values in addition to the logged minimum and maximum simulation values. This prevents the data from being saturated to different values. The lookup values are given by the **Table data** parameter.

Data TypeThe Lookup Table block supports all numeric data types supported bySupportSimulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

The **Main** pane of the Lookup Table block dialog box appears as follows:

Parameters and Dialog Box

🙀 Function Block Parameters: Lookup Table	×			
C Lookup				
Perform 1-D linear interpolation of input values using the specified table. Extrapolation is performed outside the table boundaries.				
Main Signal Attributes				
Vector of input values: [-5:5]	Edit			
Table data: tanh([-5:5])				
Lookup method: Interpolation-Extrapolation				
Sample time (-1 for inherited): -1				
OK Cancel Help	Apply			

Vector of input values

Specify the vector of input values. The input values vector must be the same size as the **Table data**. Also, the input values vector must be strictly monotonically increasing after conversion to the input's fixed-point data type. However, the input values vector may be monotonically increasing if the input and output signals are both either single or double, and if the lookup method is Interpolation-Extrapolation. Note that due to quantization, the input values vector may be strictly monotonic in doubles format, but not so after conversion to a fixed-point data type.

The **Vector of input values** parameter is converted offline to the input signal's data type using round-to-nearest and saturation.

Click the **Edit** button to open the Lookup Table Editor (see "Lookup Table Editor" in the online Simulink documentation).

Table data

Specify the vector of output values. The table data must be the same size as the **Vector of input values**.

The **Table data** parameter is converted offline to the **Output data type** using the specified rounding and saturation.

Lookup method

Specify the lookup method. See Description for a discussion of the options for this parameter. For an example that demonstrates values that the Lookup Table block returns based on different lookup methods, see "Example Output" in *Simulink User's Guide*.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

The **Signal Attributes** pane of the Lookup Table block dialog box appears as follows:

Function Block Parameters: Lookup Table		
Lookup		
Perform 1-D linear interpolation of input values using the specified table. Extrapolation is performed outside the table boundaries.		
Main Signal Attributes		
Output minimum: Output maximum:		
Output data type: Inherit: Same as input >>		
Integer rounding mode: Floor		
Saturate on integer overflow		
OK Cancel Help Apply		

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")

• Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button b

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point lookup table calculations that occur during simulation or execution of code generated from the model. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Note that this option does not affect rounding of block parameters values, such as **Table data**. Simulink software rounds such values to the nearest representable integer value. To control the rounding of a block parameter, enter an expression using a MATLAB rounding function into the parameter's edit field on the block dialog box.

	Saturate on integer overflow Select to have overflows s	
	When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.	
Example	See "Example of a Logarithm L <i>Guide</i> for a demonstration of th	ookup Table" in the <i>Simulink User's</i> e Lookup Table block.
Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	Dimensionalized	Yes
	Zero Crossing	No
See Also	Lookun Table (2.D) Lookun Tal	ble (n-D)

See Also Lookup Table (2-D), Lookup Table (n-D)

Lookup Table (2-D)

Purpose	Approximate two-dimensional function
---------	--------------------------------------

Library

Lookup Tables

Description

The Lookup Table (2-D) block computes an approximation to some function z = f(x,y) given x, y, z data points. The first input port corresponds to the first table dimension, x. (See "How to Rotate a Block" in the Simulink documentation for a description of the port order for various block orientations.)

The **Row index input values** parameter is a 1-by-m vector of x data points, the **Column index input values** parameter is a 1-by-n vector of y data points, and the **Table data** parameter is an m-by-n matrix of z data points. Both the row and column vectors must be *monotonically increasing* (i.e., the value of the next element in the vector is greater than or equal to the value of the preceding element). However, these vectors must be *strictly monotonically increasing* (i.e., the value of the next element in the vector is greater than the value of the preceding element) in the following cases:

- The input and output data types are both fixed-point.
- The input and output data types are different.
- The lookup method is not Interpolation-Extrapolation.
- The matrix of output values is complex.
- Minimum, maximum, and overflow logging is on.

Tip Evenly-spaced input data can make Real-Time Workshop generated code division-free. For more information, see fixpt_evenspace_cleanup in the Simulink documentation and "Identify questionable fixed-point operations" in the Real-Time Workshop documentation. The block generates output based on the input values using one of these methods selected from the **Lookup method** parameter list:

- Interpolation-Extrapolation This is the default method; it performs linear interpolation and extrapolation of the inputs.
 - If the inputs match row and column parameter values, the output is the value at the intersection of the row and column.
 - If the inputs do not match row and column parameter values, then the block generates output by linearly interpolating between the appropriate row and column values. If either or both block inputs are less than the first or greater than the last row or column values, the block extrapolates using the first two or last two points.

Note If the **Lookup method** parameter specifies Interpolation-Extrapolation, Real-Time Workshop can generate code for this block only if its input and output signals have the same floating-point data type.

- Interpolation-Use End Values This method performs linear interpolation as described above but does not extrapolate outside the end points of x and y. Instead, the end-point values are used.
- Use Input Nearest This method does not interpolate or extrapolate. Instead, the elements in x and y nearest the current inputs are found. The corresponding element in z is then used as the output.
- Use Input Below This method does not interpolate or extrapolate. Instead, the elements in x and y nearest and below the current inputs are found. The corresponding element in z is then used as the output. If there are no elements in x or y below the current inputs, then the nearest elements are found.
- Use Input Above This method does not interpolate or extrapolate. Instead, the elements in x and y nearest and above the current

inputs are found. The corresponding element in z is then used as the output. If there are no elements in x or y above the current inputs, then the nearest elements are found.

Note Note that there is no difference among the Use Input Nearest, Use Input Below, and Use Input Above methods when the input x corresponds exactly to table breakpoints.

For information about creating a table with step transitions, see "Representation of Discontinuities in Lookup Tables" in *Simulink User's Guide*.

To avoid parameter saturation errors, the Simulink Fixed Point software's automatic scaling script employs a special rule for the Lookup Table (2-D) block. autofixexp modifies the scaling by using the output lookup values in addition to the logged minimum and maximum simulation values. The output lookup values are converted to the specified output data type. This action prevents the data from being saturated to different values.

Data TypeThe Lookup Table (2-D) block supports all numeric data types supportedSupportby Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

The **Main** pane of the Lookup Table (2-D) block dialog box appears as follows:

	Function Block Parameters: Lookup Table (2-D)		
[- Lookup2D		
	Performs 2-D linear interpolation of input values using the specified table. Extrapolation is performed outside the table boundaries. The first dimension corresponds to the top (or left) input port.		
	Main Signal Attributes		
	Row index input values: [1:3]		
	Column index input values: [1:3] Edit		
	Table data: [4 5 6;16 19 20;10 18 23]		
	Lookup method: Interpolation-Extrapolation		
	Sample time (-1 for inherited): -1		
	OK Cancel Help Apply		

Row index input values

The row values for the table, entered as a vector. The vector values must increase monotonically.

The **Row index input values** parameter is converted offline to the corresponding input signal's data type using round-to-nearest and saturation.

Column index input values

The column values for the table, entered as a vector. The vector values must increase monotonically.

The **Column index input values** parameter is converted offline to the corresponding input signal's data type using round-to-nearest and saturation.

Click the **Edit** button to open the Lookup Table Editor (see "Lookup Table Editor" in the online Simulink documentation).

Table data

The table of output values. The matrix size must match the dimensions defined by the **Row** and **Column** parameters.

The **Table data** parameter is converted offline to the **Output data type** using the specified rounding and saturation.

Lookup method

Specify the lookup method. See Description for a discussion of the options for this parameter.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

The **Signal Attributes** pane of the Lookup Table (2-D) block dialog box appears as follows:

Function Block Parameters: Lookup Table (2-D)				
-Lookup2D				
Performs 2-D linear interpolation of input values using the specified table. Extrapolation is performed outside the table boundaries. The first dimension corresponds to the top (or left) input port.				
Main Signal Attributes				
Output minimum: Output maximum:				
Require all inputs to have the same data type				
Output data type: Inherit: Same as first input >>				
Integer rounding mode: Floor				
Saturate on integer overflow				
OK Cancel Help Apply				

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Require all inputs to have the same data type

Select to require all inputs to have the same data type.

Output data type

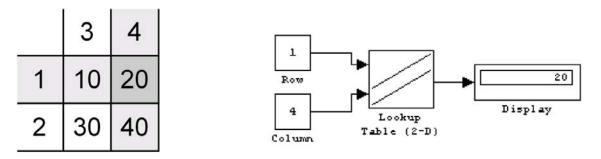
Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

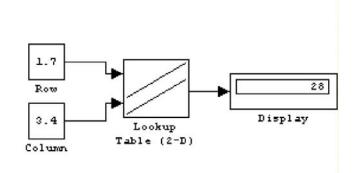
See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.


Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Note that block parameters such as **Table data** are always rounded to the nearest representable value. To control the

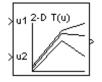

	rounding of a block parameter, enter an expression using a MATLAB rounding function into the mask field.		
	Saturate on integer overflow Select to have overflows saturate.		
	When you select this check box, saturation applies to every internal operation on the block, not just the output or result. I general, the code generation process can detect when overflow not possible, in which case, no saturation code is generated.		
Examples	In this example, the block parameters are defined as		
	Row index input values: [1 2] Column index input values: [3 4] Table data: [10 20; 30 40] The first figure shows the block outputting a value at the intersection	n	

The first figure shows the block outputting a value at the intersection of block inputs that match row and column values. The first input is 1 and the second input is 4. These values select the table value at the intersection of the first row (row parameter value 1) and second column (column parameter value 4).

In the second figure, the first input is 1.7 and the second is 3.4. These values cause the block to interpolate between row and column values, as shown in the table at the left. The value at the intersection (28) is the output value.

	3	3.4	4
1	10	14	20
1.7	24	28	34
2	30	34	40

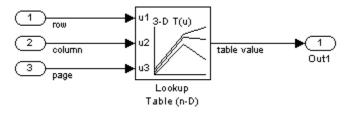
Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of one input if the other is a vector
	Dimensionalized	Yes
	Zero Crossing	No


See Also Lookup Table, Lookup Table (n-D)

Purpose Approximate N-dimensional function

Library

Lookup Tables


Description

The Lookup Table (n-D) block evaluates a sampled representation of a function in N variables, y = F(x1, x2, x3, ..., xn), where the function F might be known only empirically. The block efficiently maps its inputs to an output value by looking up or interpolating a table of values as defined by the block's parameters. The block supports flat (constant), linear, and cubic spline interpolation methods. You can apply any of these methods to 1-D, 2-D, 3-D, or higher dimensional tables.

To use this block, specify the number of dimensions of your lookup table using the **Number of table dimensions** parameter. In the **Breakpoints for dimension** parameter, enter a breakpoint vector that corresponds to each dimension of your lookup table. Define the associated set of output values as the **Table data** parameter. You can customize the block's lookup and estimation behaviors by specifying, for example, values for its **Index search method**, **Interpolation method**, and **Extrapolation method** parameters.

The first block input identifies the first dimension (row) breakpoints, the next block input identifies the second dimension (column) breakpoints, and so on. See "How to Rotate a Block" in the *Simulink User's Guide* for a description of the port order for various block orientations.

Tip Evenly-spaced input data can make Real-Time Workshop generated code division-free. For more information, see fixpt_evenspace_cleanup in the Simulink documentation and "Identify questionable fixed-point operations" in the Real-Time Workshop documentation.

During simulation, the Lookup Table (n-D) block generates its output by looking up or estimating table values based on its input values:

- If the inputs match the values of indices specified in breakpoint vectors, the Lookup Table (n-D) block outputs the table value at the intersection of the row, column, and higher dimension breakpoints.
- If the inputs do not match the values of indices specified in breakpoint vectors, the Lookup Table (n-D) block generates output by interpolating appropriate table values. If the inputs are beyond the range of breakpoint vectors, the block can extrapolate its output values.

Alternatively, you can use the Interpolation Using Prelookup block with the Prelookup block to perform the equivalent operation of a Lookup Table (n-D) block. This combination of blocks offers greater flexibility that can result in more efficient simulation performance for linear interpolations in certain circumstances.

For noninterpolated table lookups, use the Direct Lookup Table (n-D) block when the lookup operation is a simple array access, for example, if you have an integer value k and you want the kth element of a table, y = table(k).

Data Type Support

The Lookup Table (n-D) block supports all numeric data types supported by Simulink software, including fixed-point data types. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Inputs for indexing must be real; table data can be complex.

Parameters and Dialog Box

The **Main** pane of the Lookup Table (n-D) block dialog box appears as follows:

😽 Function Block Parameters: Lookup T	able (n-D)			
Lookup Table (n-D)				
Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to the top (or left) input port.				
Main Signal Attributes Internal Attribu	tes			
Number of table dimensions: 2	•			
Breakpoints for dimension:				
Breakpoints				
1 [10,22,31]				
2 [10,22,31]				
Index search method: Binary search				
E Begin index search using previous index result				
🔲 Use one input port for all input data				
Process out-of-range input: None	•			
Table data: [4 5 6;16	19 20;10 18 23] Edit			
Interpolation method: Linear				
Extrapolation method: None - Clip				
Use last table value for inputs at or above last breakpoint				
Sample time (-1 for inherited): -1				
OK	Cancel Help Apply			

Number of table dimensions

Enter the number of dimensions of the **Table data** parameter by specifying an integer from 1 to 30. This determines the number of independent variables for the table and hence the number of block inputs. It also determines the number of dimensions that appear in the **Breakpoints for dimension** parameter.

Breakpoints for dimension

Define breakpoint sets that correspond to the dimensions of the **Table data** parameter. For each dimension, specify breakpoints as a 1-by-n or n-by-1 vector whose values are strictly monotonically increasing.

The breakpoint sets are converted offline to their corresponding input signal's data type using round-to-nearest and saturation.

Index search method

Select Evenly spaced points, Linear search, or Binary search (the default). Each search method has speed advantages in different circumstances:

- If the breakpoint data is evenly spaced, e.g., 10, 20, 30, ..., you can achieve the greatest speed by selecting Evenly spaced points to calculate the table indices.
- For irregularly spaced breakpoint sets, if the input signals do not vary much from one time step to the next, selecting Linear search in combination with **Begin index search using previous index result** produces the best performance.
- For irregularly spaced breakpoint sets with rapidly varying input signals that jump more than one or two table intervals per time step, selecting Binary search produces the best performance.

A suboptimal choice of index search method can lead to slow performance of models that rely heavily on lookup tables. **Note** The Evenly spaced points algorithm uses only the first two breakpoints to determine the offset and spacing of the remaining points.

Begin index search using previous index result

Select this option if you want the block to start its search using the index that was found at the previous time step. For inputs that change slowly with respect to the interval size, enabling this option can improve performance. Otherwise, the linear search and binary search methods might take significantly longer, especially for large breakpoint sets.

Use one input port for all input data

Instead of having one input port per independent variable, the block is configured with just one input port that expects a signal that is N elements wide for an N-dimensional table. This might be useful in removing line clutter on a block diagram with many lookup tables.

Process out-of-range input

Specifies whether to produce a warning or error message if the input is out of range. The options are:

- None the default, no warning or error message
- Warning display a warning message in the MATLAB Command Window and continue the simulation
- Error halt the simulation and display an error message in the Simulation Diagnostics Viewer

Table data

The table of output values. During simulation, the matrix size must match the dimensions defined by the **Number of table dimensions** parameter. However, during block diagram editing, you can enter either an empty matrix (specified as []) or an undefined workspace variable as the **Table data** parameter. This technique allows you to postpone specifying a

correctly dimensioned matrix for the **Table data** parameter and continue editing the block diagram. For information about how to construct multidimensional arrays in MATLAB software, see "Multidimensional Arrays" in the MATLAB online documentation.

The **Table data** parameter is converted offline to the **Output data type** using the specified rounding and saturation.

Click the **Edit** button to open the Lookup Table Editor (see "Lookup Table Editor" in the *Simulink User's Guide* for more information).

Interpolation method

Select None - Flat, Linear (the default), or Cubic spline. See "Interpolation Methods" in the *Simulink User's Guide* for more information.

Extrapolation method

Select None - Clip, Linear (the default), or Cubic spline. See "Extrapolation Methods" in the *Simulink User's Guide* for more information.

Use last table value for inputs at or above last breakpoint

Specify the indexing convention that the block uses internally to address the last element of a breakpoint vector and its corresponding table value. If selected, the block addresses the end of a breakpoint vector and its table value using the last element's index and 0 for the interval fraction. Otherwise, the block addresses those same values using the index of the next-to-last breakpoint and 1 for the interval fraction.

This parameter is visible only if the **Interpolation method** specifies Linear and the **Extrapolation method** is None - Clip.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in *Simulink User's Guide* for more information.

The **Signal Attributes** pane of the Lookup Table (n-D) block dialog box appears as follows:

Function Block Parameters: Loo	kup Table (r	1-D)	×	
- Lookup Table (n-D)				
Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to the top (or left) input port.				
Main Signal Attributes Interna	al Attributes data type			
Output minimum:	_	aximum:		
Output data type: Inherit: Same as f	îrst input	-	>>	
Integer rounding mode:	Floor		•	
ОК	Cancel	Help	Apply	

Require all inputs to have the same data type

Select to require all inputs to have the same data type.

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point lookup table calculations that occur during simulation or execution of code generated from the model. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Note that this option does not affect rounding of values of block parameters, such as **Table data**. Simulink software rounds such values to the nearest representable integer value. To control the rounding of a block parameter, enter an expression using a MATLAB rounding function into the parameter's edit field on the block dialog box.

The **Internal Attributes** pane of the Lookup Table (n-D) block dialog box appears as follows:

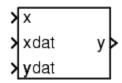
🙀 Function Block Para	meters: Look	up Table (n-D)	×
Lookup Table (n-D) Perform n-dimensional interpolated table lookup including index searches. The table is a sampled representation of a function in N variables. Breakpoint sets relate the input values to positions in the table. The first dimension corresponds to the top (or left) input port.				
Main Signal Attribut	es Internal A	Attributes		
Fraction data type: Inher	it: Inherit via inte	ernal rule	•	>>
	ОК	Cancel	Help	Apply

Fraction data type

Specify the fraction data type. You can set it to:

	• A rule that inherits a data type, for example, Inherit: Inherit via internal rule			
	• The name of a built-in d	ata type, for example, single		
		 The name of a data type object, for example, a Simulink.NumericType object 		
	 An expression that eval fixdt(1,16,0) 	 An expression that evaluates to a data type, for example, fixdt(1,16,0) 		
	display the Data Type As	Click the Show data type assistant button display the Data Type Assistant , which helps you set the Fraction data type parameter.		
	See "Using the Data Type Assistant" in <i>Simulink User's Guide</i> for more information.			
Characteristics	Direct Feedthrough	Yes		
	Sample Time	Specified in the Sample time parameter		

Direct Feedthrough	Yes
Sample Time	Specified in the Sample time parameter
Scalar Expansion	Yes
Dimensionalized	Yes
Zero Crossing	No


See Also Lookup Table, Lookup Table (2-D), Lookup Table Dynamic

Lookup Table Dynamic

Purpose Approximate one-dimensional function using dynamically specified table

Library Lookup Tables

Description

The Lookup Table Dynamic block computes an approximation to a function y=f(x) given x, y data vectors. The lookup method can use interpolation, extrapolation, or the original values of the input.

Using the Lookup Table Dynamic block, you can change the table data without stopping the simulation. For example, you can incorporate new table data if the physical system you are simulating changes.

The x data vector must be *strictly monotonically increasing* (i.e., the value of the next element in the vector is greater than the value of the preceding element) after conversion to the input's fixed-point data type. Note that due to quantization, the x data vector may be strictly monotonic in doubles format, but not so after conversion to a fixed-point data type.

You define the lookup table by inputting the x and y table data to the block as 1-by-n vectors. To help reduce the ROM used by the code generated for this block, you can use different data types for the x table data and the y table data. However, these restrictions apply:

- The y table data and the output vector must have the same sign, the same bias, and the same fractional slope.
- The x table data and the x data vector must have the same sign, the same bias, and the same fractional slope. Additionally, the precision and range for the x data vector must be greater than or equal to the precision and range for the x table data.

Tip Evenly-spaced input data can make Real-Time Workshop generated code division-free. For more information, see fixpt_evenspace_cleanup in the Simulink documentation and "Identify questionable fixed-point operations" in the Real-Time Workshop documentation.

The block generates output based on the input values using one of these methods selected from the **Lookup Method** parameter list:

- Interpolation-Extrapolation This is the default method; it performs linear interpolation and extrapolation of the inputs.
 - If a value matches the block's input, the output is the corresponding element in the output vector.
 - If no value matches the block's input, then the block performs linear interpolation between the two appropriate elements of the table to determine an output value. If the block input is less than the first or greater than the last input vector element, then the block extrapolates using the first two or last two points.

Note Real-Time Workshop software cannot generate code for this block if its **Lookup Method** parameter specifies Interpolation-Extrapolation.

- Interpolation-Use End Values This method performs linear interpolation as described above but does not extrapolate outside the end points of the input vector. Instead, the end-point values are used.
- Use Input Nearest This method does not interpolate or extrapolate. Instead, the element in x nearest the current input is found. The corresponding element in y is then used as the output.
- Use Input Below This method does not interpolate or extrapolate. Instead, the element in x nearest and below the current input is

found. The corresponding element in y is then used as the output. If there is no element in x below the current input, then the nearest element is found.

• Use Input Above — This method does not interpolate or extrapolate. Instead, the element in x nearest and above the current input is found. The corresponding element in y is then used as the output. If there is no element in x above the current input, then the nearest element is found.

Note Note that there is no difference among the Use Input Nearest, Use Input Below, and Use Input Above methods when the input x corresponds exactly to table breakpoints.

Data Type Support The Lookup Table Dynamic block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

The **Main** pane of the Lookup Table Dynamic block dialog box appears as follows:

🙀 Function Block Parameters: Lookup Table Dynamic	×
Lookup Table Dynamic (mask) (link)	
Approximate a one-dimensional function using a selected lookup method.	
Main Signal Attributes	
Lookup Method: Interpolation-Use End Values	
OK Cancel Help	Applu
OK Cancel Help	Apply

Lookup Method

Specify the lookup method.

The **Signal Attributes** pane of the Lookup Table Dynamic block dialog box appears as follows:

Function Block Parameters: Lookup Table Dynamic				
Lookup Table Dynamic (mask) (link)				
Approximate a one-dimensional function using a selected lookup method.				
Main Signal Attributes				
Output data type: fixdt('double') >>				
Lock output scaling against changes by the autoscaling tool				
Integer rounding mode: Floor				
Saturate to max or min when overflows occur				
OK Cancel Help Apply				

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt('double')

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

	Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the Output data type parameter.		
	Integer rounding mode Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the <i>Simulink Fixed Point User's</i> <i>Guide</i> .		
	Saturate to max or min when overflows occur If selected, fixed-point overflows saturate.		
Examples	For an example that illustrates the lookup methods supported by this block, see the example included in the Lookup Table block reference pages.		
Characteristics	Direct Feedthrough	Yes	
	Scalar Expansion	No	
See Also	Lookup Table, Lookup Table (2-D), Lookup Table (n-D)	

Magnitude-Angle to Complex

Purpose Convert magnitude and/or a phase angle signal to complex signal

Library

Math Operations

Description

The Magnitude-Angle to Complex block converts magnitude and/or phase angle inputs to a complex-valued output signal. The inputs must be real-valued signals of type double or single. The angle input is assumed to be in radians. The complex output signal has the same data type as the block inputs.

The inputs can both be signals of equal dimensions, or one input can be an array and the other a scalar. If the block has an array input, the output is an array of complex signals. The elements of a magnitude input vector are mapped to magnitudes of the corresponding complex output elements. An angle input vector is similarly mapped to the angles of the complex output signals. If one input is a scalar, it is mapped to the corresponding component (magnitude or angle) of all the complex output signals.

See the preceding block description.

Data Type Support

Parameters and Dialog Box

Function Block Parameters: Magnitude-Angle to Complex
Magnitude-Angle to Complex
Construct a complex output from magnitude and/or radian phase angle input.
Parameters
Input: Magnitude
Angle:
0
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

Input

Specifies the kind of input: a magnitude input, an angle input, or both.

Angle (Magnitude)

If the input is an angle signal, specifies the constant magnitude of the output signal. If the input is a magnitude, specifies the constant phase angle in radians of the output signal.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes	
	Sample Time	Inherited from driving block	

Scalar Expansion	Yes, of the input when the function requires two inputs
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Purpose	Switch between two inputs
Library	Signal Routing
Description	The Manual Switch block is a toggle switch that selects one of its two inputs to pass through to the output. To toggle between inputs, double-click the block (there is no dialog box). The selected input is propagated to the output, while the unselected input is discarded. You can set the switch before the simulation is started or throw it while the simulation is executing to interactively control the signal flow. The Manual Switch block retains its current state when the model is saved.
Data Type Support	The Manual Switch block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.
Parameters and Dialog Box	None

_

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	N/A
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Math Function

Library Math Operations

Description The Math Function block performs numerous common mathematical functions.

You can select one of the following functions from the **Function** parameter list.

Function	Description	Mathematical Expression	MATLAB Equivalent
exp	Exponential	e ^u	exp
log	Natural logarithm	ln <i>u</i>	log
10^u	Array power of base 10	10 ^{<i>u</i>}	10.^u (see power)
log10	Common (base 10) logarithm	log u	log10
magnitude^2	Complex modulus	<i>u</i> ²	(abs(u)).^2 (see abs and power)
square	Array power 2	<i>u</i> ²	u.^2 (see power)
sqrt	Square root	u ^{0.5}	sqrt
pow	Array power	u ^v	power
conj	Complex conjugate	ū	conj
reciprocal	Array reciprocal	1 <i>/u</i>	1./u (see rdivide)
hypot	Square root of sum squares	$(u^2+v^2)^{0.5}$	hypot
rem	Remainder after division		rem

Function	Description	Mathematical Expression	MATLAB Equivalent
mod	Modulus after division	_	mod
transpose	Array transpose	u ^τ	u.' (see arithmetic operators)
hermitian	Complex conjugate transpose	u ^H	u' (see arithmetic operators)

The block output is the result of the operation of the function on the input or inputs.

The name of the function appears on the block. Simulink software automatically draws the appropriate number of input ports.

Tip Use the Math Function block instead of the Fcn block when you want vector or matrix output, because the Fcn block produces only scalar output.

Data Type	The following table shows which input data types are supported by each
Support	function of the Math Function block.

Function	single	double	built-in integer	fixed point
exp	yes	yes		—
log	yes	yes		—
10^u	yes	yes		—
log10	yes	yes		
magnitude^2	yes	yes	yes	yes

Function	single	double	built-in integer	fixed point
square	yes	yes	yes	yes
sqrt	yes	yes	yes	yes
pow	yes	yes	—	—
conj	yes	yes	yes	yes
reciprocal	yes	yes	yes	yes
hypot	yes	yes	—	—
rem	yes	yes	yes	—
mod	yes	yes	yes	—
transpose	yes	yes	yes	yes
hermitian	yes	yes	yes	yes

All supported modes accept both real and complex inputs, except for reciprocal and sqrt, which do not accept complex fixed-point inputs. Also, sqrt does not accept fixed-point inputs that are negative or have nontrivial slope and nonzero bias. The output signal type of the block is real or complex, depending on the setting of the **Output signal type** parameter.

Note The magnitude², square, and reciprocal functions do not support Real-Time Workshop code generation for fixed-point data types with nonzero bias.

Parameters and Dialog Box

The **Main** pane of the Math Function block dialog box appears as follows:

🙀 Function Block Parameters: Math Function	×
Math	
Mathematical functions including logarithmic, exponential, power, and modulus functions. When the function has more than one argument, the first argument corresponds to the top (or left) input port.	
Main Signal Attributes	
Function: magnitude^2	⊡
Output signal type: auto	
Sample time (-1 for inherited):	
·1	_
OK Cancel Help App	dy

Function

Specify the mathematical function. See Description for more information about the options for this parameter.

Output signal type

Select the output signal type of the Math Function block as real, complex, or auto.

	Input	Output Signal Type		
Function	Signal	Auto	Real	Complex
exp, log, 10u, log10, square, sqrt, pow, reciprocal,	real complex	real complex	real error	complex complex
conjugate, transpose, hermitian				
magnitude squared	real	real	real	complex
· · · · · · · · · · · · · · · · · · ·	complex	real	real	complex
hypot, rem, mod	real complex	real error	real error	complex error

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

The **Signal Attributes** pane of the Math Function block dialog box appears as follows:

Function Block Parameters: Math Function				
Math				
Mathematical functions including logarithmic, exponential, power, and modulus functions. When the function has more than one argument, the first argument corresponds to the top (or left) input port.				
Main Signal Attributes				
Output minimum: Output maximum:				
Output data type: Inherit: Same as first input >>				
Integer rounding mode: Floor				
Saturate on integer overflow				
OK Cancel Help Apply				

Note Some parameters on this pane are available only when the function you select in the **Function** parameter supports fixed-point data types.

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate on integer overflow

If selected, fixed-point overflows saturate. Otherwise, overflows wrap.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Characteristics	Direct Feedthrough	Yes	
	Sample Time	Specified in the Sample time parameter	
	Scalar Expansion	Yes, of the input when the function requires two inputs	
	Dimensionalized	Yes	
	Multidimensionalized	Yes, for all functions except hermitian and transpose	
	Zero Crossing	No	

MATLAB Fcn

Purpose	Apply MATLAB function or expression to inp	ut
---------	--	----

Library

User-Defined Functions

Description

MATLAB Function The MATLAB Fcn block applies the specified MATLAB function or expression to the input. The output of the function must match the output dimensions of the block or an error occurs.

Here are some sample valid expressions for this block.

```
sin
atan2(u(1), u(2))
u(1)^u(2)
```

Note This block is slower than the Fcn block because it calls the MATLAB parser during each integration step. Consider using built-in blocks (such as the Fcn block or the Math Function block) instead, or writing the function as an M-file or MEX-file S-function, then accessing it using the S-Function block.

Data Type Support

The MATLAB Fcn block accepts one complex or real input of type double and generates real or complex output of type double, depending on the setting of the **Output signal type** parameter.

MATLAB Fcn

Parameters and Dialog Box

Function Block Parameters: MATLAB Fcn			
MATLAB Fon			
Pass the input values to a MATLAB function for evaluation. The function must return a single value having the dimensions specified by 'Output dimensions' and 'Collapse 2-D results to 1-D'. Examples: sin, sin(u), foo(u(1), u(2))			
Parameters			
MATLAB function:			
sin			
Output dimensions:			
1			
Output signal type: auto			
Collapse 2-D results to 1-D			
Sample time (-1 for inherited):			
-1			
OK Cancel Help Apply			

MATLAB function

The function or expression. If you specify a function only, it is not necessary to include the input argument in parentheses.

Output dimensions

Dimensions of the signal output by this block. If the output dimensions are to be the same as the dimensions of the input signal, specify -1. Otherwise, enter the dimensions of the output signal, e.g., 2 for a two-element vector. In either case, the output dimensions must match the dimensions of the value returned by the function or expression in the **MATLAB function** field.

Output signal type

The dialog allows you to select the output signal type of the MATLAB Fcn as real, complex, or auto. A value of auto sets the block's output type to be the same as the type of the input signal.

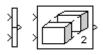
Collapse 2-D results to 1-D

Outputs a 2-D array as a 1-D array containing the 2-D array's elements in column-major order.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes	
	Sample Time	Inherited from driving block	
	Scalar Expansion	N/A	
Dimensionalized		Yes	
	Zero Crossing	No	


Purpose Concatenate input signa

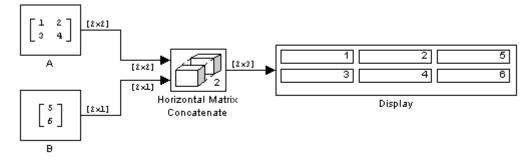
Concatenate input signals of same data type to create contiguous output signal

Library

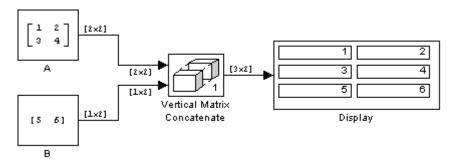
Math Operations

Description

The Concatenate block concatenates the signals at its inputs to create an output signal whose elements reside in contiguous locations in memory. This block operates in either vector or multidimensional array concatenation mode, depending on the setting of its **Mode** parameter. In either case, the inputs are concatenated from the top to bottom, or left to right, input ports.

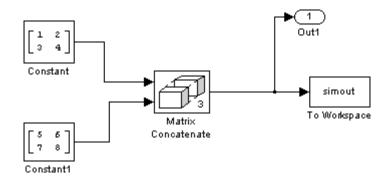

Vector Mode

In vector mode, all input signals must be either vectors or row vectors [1xM matrices] or column vectors [Mx1 matrices] or a combination of vectors and either row or column vectors. The output is a vector if all inputs are vectors.


The output is a row or column vector if any of the inputs are row or column vectors, respectively.

Multidimensional Array Mode

Multidimensional array mode accepts vectors and arrays of any size. It assumes that the trailing dimensions are all ones for input signals with lower dimensionality. For example, if the output is 4-D and the input is [2x3] (2-D) this block treats the input as [2x3x1x1]. The output is always an array. The block's **Concatenate dimension** parameter allows you to specify the output dimension along which the block concatenates its input arrays. If you set the **Concatenate dimension** parameter to 2 and inputs are 2-D matrices, the block performs horizontal matrix concatenation and places the input matrices side-by-side to create the output matrix, e.g.,



If you set the **Concatenate dimension** parameter to 1 and inputs are 2-D matrices, the block performs vertical matrix concatenation and stacks the input matrices on top of each other to create the output matrix, e.g.,

For horizontal concatenation, the input matrices must have the same column dimension; for vertical concatenation, the same row dimension. All input signals must have the same dimension for all dimensions other than the concatenation dimensions.

If you set the **Mode** parameter to Multidimensional array, the **Concatenate dimension** parameter to 3, and the inputs are 2-D matrices, the block performs multidimensional matrix concatenation, e.g.,

Data Type Support

Accepts signals of any data type supported by Simulink software. All inputs must be of the same data type. Outputs the same data type as the input.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the "Working with Data" chapter of the Simulink documentation. **Parameters** and Dialog Box

Function Block Parameters: Matrix Concatenate		
Concatenate		
Concatenate input signals of the same data type to create a contiguous output signal. Select vector or multidimensional array mode.		
In vector mode, all input signals must be either vectors or one-row [1xM] matrices or one-column [Mx1] matrices or a combination of vectors and either one-row matrices or one-column matrices. The output is a vector if all inputs are vectors. The output is a one-row or one-column matrices, respectively.		
In multidimensional mode, use 'Concatenate dimension' to specify the output dimension along which to concatenate the input arrays. For example, to concatenate the input arrays vertically or horizontally, specify 1 or 2, respectively, as the concatenate dimensions.		
Parameters		
Number of inputs:		
2		
Mode: Multidimensional array		
Concatenate dimension:		
2		
OK Cancel Help Apply		

Number of inputs

Number of inputs on this block.

Mode

Specifies the type of concatenation performed by this block. Options are:

- Vector (see "Vector Mode" on page 2-657)
- Multidimensional array (see "Multidimensional Array Mode" on page 2-657)

Concatenate dimension

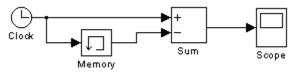
Specifies the output dimension along which to concatenate the input arrays. For example, to concatenate the input arrays vertically or horizontally, specify 1 or 2, respectively. This option appears only if you select Multidimensional array for the **Mode** parameter.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

See Also cat in the MATLAB reference documentation

Purpose	Output input from	previous time step
---------	-------------------	--------------------

Discrete


Library

Description

The Memory block outputs its input from the previous time step, applying a one integration step sample-and-hold to its input signal.

Mermory

This sample model demonstrates how to display the step size used in a simulation. The Sum block subtracts the time at the previous step, generated by the Memory block, from the current time, generated by the clock.

Note Avoid using the Memory block when integrating with ode15s or ode113, unless the input to the block does not change.

Data Type Support

The Memory block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

🙀 Function Block Parameters: Memory 🛛 🛛 🗙		
Memory Apply a one integration step delay. The output is the previous input value.		
Main State Attributes		
Initial condition:		
0		
Inherit sample time		
Direct feedthrough of input during linearization		
Treat as a unit delay when linearizing with discrete sample time		
OK Cancel Help Apply		

Initial condition

The output at the initial integration step. This must be set to 0 if the input data type is user-defined. Simulink software does not allow the initial output of this block to be inf or NaN.

Inherit sample time

Check this check box to cause the sample time to be inherited from the driving block. If this option is not selected, the block's sample time depends on the type of solver used to simulate the model. If the solver is a variable-step solver, the sample time is continuous but fixed in minor time step ([0, 1]). If the solver is a fixed-step solver, this [0, 1] sample time is converted to the solver's step size after sample time propagation.

Direct feedthrough of input during linearization

Causes the block to output its input during linearization and trim. This sets the block's mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of states in the model when using the functions linmod, dlinmod, or trim. To extract this new state ordering, use the following commands.

First compile the model using the following command, where model is the name of the Simulink model.

```
[sizes, x0, x_str] = model([],[],[],'lincompile');
```

Next, terminate the compilation with the following command.

```
model([],[],[],'term');
```

The output argument, x_str, which is a cell array of the states in the Simulink model, contains the new state ordering. When passing a vector of states as input to the linmod, dlinmod, or trim functions, the state vector must use this new state ordering.

Treat as a unit delay when linearizing with discrete sample time Select this check box to linearize the Memory block to a unit delay when the Memory block is driven by a signal with a discrete sample time.

The **State Attributes** pane of the Memory block dialog box appears as follows:

Function Block Parameters: Memory		
Memory		
Apply a one integration step delay. The output is the previous input value.		
Main State Attributes		
State name:		
☐ State name must resolve to Simulink signal object		
Real-Time Workshop storage class: Auto		
Real-Time Workshop storage type qualifier:		
OK Cancel Help Apply		

State name

Use this parameter to assign a unique name to each state. The default is ' '. If left blank, no name is assigned. Consider the following when using this parameter:

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.

- For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

This parameter enables **State name must resolve to Simulink signal object** when you click the **Apply** button.

State name must resolve to Simulink signal object

Select this checkbox to require that state name resolve to Simulink signal object. This check box is cleared by default.

This parameter is enabled by **State name**.

Selecting this check box enables **Real-Time Workshop storage class**.

Real-Time Workshop storage class

From the list, select state storage class.

Auto

Auto is the appropriate storage class for states that you do not need to interface to external code.

ExportedGlobal

State is stored in a global variable

ImportedExtern

*model_*private.h declares the state as an extern variable.

ImportedExternPointer

model private.h declares the state as an extern pointer.

This parameter is enabled by **State name**.

	Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables Real-Time Workshop storage type qualifier .
	During simulation, the block uses the following values:
	• The initial value of the signal object to which the state name is resolved
	• Min and Max values of the signal object
	See "Block State Storage and Interfacing" in the Real-Time Workshop Workshop documentation for more information.
Bus Support	The Memory block is a bus-capable block. The input can be a virtual or nonvirtual bus signal subject to the following restrictions:
	• Initial condition must be zero or a nonzero scalar.
	• If Initial condition is zero and a State name is specified, the input cannot be a virtual bus.
	• If Initial condition is a nonzero scalar, no State name can be specified.
	All signals in a nonvirtual bus input to a Memory block must have the same sample time, even if the elements of the associated bus object specify inherited sample times. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus. See Using Buses and Bus-Capable Blocks for more information.

Characteristics

CS	Bus-capable	Yes, with restrictions as noted above
	Direct Feedthrough	No, except when Direct feedthrough of input during linearization is enabled

Sample Time	Continuous, but inherited from the driving block if you select the Inherit sample time check box
Scalar Expansion	Yes, of the Initial condition parameter
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Purpose Combine multiple signals into single signal

Library

Signal Routing

Description

Merge >

The Merge block combines its inputs into a single output line whose value at any time is equal to the most recently computed output of its driving blocks. You can specify any number of inputs by setting the block's **Number of inputs** parameter.

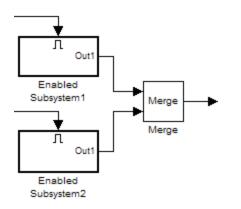
Use Merge blocks only to interleave input signals that update at different times into a combined signal in which the interleaved values retain their separate identities and times. To combine signals that update at the same time into an array or matrix signal, use a Concatenate block.

Merge blocks assume that all driving signals share the same signal memory. The shared signal memory should be accessed only in mutually exclusive fashion. Therefore, always use alternately executing subsystems to drive Merge blocks. See "Creating Alternately Executing Subsystems" for an example.

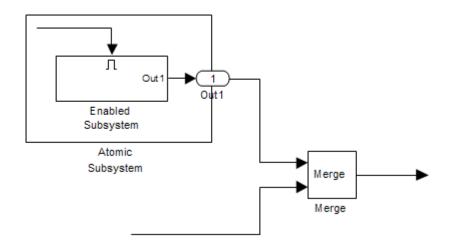
All signals that connect to a Merge block, or exist anywhere in a network of Merge blocks, are functionally the same signal, and are therefore subject to the restriction that a given signal can have at most one associated signal object. See Simulink.Signal and "Multiple Signal Objects" on page 7-143 for more information.

Guidelines for Using Merge Block

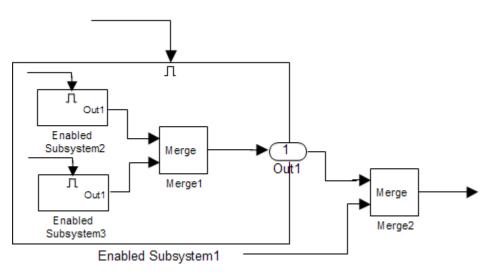
When using the Merge block, consider the following:

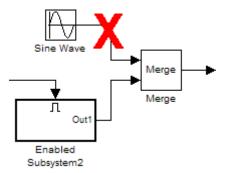

- Always use conditionally executed subsystems to drive Merge blocks.
- Write your control logic to ensure that at most one of the driving conditionally executed subsystems executes at any time step.
- Do not connect more than one input of a Merge block to the same conditionally executed subsystem.
- Do not use a signal that inputs to a Merge block as an input to any other block.

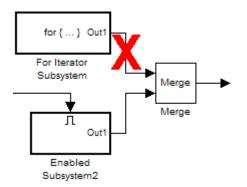
- Always connect a Merge block to at least two input signals.
- Ensure that all input signals have the same sample time.
- Always set the **Initial output** parameter of the Merge block, unless the output port of the Merge block connects to another Merge block.
- For all conditionally executed subsystem Outport blocks that drive Merge blocks, Set the **Output when disabled** parameter to held.


Proper Merge Block Usage

For each input of a Merge block, the topmost non-atomic and non-virtual source must be a conditionally executed subsystem that is not an Iterator subsystem.


The following example shows proper Merge block usage, merging signals from two conditionally executed subsystems.


The following figure shows another valid example of Merge block usage, with the topmost non-atomic, non-virtual source being a conditionally executed subsystem.


You can also use multiple merge blocks, as shown in the following example.

The following example is *not allowed*, because one input of the Merge block is connected to a Sine Wave block (not to a conditionally executed subsystem).

Finally, the following example is also *not allowed*, because one input of the Merge block is connected to an Iterator subsystem.

You can use the Model Advisor to check for proper Merge block usage in your model. For more information, see "Check for proper Merge block usage" on page 10-24.

Initial Output Value

You can specify an initial output value for the Merge block by setting the **Initial output** parameter. If you do not specify an initial output value

and one or more of the driving blocks do, the Merge block's initial output equals the most recently evaluated initial output of the driving blocks.

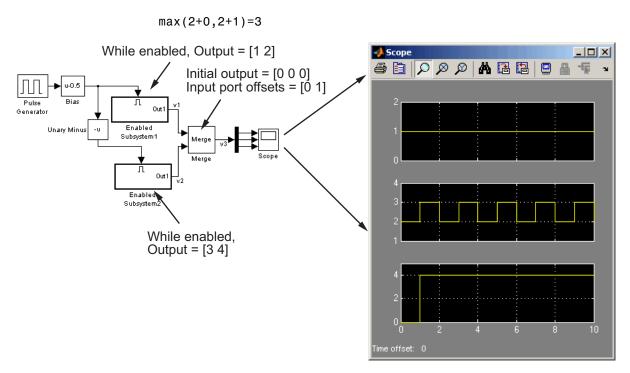
Note If you are using simplified initialization mode, you *must* specify the **Initial output** value for all *root* Merge blocks. A root Merge block is any Merge block with an output port that does not connect to another Merge block.

For more information on simplified initialization mode, see "Underspecified initialization detection".

Single-Input Merge

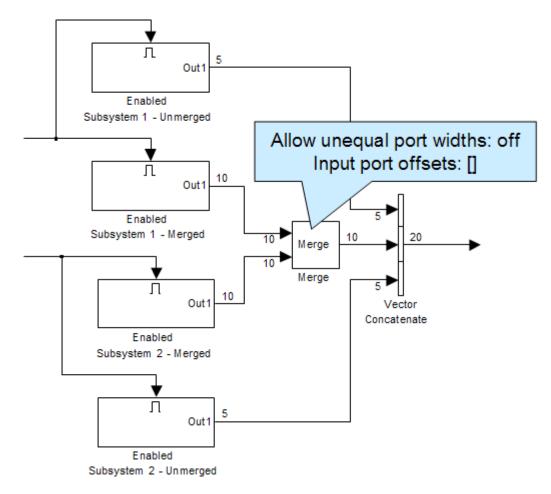
Single-input merge is not supported. Each Merge block must have at least two inputs.

Only use Merge blocks for signals that require merging. If you were previously connecting a Merge block input to a Mux block, use a multi-input Merge block instead.


Input Dimensions and Merge Offsets

The Merge block accepts only inputs of equal dimensions and outputs a signal of the same dimensions as the inputs, unless you select the **Allow unequal port widths** parameter.

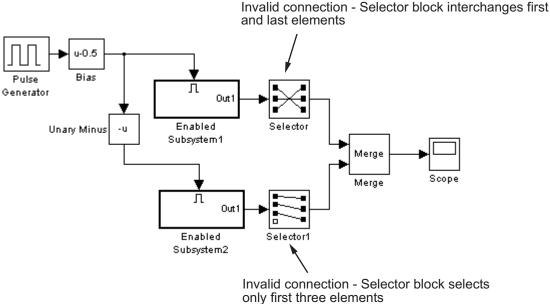
If you select **Allow unequal port widths**, the block accepts scalars and vectors (but not matrices) having differing numbers of elements. Further, the block allows you to specify an offset for each input signal relative to the beginning of the output signal. The width of the output signal is


$$\max(w_1 + o_1, w_2 + o_2, \dots, w_n + o_n)$$

where w_1, \ldots, w_n are the widths of the input signals and o_1, \ldots, o_n are the offsets for the input signals. For example, the Merge block in the following diagram has a Merge block width of

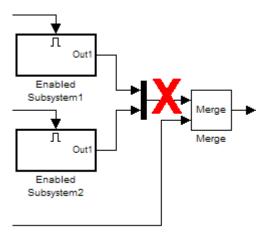
In this example, the offset of v1 is 0 and the offset of v2 is 1. The Merge block maps the elements of v1 to the first two elements of v3 and the elements of v2 to the last two elements of v3. Only the second element of v3 is effectively merged, as seen from the scopes output.

If you are using Simplified Initialization Mode, **Allow unequal port widths** must be deselected. The input port offsets for all input signals must be zero. Consider using Merge blocks only for signal elements that require true merging. Other elements can be combined with merged elements using the Concatenate block, as shown in the following example.

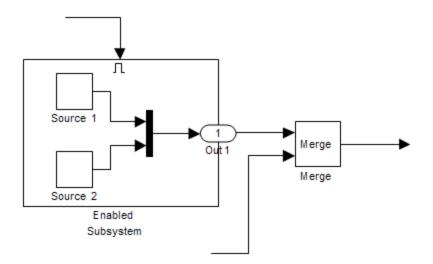


For more information on simplified initialization mode, see "Underspecified initialization detection".

Combining or Reordering of Input Signals


A Merge block does not accept input signals whose elements have been reordered or partially selected. In addition, you should not connect input signals to the Merge block that have been combined outside of a conditionally executed subsystem.

For example, in the following diagram, the Merge block does not accept the output of the first Selector block because the Selector block interchanges the first and last elements of the vector signal. It does not accept the output of the second Selector block because the Selector block selects only the first three elements.

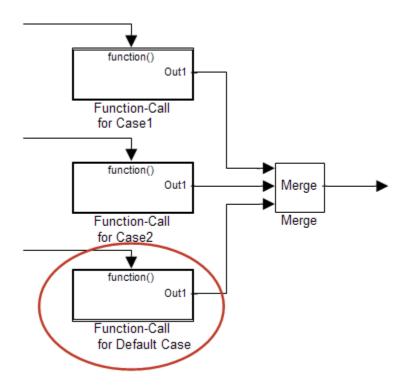


only list thee elements

If you are using simplified initialization mode, the following example is also not allowed, because two signals are being combined outside of a conditionally executed subsystem.

You can, however, combine or reorder Merge block input signals within a conditionally executed subsystem. For example, the following diagram is valid.

For more information on simplified initialization mode, see "Underspecified initialization detection".


Conditionally Executed Subsystem Outport Reset

The Outports of conditionally executed subsystems being merged should not reset when disabled. This could cause multiple subsystems to update the Merge block at the same time. Specifically, the disabled subsystem updates the Merge block by resetting its output, while the enabled subsystem updates the Merge block by computing its output.

To prevent this, set the Outport block parameter **Output when disabled** to held for each conditionally executed subsystem being merged.

Note If you are using Simplified Initialization Mode, you *must* set the Outport block parameter **Output when disabled** to held.

Instead of resetting the subsystem output when it is disabled, add an additional subsystem for the default case, and use control logic to run this subsystem if nothing else runs. For example, see the following:

For more information on simplified initialization mode, see "Underspecified initialization detection".

Merging S-Function Outputs

The Merge block can merge a signal from an S-Function block only if the memory used to store the S-Function block's output is reusable. Simulink software displays an error message if you attempt to update or simulate a model that connects a nonreusable port of an S-Function block to a Merge block. See ssSetOutputPortOptimOpts for more information.

Data TypeThe Merge block accepts real or complex signals of any data typeSupportsupported by Simulink software, including fixed-point and enumerated
data types. All inputs must be of the same data type and numeric type.

Merge

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

Function Block Parameters: Merge
Merge
Merge the input signals into a single output signal whose initial value is specified by the 'Initial output' parameter. If 'Initial output' is empty, the Merge block outputs the initial output of one of its driving blocks.
Parameters
Number of inputs:
2
Initial output:
Allow unequal port widths
Input port offsets:
Jo
OK Cancel Help Apply

Number of inputs

The number of input ports to merge.

Initial output

Initial value of output. If unspecified, the initial output equals the initial output, if any, of one of the driving blocks. Simulink software does not allow you to set the initial output of this block to inf or NaN.

Bus Support	Support nonvirtual bus signals subject to the following restrictions:	
	 The number of inputs must be gr Initial output must be zero or a	
	 Allow unequal port widths mu 	
		ouses and must be equivalent (same
	hierarchy with identical names a	
	All signals in a nonvirtual bus inpu same sample time, even if the elem specify inherited sample times. You change the sample time of an indivi- See Using Buses and Bus-Capable I	ents of the associated bus object a can use a Rate Transition block to dual signal, or of all signals in a bus.
Characteristics	Bus-capable	Yes, with restrictions as noted above
	Direct Feedthrough	Yes
	Sample Time	Inherited from the driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

MinMax

Purpose	Output minimum or maximum input value	
Library	Math Operations	
Description	The MinMax block outputs either the minimum or the maximum element or elements of the inputs. You can choose the function to apply by selecting one of the choices from the Function parameter list.	
> min >	If the block has one input port, the input must be a scalar or a vector. The block outputs a scalar equal to the minimum or maximum element of the input vector.	
	If the block has multiple input ports, all nonscalar inputs must have the same dimensions. The block expands any scalar inputs to have the same dimensions as the nonscalar input(s). The block outputs a signal having the same dimensions as the input. Each output element equals the minimum or maximum of the corresponding input elements.	
	The MinMax block ignores any input value that is NaN, except where every input value is NaN. Where all input values are NaN, the output is NaN also, either as a scalar or as the value of each output vector element for which all corresponding input elements are NaN.	
Data Type Support	The MinMax block accepts and outputs real signals of any numeric data type supported by Simulink software, except Boolean. The MinMax block supports fixed-point data types.	
	For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.	

Parameters and Dialog Box

The Main pane of the MinMax block dialog box appears as follows:

🙀 Function Block Parameters: MinMax 🛛 🔀		
MinMax		
Output min or max of input. For a single input, operators are applied across the input vector. For multiple inputs, operators are applied across the inputs.		
Main Signal Attributes		
Function: min		
Number of input ports:		
1		
Enable zero-crossing detection		
Sample time (-1 for inherited):		
-1		
OK Cancel Help Apply		

Function

Specify whether to apply the function min or max to the input.

Number of input ports

Specify the number of inputs to the block.

Enable zero-crossing detection

Select to enable zero-crossing detection to detect minimum and maximum values. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

The **Signal Attributes** pane of the MinMax block dialog box appears as follows:

Function Block Parameters: MinMax	×	
MinMax		
Output min or max of input. For a single input, operators are applied across the input vector. For multiple inputs, operators are applied across the inputs.		
Main Signal Attributes		
$\ensuremath{\overline{\mbox{\rm F}}}$ Require all inputs to have the same data type		
Output minimum: Output	t maximum:	
Output data type: Inherit: Inherit via internal rule >>		
Integer rounding mode: Floor	_	
Saturate on integer overflow		
OK Cancel	Help Apply	

Require all inputs to have the same data type

Select this parameter to require that all inputs must have the same data type.

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

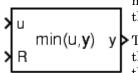
See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate on integer overflow


Select to have overflows saturate.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of the inputs
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled.

- **Purpose** Determine minimum or maximum of signal over time
- Library Math Operations

Description

The MinMax Running Resettable block outputs the minimum or maximum of all past inputs u. You specify whether the block outputs the minimum or the maximum with the **Function** parameter.

The block can reset its state based on an external reset signal R. When the reset signal R is TRUE, the block resets the output to the value of the **Initial condition** parameter.

The input can be a scalar, vector, or matrix signal. If you specify a scalar **Initial condition** parameter, the block expands the parameter to have the same dimensions as a nonscalar input. The block outputs a signal having the same dimensions as the input. Each output element equals the running minimum or maximum of the corresponding input elements.

Data Type
SupportThe MinMax Running Resettable block accepts and outputs real signals
of any numeric data type supported by Simulink software, except
Boolean. The MinMax Running Resettable block supports fixed-point
data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters
and
Dialog
Box

Function Block Parameters: MinMax Running Resettable
MinMax Running Resettable (mask) (link)
Output the max or min of all past inputs u. The output is reset to the initial condition when the Reset input signal R is TRUE. This reset action is vectorized and supports scalar expansion.
Parameters
Function: min
Initial condition:
0.0
OK Cancel Help Apply

Function

Specify whether the block outputs the minimum or the maximum.

Initial condition

Initial condition.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

Purpose	Include model as block in another model
Library	Ports & Subsystems
Description Model Name	The Model block allows you to include a model as a block in another model. The Model block displays input ports and output ports corresponding to the included model's top-level input and output ports. This allows you to connect the included model to other blocks in the containing model. See "Referencing a Model" for more information.
	A signal that connects to a Model block is functionally the same signal outside and inside the block, and is therefore subject to the restriction that a given signal can have at most one associated signal object. See Simulink.Signal and "Multiple Signal Objects" on page 7-143 for more information.
Data Type Support	Determined by the root-level inputs and outputs of the model referenced by the Model block.

Model

Parameters and Dialog Box

Block Parameters: Model	
Model Reference	
Specify the name of a Simulink model. During update diagram, simulation, and code generation, Simulink generates code for the referenced model and uses the generated code. These operations also refresh Model blocks to reflect graphical changes, such as number of ports, in the referenced model. To refresh without performing these operations, select Edit->Refresh Model Blocks.	
Parameters	
Model name (without the .mdl extension):	
KEnter Model Name>	
Model arguments:	
Model argument values (for this instance):	
1	
Simulation mode: Accelerator	
Open Model	
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>Apply</u>	

Model Name

Name of the model referenced by this block. This name must be a valid MATLAB identifier. The model must exist on the MATLAB path and the MATLAB path must contain no other model having the same name. See "Creating a Model Reference" for details.

Model arguments

Names of model arguments accepted by the model referenced by this block. See "Using Model Arguments" for details.

Model argument values (for this instance)

Values to be passed as model arguments to the model referenced by this block each time the model is invoked during a simulation. Enter the values in this field as a comma-separated list in the same order as the corresponding argument names appear in the **Model arguments** field. See "Using Model Arguments" for details.

	Simulation mode	
	The simulation mode for the model referenced by this block.	
	Accelerator Simulink software creates a MEX-file for the submodel, then executes the submodel by running the S-function.	
	Normal Simulink software executes the submodel interpretively, as if the submodel were an atomic subsystem implemented directly within the parent model.	
	Processor-in-the-loop (PIL) This feature requires Real-Time Workshop Embedded Coder software.	
	Simulink creates both a MEX-file and a model reference target for the submodel. The MEX-file executes the cross-compiled object code on the target processor (or equivalent instruction set simulator).	
	See "Referenced Model Simulation Modes" for details.	
Navigating a Model Block	Model blocks behave differently from other blocks when double-clicked. This customized behavior provides the results most likely to be useful given the current status of the Model block, as follows:	
	• Double-clicking the prototype Model block in the Ports & Subsystems library opens its Block Parameters dialog box for inspection, but does not allow you to specify parameter values.	
	• Double-clicking an unresolved Model block opens its Block Parameters dialog box. You can then resolve the block by specifying a Model name .	
	• Double-clicking a resolved Model block opens the model that the block references. You can also open the model by choosing Open Model from the Context or Edit menu.	

To display the Block Parameters dialog box for a resolved Model block, choose **Model Reference Parameters** from the **Context** or **Edit** menu.

Model Blocks and Direct Feedthrough

When a Model block is part of a cycle, and the block is a direct feedthrough block, an algebraic loop can result. An algebraic loop in a model is not necessarily an error, but it may not give the expected results. See:

- "Algebraic Loops" for information about direct feedthrough and algebraic loops.
- "Highlighting Algebraic Loops" for information about seeing algebraic loops graphically
- "Displaying Algebraic Loop Information" for information about tracing algebraic loops in the debugger.
- The "Diagnostics Pane: Solver" pane "Algebraic loop" option for information about detecting algebraic loops automatically.

Direct Model Block Feedthrough Caused by Submodel Structure

A Model block may be a direct feedthrough block due to the structure of the referenced model. Where direct feedthrough results from submodel structure, and an unwanted algebraic loop results, you can:

- Automatically eliminate the algebraic loop using techniques described in:
 - "Minimize algebraic loop"
 - "Minimize algebraic loop occurrences"
 - "Eliminating Algebraic Loops"
- Manually insert one or more Unit Delay blocks as needed to break the algebraic loop.

Direct Model Block Feedthrough Caused by Model Configuration

ERT-based targets provide the option **Configuration Parameters** > **Real-Time Workshop Pane** > **Interface** > **Single output/update function**. This option controls whether generated code has separate output and update functions, or a combined output/update function. See:

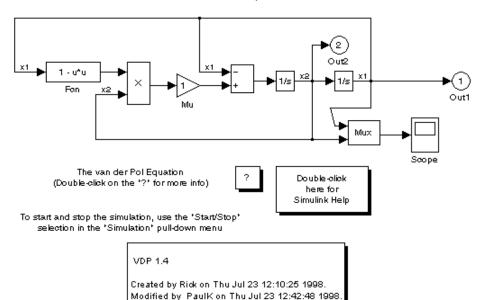
- "Embedded Model Functions" for information about separate and combined output and update functions.
- "Single output/update function" for information about specifying whether code has separate or combined functions.

When **Single output/update function** is enabled (the default) a Model block has a combined output/update function, which makes the block a direct feedthrough block for all inports regardless of the structure of the referenced model. Where an unwanted algebraic loop results, you can:

- Disable **Single output/update function**. The code for the Model block then has separate output and update functions, eliminating the direct feedthrough and hence the algebraic loop.
- Automatically eliminate the algebraic loop using techniques described in:
 - "Minimize algebraic loop"
 - "Minimize algebraic loop occurrences"
 - "Eliminating Algebraic Loops"
- Manually insert one or more Unit Delay blocks as needed to break the algebraic loop.

Model

Characteristics	Direct Feedthrough	If "Single output/update function" is enabled (the default), a Model block is a direct feedthrough block regardless of the structure of the referenced model.
		If "Single output/update function" is disabled, a Model block may or may not be a direct feedthrough block, depending on the structure of the referenced model.
	Scalar Expansion	Depends on model referenced by this block.
	Multidimensionalized	Yes


Model Info

Purpose Display revision control information in model

Library Model-Wide Utilities

Description

Model Info Annotation The Model Info block displays revision control information about a model as an annotation block in the model's block diagram. The following diagram illustrates use of a Model Info block to display information about the vdp model.

van der Pol Equation

A Model Info block can show revision control information embedded in the model itself and/or information maintained by an external revision control or configuration management system. A Model Info block's dialog allows you to specify the content and format of the text displayed by the block.

Model Info

Data Type Support Not applicable.

Parameters and Dialog Box

📣 Model Info: untitled	
Model properties:	Enter text and tokens to display on Model Info block:
Created → Creator ModifiedBy ModifiedDate ModifiedComment Model Version ■ Description ■ Last Modification Date ▼ Configuration manager properties: Author →> Date Revision Header Id Id Locker RCSfile ▼	Model Info
Horizontal text alignment: Center	Show block frame
OK Can	cel Help Apply

The Model Info block dialog box includes the following fields:

Editable text

Enter the text to be displayed by the Model Info block in this field. You can freely embed variables of the form %<propname>, where propname is the name of a model or revision control system property, in the entered text. The value of the property replaces the variable in the displayed text. For example, suppose that the current version of the model is 1.1. Then the entered text

Version %<ModelVersion>

appears as

Version 1.1

in the displayed text. The model and revision control system properties that you can reference in this way are listed in the **Model properties** and **Configuration manager properties** fields.

Model properties

Lists revision control properties stored in the model. Selecting a property and then selecting the adjacent arrow button enters the corresponding variable in the **Editable text** field. For example, selecting CreatedBy enters %<CreatedBy%> in the **Editable text** field. See "Version Control Properties" for a description of the usage of the properties specified in this field.

Configuration manager properties

This field appears only if you previously specified an external configuration manager for this model on the MATLAB **Preferences** dialog box for the model (see "Specifying the Source Control System on UNIX Platforms" in the online MATLAB documentation) or by setting the model's ConfigurationManager property. The field lists version control information maintained by the external system that you can include in the Model Info block. To include an item from the list, select it and then click the adjacent arrow button.

Note The selected item does not appear in the Model Info block until you check the model in or out of the repository maintained by the configuration manager and you have closed and reopened the model.

Multiport Switch

Purpose	Choose between	multiple block inputs
---------	----------------	-----------------------

Library Signal Routing

Description

The Multiport Switch block chooses among a number of inputs. The first input is the *control input*, while the rest of the inputs are *data inputs*. The number of data inputs must be greater than one.

The value of the control input determines which data input is passed through to the output port. See "How to Rotate a Block" in the Simulink User's Guide for a description of the port order for various block orientations.

If the control input is an integer value, then the specified data input is passed through to the output. For example, suppose the **Use zero-based indexing** parameter is not selected. If the control input is 1, then the first data input is passed through to the output. If the control input is 2, then the second data input is passed through to the output, and so on. If the control input is not an integer value, the block first truncates the value to an integer by rounding to floor. If the truncated control input is less than 1 or greater than the number of input ports, an out-of-bounds error is returned.

You specify the number of data inputs with the **Number of inputs** parameter. The data inputs can be scalar or vector. The block output is determined by these rules:

- If you specify only one data input and that input is a vector, the block behaves as an "index selector," and not as a multi-port switch. The block output is the vector element that corresponds to the value of the control input.
- If you specify more than one data input, the block behaves like a multi-port switch. The block output is the data input that corresponds to the value of the control input. If at least one of the data inputs is a vector, the block output is a vector. Any scalar inputs are expanded to vectors.
- If the inputs are scalar, the output is a scalar.

The Index Vector block, also in the Signal Routing library, is another implementation of the Multiport Switch block that has different default parameter settings.

Data Type Support

The control signal can be of any data type supported by Simulink software, including fixed-point and enumerated types, except Boolean. If the control signal is numeric, it cannot be complex. If it is enumerated, the block uses the value of the underlying integer to select a data port. If the underlying integer does not correspond to a data port, an error occurs.

The data signals can be of any data type supported by Simulink software. If any data signal is of an enumerated type, all others must be of the same enumerated type.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

The **Main** pane of the Multiport Switch block dialog box appears as follows:

Function Block Parameters: Multiport Switch	×
Multi-Port Switch	
Pass through the input signals corresponding to the truncated value of the first input. The inputs are numbered top to bottom (or left to right). The first input port is the control port. The other input ports are data ports.	
Main Signal Attributes	
Number of inputs:	
3	
Use zero-based indexing	
Sample time (-1 for inherited):	
-1	
	4
OK Cancel Help Apply	

Number of inputs

Specify the number of data inputs to the block. The number of data inputs must be greater than one.

Use zero-based indexing

If selected, the block uses zero-based indexing. Otherwise, the block uses one-based indexing.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink User's Guide for more information.

The **Signal Attributes** pane of the Multiport Switch block dialog box appears as follows:

Function Block Parameters: Multiport Switch		
Multi-Port Switch		
Pass through the input signals corresponding to the truncated value of the first input. The inputs are numbered top to bottom (or left to right). The first input port is the control port. The other input ports are data ports.		
Main Signal Attributes		
Require all data port inputs to have the same data type		
Output minimum: Output maximum:		
Output data type: Inherit: Inherit via internal rule >>		
Integer rounding mode: Floor		
Saturate on integer overflow		
OK Cancel Help Apply		

Require all data port inputs to have the same data type

Select to require all data port inputs to have the same data type.

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button b

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

	Integer rounding mode Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the <i>Simulink Fixed Point User's</i> <i>Guide</i> .	
	Saturate on integer overflow Select to have overflows saturate.	
	internal operation on the b general, the code generatio	t box, saturation applies to every lock, not just the output or result. In n process can detect when overflow is no saturation code is generated.
Bus Support	The Multiport Switch block is a bus-capable block. The data inputs can be virtual or nonvirtual bus signals subject to the following restrictions:	
	• All the buses must be equivalenames and attributes for all e	ent (same hierarchy with identical lements).
	-	input to a Multiport Switch block must ven if the elements of the associated mple times.
		lock to change the sample time of nals in a bus. See Using Buses and ormation.
Characteristics	Bus-capable	Yes, with restrictions as noted above
	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes
	Dimensionalized	Yes

Multiport Switch

Multidimensionalized	Yes
Zero Crossing	No

Purpose Combine several input signals into vector

Library Signal Routing

Description

The Mux block combines its inputs into a single vector output. An input can be a scalar or vector signal. All inputs must be of the same data type and numeric type. The elements of the vector output signal take their order from the top to bottom, or left to right, input port signals. See "How to Rotate a Block" for a description of the port order for various block orientations. To avoid adding clutter to a model, Simulink software hides the name of a Demux block when you copy it from the Simulink library to a model. See "Mux Signals" for information about creating and decomposing vectors.

Note The Mux block allows you to connect signals of differing data and numeric types and matrix signals to its inputs. In this case, the Mux block acts like a Bus Creator block and outputs a bus signal rather than a vector. The MathWorks discourages using mux blocks to create bus signals, and may not support this practice in future releases. See "Avoiding Mux/Bus Mixtures" for more information.

The Mux block's **Number of Inputs** parameter allows you to specify input signal names and sizes as well as the number of inputs. You can use any of the following formats to specify this parameter:

• Scalar

Specifies the number of inputs to the Mux block. When this format is used, the block accepts scalar or vector signals of any size. Simulink software assigns each input the name signalN, where N is the input port number.

• Vector

The length of the vector specifies the number of inputs. Each element specifies the size of the corresponding input. A positive value specifies

that the corresponding port can accept only vectors of that size. For example, [2 3] specifies two input ports of sizes 2 and 3, respectively. If an input signal width does not match the expected width, Simulink software displays an error message. A value of -1 specifies that the corresponding port can accept scalars or vectors of any size.

• Cell array

The length of the cell array specifies the number of inputs. The value of each cell specifies the size of the corresponding input. A scalar value N specifies a vector of size N. A value of -1 means that the corresponding port can accept scalar or vector signals of any size.

• Signal name list

You can enter a list of signal names separated by commas. Simulink software assigns each name to the corresponding port and signal. For example, if you enter position, velocity, the Mux block will have two inputs, named position and velocity.

The MathWorks encourages using Vector Concatenate blocks rather than Mux blocks to combine vectors. The primary exception is the creation of a vector of function calls, which requires a Mux block. In future releases, Mux blocks may have no unique capabilities and may be deprecated.

If you want to create a composite signal, in which the constituent signals retain their identities and can have different data types, use a Bus Creator block rather than a Mux block. Although you can use a Mux block to create a composite signal, The MathWorks discourages this practice. See "Avoiding Mux/Bus Mixtures" for more information.

Data Type Support

The Mux block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

Function Block Parameters: Mux
Mux
Multiplex scalar or vector signals.
Parameters
Number of inputs:
2
Diselau antian has
Display option: bar
Cancel Help Apply

Number of inputs

Specify number and size of inputs.

Settings

Default: 2

You can enter a comma-separated list of signal names for this parameter field.

Command-Line Information

Display option

Specify the appearance of the block in the model.

Settings

Default: bar

bar

Displays the block in a solid foreground color

none

Mux appears inside the block

signals

Displays signal names next to each port

Command-Line Information

Outport

Purpose	Create output port for subsystem or external output
Library	Ports & Subsystems, Sinks
Description	Outport blocks are the links from a system to a destination outside the system.
×	Simulink software assigns Outport block port numbers according to these rules:

- It automatically numbers the Outport blocks within a top-level system or subsystem sequentially, starting with 1.
- If you add an Outport block, it is assigned the next available number.
- If you delete an Outport block, other port numbers are automatically renumbered to ensure that the Outport blocks are in sequence and that no numbers are omitted.

Outport Blocks in a Subsystem

Outport blocks in a subsystem represent outputs from the subsystem. A signal arriving at an Outport block in a subsystem flows out of the associated output port on that Subsystem block. The Outport block associated with an output port on a Subsystem block is the block whose **Port number** parameter matches the relative position of the output port on the Subsystem block. For example, the Outport block whose **Port number** parameter is 1 sends its signal to the block connected to the topmost output port on the Subsystem block.

If you renumber the **Port number** of an Outport block, the block becomes connected to a different output port, although the block continues to send the signal to the same block outside the subsystem.

When you create a subsystem by selecting existing blocks, if more than one Outport block is included in the grouped blocks, Simulink software automatically renumbers the ports on the blocks.

The Outport block name appears in the Subsystem icon as a port label. To suppress display of the label, select the Outport block and choose **Hide Name** from the **Format** menu.

Outport Blocks in Conditionally Executed Subsystems

When an Outport block is in an enabled subsystem, its initial output value can be either explicitly specified, or inherited from its input signal.

Specifying Initial Conditions

To explicitly specify an initial output value:

- 1 Select Dialog in the Source of initial output value drop-down list.
- 2 Specify the Initial output parameter.

If you select Dialog, you can also specify what happens to the output when the subsystem is disabled, using the **Output when disabled** drop-down menu. Select either:

- reset The output value is reset to the **Initial output** value when the subsystem is disabled.
- held The output value remains at its most recent value when the subsystem is disabled.

Note If you are connecting the output of the conditionally executed subsystem to a Merge block, set **Output when disabled** to held to ensure consistent simulation results.

If you are using simplified initialization mode, you must select held when connecting a conditionally executed subsystem to a Merge block. For more information, see "Underspecified initialization detection".

Inheriting Initial Conditions

The initial output value of the outport block can be inherited from the following sources:

- Output port of another conditionally executed subsystem
- Merge block (with Initial output specified)

- Function-Call Model Reference block
- Constant block (simplified initialization mode only)
- IC block (simplified initialization mode only)

The procedure you use to inherit the initial conditions of the Outport block differs depending on whether you are using classic initialization mode or simplified initialization mode.

To inherit initial conditions in classic initialization mode:

- 1 Select Dialog in the Source of initial output value drop-down list.
- **2** Set the **Initial output** parameter to [] (empty matrix).
- 3 Click OK.

Note For all other driving blocks, specify an explicit initial output value.

To inherit initial conditions in simplified initialization mode:

- 1 Select Input signal in the Source of initial output value drop-down list.
- 2 Click OK.

The **Initial output** and **Output when disabled** parameters are disabled, and the values are both inherited from the input signal.

For more information on classic and simplified initialization mode, see "Underspecified initialization detection".

Outport Blocks in a Top-Level System

Outport blocks in a top-level system have two uses: to supply external outputs to the workspace, which you can do by using either the

Configuration Parameters dialog box or the sim command, and to provide a means for analysis functions to obtain output from the system.

• To supply external outputs to the workspace, use the **Configuration Parameters** dialog box (see Exporting Output Data to the MATLAB Workspace) or the sim command (see sim). For example, if a system has more than one Outport block and the save format is array, the following command

[t,x,y] = sim(...);

writes y as a matrix, with each column containing data for a different Outport block. The column order matches the order of the port numbers for the Outport blocks.

If you specify more than one variable name after the second (state) argument, data from each Outport block is written to a different variable. For example, if the system has two Outport blocks, to save data from Outport block 1 to speed and the data from Outport block 2 to dist, you could specify this command:

[t,x,speed,dist] = sim(...);

• To provide a means for the linmod and trim analysis functions to obtain output from the system (see "Linearizing Models")

Connecting Buses to Root Level Outports

A root level Outport of a model can accept a virtual bus only if all elements of the bus have the same data type. The Outport block automatically unifies the bus to a vector having the same number of elements as the bus, and outputs that vector.

If you want a root level Outport of a model to accept a bus signal that contains mixed types, you must select the Outport's **Specify properties via bus object** parameter and set the Outport's **Bus object for validating input bus** parameter to the name of a bus object that defines the type of bus that the Outport produces. If the bus signal is virtual, it will be converted to nonvirtual, as described in "Automatic Bus Conversion". See "Using Bus Objects" more information.

Outport

An Outport in a conditionally executed subsystem that is connected to a bus that contains mixed data types cannot be configured to reset and have initial values specified.

Data Type Support

The Outport block accepts complex or real signals of any data type supported by Simulink software. An Outport block can also accept fixed-point and enumerated data types if the block is not a root-level output port. The complexity and data type of the block's output are the same as those of its input. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

The elements of a signal array connected to an Outport block can be of differing complexity and data types except in the following circumstance: If the output port is in a conditionally executed subsystem and the initial output is specified, all elements of an input array must be of the same complexity and data types.

Typical Simulink data type conversion rules apply to an output port's **Initial output** parameter. If the initial output value is in the range of the block's output data type, Simulink software converts the initial output to the output data type. If the specified initial output is out of the range of the output data type, Simulink software halts the simulation and signals an error.

Parameters and Dialog Box

The Main pane of the Outport block dialog box appears as follows:

Sink Block Parameters: Out1
Outport
Provide an output port for a subsystem or model. The 'Output when disabled' and 'Initial output' parameters only apply to conditionally executed subsystems. When a conditionally executed subsystem is disabled, the output is either held at its last value or set to the 'Initial output'.
Main Signal Attributes
Port number:
1
Icon display: Port number
Source of initial output value: Dialog
Output when disabled: held
Initial output:
OK <u>C</u> ancel <u>H</u> elp <u>Apply</u>

The **Signal Attributes** pane of the Output block dialog appears as follows:

🙀 Sink Block Parameters: Out 1 🛛 🔀 🔀
Outport
Provide an output port for a subsystem or model. The 'Output when disabled' and 'Initial output' parameters only apply to conditionally executed subsystems. When a conditionally executed subsystem is disabled, the output is either held at its last value or set to the 'Initial output'.
Main Signal Attributes
Specify properties via bus object
Bus object for validating input bus:
BusObject
Output as nonvirtual bus in parent model
Port dimensions (-1 for inherited):
-1
Sample time (-1 for inherited):
1
Minimum: Maximum:
Data type: Inherit: auto
Signal type: auto
Sampling mode: auto
OK Cancel Help Apply

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Port number

Specify the port number of the block.

Settings

Default: 1

This parameter controls the order in which the port that corresponds to the block appears on the parent subsystem or model block.

Command-Line Information

Icon display

Specify the information to be displayed on the icon of this input port.

Settings

Default: Port number

Signal name

Display the name of the signal connected to this port (or signals if the input is a bus).

- Port number Display port number of this port.
- Port number and signal name Display both the port number and the names of the signals connected to this port.

Command-Line Information

Source of initial output value

Select the source of the initial output value of the Outport block.

Settings

Default: Dialog

Dialog

The initial output value is specified by the **Initial output** parameter on the dialog.

Input signal

The initial output value is inherited from the input signal.

Tips

- If you are using classic initialization mode, you *must* select Dialog. Selecting Input signal will cause an error.
- If you are using classic initialization mode and want to inherit the initial output value, set this parameter to Dialog, and then specify [] (empty matrix) for the **Initial output** value. For more information, see Inheriting Initial Conditions on page 711.

Dependencies

This parameter applies only if the Outport resides in an Enabled Subsystem.

Selecting Dialog enables the following parameters:

- Output when disabled
- Initial output

Command-Line Information

Output when disabled

Specify what happens to the block output when the subsystem is disabled.

Settings

Default: held

```
held
```

Output is held when the subsystem is disabled.

```
reset
```

Output is reset when the subsystem is disabled.

Tips

- If you are connecting the output of a conditionally executed subsystem to a Merge block, set **Output when disabled** to held to ensure consistent simulation results.
- If you are using simplified initialization mode, you must select held when connecting a conditionally executed subsystem to a Merge block.

Dependencies

- This parameter is enabled by selecting Dialog in Source of initial output value.
- This parameter applies only if the Outport resides in an Enabled Subsystem.

Command-Line Information

Initial output

For conditionally executed subsystems, specify the block output before the subsystem executes and while it is disabled.

Settings

Default: []

Simulink software does not allow the initial output of this block to be inf or NaN.

Tips

- If you are using classic initialization mode, specify [] (empty matrix) to inherit the initial output value from the input signal. For more information, see Inheriting Initial Conditions on page 711.
- You can also specify [] if you are using classic initialization mode, and your model does not depend on the initial output of the conditionally executed subsystem.
- If you are using simplified initialization mode, you cannot specify [], you must specify an explicit value. If you do not want to specify an initial output value for this block, set **Source of initial output value** to Input signal.

Dependencies

- This parameter is enabled by selecting Dialog in Source of initial output value.
- This parameter applies only if the Outport resides in an Enabled Subsystem.

Command-Line Information

Specify properties via bus object

Use a bus object to define the structure of the bus that is input or output by this block.

Settings

Default: Off

🔽 On

Use a bus object to define the structure of the bus that is input or output by this block.

C Off

Do not use a bus object to define the structure of the bus that is input or output by this block.

Tips

Selecting this parameter is required if the bus is nonvirtual (including a nonvirtual bus that was converted from a virtual bus as described in "Automatic Bus Conversion") and is optional otherwise.

Dependencies

This parameter enables Bus object for validating input bus.

This parameter enables **Output as nonvirtual bus in parent model**.

Command-Line Information

Bus object for validating input bus

Specify the name of the bus object that defines the structure that a bus must have to be connected to this port.

Settings

Default: BusObject

A bus object is an instance of class Simulink.Bus that is defined in the base workspace.

Tips

At the beginning of a simulation or when you update the model's diagram, Simulink software checks whether the bus connected to this port has the specified structure. If not, Simulink software displays an error message.

Dependencies

This parameter is enabled by Specify properties via bus object.

Command-Line Information

Output as nonvirtual bus in parent model

Select this parameter if you want the bus emerging in the parent model to be nonvirtual, in which case C code generated from the model uses a C structure to define the structure of the bus signal output by this block.

Settings

Default: Off

🔽 On

Select this parameter if you want the bus emerging in the parent model to be nonvirtual, in which case C code generated from the model uses a C structure to define the structure of the bus signal output by this block.

C Off

Do not select this parameter if you want the bus emerging in the parent model to be nonvirtual, in which case C code generated from the model uses a C structure to define the structure of the bus signal output by this block.

Tips

- The bus that is input to the Outport can be virtual or nonvirtual, regardless of the setting of **Output as nonvirtual bus in parent model**.
- All signals in a nonvirtual bus must have the same sample time, even if the elements of the associated bus object specify inherited sample times. Any bus operation that would result in a nonvirtual bus that violates this requirement generates an error. Therefore, if you select this option all signals in the bus must have the same sample time. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus, to allow the signal or bus to be included in a nonvirtual bus.

Dependencies

This parameter is enabled by Specify properties via bus object.

Command-Line Information

Port dimensions (-1 for inherited)

Specify the dimensions that a signal must have in order to be connected to this Outport block.

Settings

Default: -1

Valid values are:

-1	A signal of any dimensions can be connected to this port.
Ν	The signal connected to this port must be a vector of size N.
[R C]	The signal connected to this port must be a matrix having R rows and C columns.

Dependencies

This parameter is enabled by clearing **Specify properties via bus object**.

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

⊡On

Lock scaling of outputs.

□ Off

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Signal type

Specify the numeric type of the signal output by this block.

Settings

Default: auto

auto

Output the numeric type of the signal that is connected to its input.

real

Output a real-valued signal. The signal connected to this block must be real. If it is not, Simulink software displays an error if you try to update the diagram or simulate the model that contains this block.

complex

Output a complex signal. The signal connected to this block must be complex. If it is not, Simulink software displays an error if you try to update the diagram or simulate the model that contains this block.

Command-Line Information

Sampling mode

Specify the sampling mode (Sample based or $\ensuremath{\mathsf{Frame}}$ based) that the input signal must match.

Settings

Default: auto

auto

Accept any sampling mode.

Sample based

The output signal is sample-based.

Frame based

The output signal is frame-based.

Tips

To generate frame-based signals, you must have the Signal Processing Blockset product installed.

Command-Line Information

Minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Outport

Data type

Specify the output data type of the external input.

Settings **Default:** Inherit: auto Inherit: auto A rule that inherits a data type double Data type is double. single Data type is single. int8 Data type is int8. uint8 Data type is uint8. int16 Data type is int16. uint16 Data type is uint16. int32 Data type is int32. uint32 Data type is uint32. boolean Data type is boolean. fixdt(1,16,0) Data type is fixed point fixdt(1,16,0). fixdt(1,16,2^0,0) Data type is fixed point fixdt(1,16,2^0,0).

Enum: <class name> Data type is enumerated.

<data type expression> The name of a data type object, for example Simulink.NumericType

Tips

This parameter can also be an expression that evaluates to a data type, for example, float('single')

Command-Line Information

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias Enter slope and bias.

Best precision Specify best-precision values. This option appears for some blocks.

Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Outport

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Characteristics	Sample Time	Inherited from driving block		
	Dimensionalized	Yes		
	Multidimensionalized	Yes		

Purpose	Rearrange	dimensions	of mul	ltidimen	sional	array	dimen	sions
---------	-----------	------------	--------	----------	--------	-------	-------	-------

Library

Math Operations

Description

The block reorders the elements of the input signal so that they are in the order that you specify in the **Order** parameter.

Data Type Support

Accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types. Output must be the same data type as the input.

Parameters and Dialog Box

🙀 Function Block Par	ameters: Per	mute Dimensio	115		×
 Permute Dimensions— 					
Rearrange the elemen by exchanging its first permutation to be appl parameter must be an input signal. The eleme values 1 to N. For exa results in a 3 x 5 outpu	and third dimens ied to the dimen N-element vecto ents of the permu mple, the permu	sions. Use the 'Ord sions of the input or where N is the r utation vector mu tation vector [21]	der' parameter to signal. The value number of dimens st be a rearrange applied to a 5x3	specify the e of this sions of the ment of the	
Parameters					
Order:					
[2,1]					
	ок				

Order

Specify the permutation order to apply to the dimensions of the input signal. This parameter is a vector of elements, where the number of elements in the vector is the number of dimensions of the input signal.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

See Also Math Function (transpose), permute (in the MATLAB reference documentation)

Polynomial

Purpose	Perform evaluation of polynomial coefficients on input values
Library	Math Operations
Description	The Polynomial block uses a coefficients parameter to evaluate a real polynomial for the input value.
> P(u) O(P) = 5	You define a set of polynomial coefficients in the form accepted by the MATLAB polyval command. The block then calculates $P(u)$ at each time step for the input u . Inputs and coefficients must be real.
Data Type Support	The Polynomial block accepts real signals of types double or single. The Polynomial coefficients parameter must be of the same type as the inputs. The output data type is set to the input data type.
Parameters and Dialog Box	Function Block Parameters: Polynomial Polyval (mask) (link) Polynomial evaluation. Calculates P(u) given by the polynomial coefficient array P. P is sorted highest order to lowest order, the form accepted by MATLAB's polyval Parameters Polynomial coefficients: [+2.081618890e-019, -1.441693666e-014, +4.719686976e-010, -8.536869453€
	OK Cancel Help Apply

Polynomial coefficients

Values are in coefficients of a polynomial in MATLAB polyval form, with the first coefficient representing x^N , then decreasing in order until the last coefficient, which represents the constant for the polynomial. See polyval in the MATLAB documentation for more information.

Characteristics

Direct Feedthrough	Yes
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	Yes
Zero Crossing	No

Purpose Compute index and fraction for Interpolation Using Prelookup block

Library

Lookup Tables

Description

The Prelookup block is intended for use with the Interpolation Using Prelookup block. The Prelookup block calculates the index and interval fraction that specifies how its input value relates to the breakpoint data set. You feed the resulting index and fraction values into an Interpolation Using Prelookup block to interpolate an *n*-dimensional table. This combination of blocks performs the equivalent operation that a single instance of the Lookup Table (n-D) block performs. However, the Prelookup and Interpolation Using Prelookup blocks offer greater flexibility that can provide more efficient simulation and code generation.

To use this block, you must define a set of breakpoint values. In normal use, this breakpoint data set corresponds to one dimension of the **Table data** parameter in an Interpolation Using Prelookup block. The block generates a pair of outputs for each input value by calculating:

- The index of the breakpoint set element that is less than or equal to the input value and forms an interval containing the input
- The resulting fractional value that is a number $0 \le f < 1$, representing the input value's normalized position on the breakpoint interval between the index and the next index value for in-range input

For example, if the breakpoint data set is

[0 5 10 20 50 100]

and the input value u is 55, the index is 4 and the fractional value is 0.1, denoted respectively as k and f on the block. The index value is zero-based.

Prelookup

NoteThe interval fraction can be negative or greater than 1 for
out-of-range input. See the documentation for the Process out of
range input block parameter for more information.Data Type
SupportThe Prelookup block accepts real signals of any numeric data type
supported by Simulink software, except Boolean. The Prelookup block
supports fixed-point data types for signals and breakpoint data.
For a discussion on the data types supported by Simulink software, see
"Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

The Main pane of the Prelookup block dialog box appears as follows:

Function Block Parameters: Prelookup
PreLookup
Locate the position of input u on the set of intervals defined by "Breakpoint data." Outputs an index k and a fraction f where k specifies the interval containing the input and f is the input's normalized position on the interval.
Main Signal Attributes Breakpoint Attributes
Breakpoint data: [10:10:110] Edit
Index search method: Binary search
Begin index search using previous index result
Output only the index
Process out-of-range input: Clip to range
Use last breakpoint for input at or above upper limit
Action for out of range input: None
Sample time (-1 for inherited): -1
OK Cancel Help Apply

Breakpoint data

The set of numbers to search. Specify a strictly monotonically increasing vector that contains two or more elements.

Click the **Edit** button to open the Lookup Table Editor (see "Lookup Table Editor" in the Simulink documentation).

Index search method

Binary search, Evenly spaced points, or Linear search. Use Binary search or Linear search in combination with **Begin**

index search using previous index result for more efficient performance when the input values do not change much from one time step to the next. For large breakpoint data sets, a linear search can be very slow if the input value changes by more than a few intervals from one time step to the next. Use Evenly spaced points if the elements of the **Breakpoint data** parameter are spaced apart evenly.

Begin index search using previous index result

Select this option if you want the block to start its search using the index that was found at the previous time step. For inputs that change slowly with respect to the interval size, you can realize a large performance gain.

Output only the index

Select this option if you want the block to output only the resulting index value.

Typical applications include:

- Feeding a Direct Lookup Table (n-D) block, with no interpolation on the interval
- Feeding selection ports of a sub-table selection for an Interpolation Using Prelookup block
- Performing nonlinear quantizations

Process out-of-range input

Specifies how to handle out-of-range input. Options include:

• Clip to range

If the input is less than the first breakpoint, return the index of the first breakpoint (i.e., 0) and 0 for the interval fraction. If the input is greater than the last breakpoint, return the index of the next-to-last breakpoint and 1 for the interval fraction.

Suppose the range is $[1 \ 2 \ 3]$ and you select this option. If the input is 0.5, the index is 0 and the interval fraction is 0; if the input is 3.5, the index is 1 and the interval fraction is 1.

• Linear extrapolation

If the input is less than the first breakpoint, return the index of the first breakpoint (i.e., 0) and an interval fraction representing the linear distance from the input to the first breakpoint. If the input is greater than the last breakpoint, return the index of the next-to-last breakpoint and an interval fraction that represents the linear distance from the next-to-last breakpoint to the input.

Suppose the range is $[1 \ 2 \ 3]$ and you select this option. If the input is 0.5, the index is 0 and the interval fraction is -0.5; if the input is 3.5, the index is 1 and the interval fraction is 1.5.

The Prelookup block supports Linear extrapolation only if all of these conditions apply:

- The block input, breakpoint data, and fraction output specify floating-point data types.
- The data type of its index specifies a built-in integer.

Use last breakpoint for input at or above upper limit

Specifies how to index inputs that are greater than or equal to the last breakpoint. If enabled when the block input equals the last breakpoint, the block returns the index of the last element in the breakpoint data set and 0 for the interval fraction. If disabled in this situation, the block returns the index of the next-to-last breakpoint and 1 for the interval fraction. Note that the index value is zero-based.

This parameter is visible only if **Output only the index** is cleared and **Process out-of-range input** is Clip to range. However, if **Output only the index** is selected and **Process out-of-range input** is Clip to range, the block behaves as if this parameter is enabled even though it is invisible. **Note** If you enable the **Use last breakpoint for input at or above upper limit** parameter for a Prelookup block, you must also enable the **Valid index input may reach last index** parameter for the Interpolation Using Prelookup block to which it connects. This action allows the blocks to use the same indexing convention when accessing the last elements of their **Breakpoint data** and **Table data** parameters.

Action for out of range input

Specifies whether to produce a warning or error message if the input is out of range. The options are

- None the default, no warning or error message
- Warning display a warning message in the MATLAB Command Window and continue the simulation
- Error halt the simulation and display an error message in the Simulation Diagnostics Viewer

Sample time

Specifies the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink User's Guide for more information.

The **Signal Attributes** pane of the Prelookup block dialog box appears as follows:

Function Block Parameters: Prelookup	×
PreLookup	
Locate the position of input u on the set of intervals defined by "Breakpoint data." Outputs ar index k and a fraction f where k specifies the interval containing the input and f is the input's normalized position on the interval.	1
Main Signal Attributes Breakpoint Attributes	
Index data type: uint32 >>	
Fraction data type: Inherit: Inherit via internal rule >>	
Lock output scaling against changes by the autoscaling tool	
Integer rounding mode: Floor	
	_
OK Cancel Help Apply	

Index data type

Specify how the data type of the index is designated. You can choose a built-in integer data type from the list, or you can specify an integer data type using a fixed-point representation. The data type that you specify must be capable of indexing all elements in the **Breakpoint data** parameter.

Click the **Show data type assistant** button display the **Data Type Assistant**, which helps you set the **Index data type** parameter. See "Using the Data Type Assistant" in the *Simulink User's Guide* for more information.

Fraction data type

Specify how the data type of the interval fraction is designated. You can choose a built-in data type from the list, specify that the data type is inherited through an internal rule, or specify a fixed-point data type using either the [Slope Bias] or the binary-point-only scaling representation. If using the [Slope Bias] representation, the scaling must be trivial — i.e., the slope is 1 and the bias is 0. If using the binary-point-only representation, the fixed power-of-two exponent must be less than or equal to zero.

Click the Show data type assistant button b

See "Using the Data Type Assistant" in the *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Block parameters such as **Breakpoint data** are always rounded to the nearest representable value. To control the rounding of a block parameter, enter an expression using a MATLAB rounding function into the mask field.

The **Breakpoint Attributes** pane of the Prelookup block dialog box appears as follows:

Prelookup

Function Block Parameters: Prelookup
PreLookup
Locate the position of input u on the set of intervals defined by "Breakpoint data." Outputs an index k and a fraction f where k specifies the interval containing the input and f is the input's normalized position on the interval.
Main Signal Attributes Breakpoint Attributes
Breakpoint minimum: Breakpoint maximum:
Breakpoint data type: Inherit: Same as input >>
<u>QK</u> <u>Cancel</u> <u>Help</u> <u>Apply</u>

Breakpoint minimum

Specify the minimum value that the breakpoint data can have. The default value, [], is equivalent to -Inf.

Breakpoint maximum

Specify the maximum value that the breakpoint data can have. The default value, [], is equivalent to Inf.

Breakpoint data type

Specify the breakpoint data type. You can set it to:

• A rule that inherits a data type, for example, Inherit: Same as input

٠	The name of	'a built-in	data t	type, for	example,	single

- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button by to display the Data Type Assistant, which helps you set the **Breakpoint data type** parameter.

See "Using the Data Type Assistant" in the *Simulink User's Guide* for more information.

Tip Specify a breakpoint data type different from the input data type for these cases:

- Lower memory requirement for storing breakpoint data that uses a smaller type than the input signal
- Sharing of prescaled breakpoint data between two Prelookup blocks with different input data types
- Sharing of custom storage breakpoint data in Real-Time Workshop generated code for blocks with different input data types

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

Dimensionalized	Yes
Zero Crossing	No

See Also Interpolation Using Prelookup

Probe

Purpose	Output signal's attributes, including width, dimensionality, sample time, and/or complex signal flag	
Library	Signal Attributes	
Description ⊁:0, т₅:[0 0], G:	The Probe block outputs selected information about the signal on its input. The block can output the input signal's width, dimensionality, sample time, and/or a flag indicating whether the input is a complex-valued signal. The block has one input port. The number of output ports depends on the information that you select for probing, that is, signal dimensionality, sample time, and/or complex signal flag. Each probed value is output as a separate signal on a separate output port. The block accepts real or complex-valued signals of any built-in data type. It outputs signals of type double. During simulation, the block's icon displays the probed data.	
Data Type Support	The Probe block accepts and outputs any data type supported by Simulink software, including fixed-point and enumerated data types.	
	For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.	

Parameters and Dialog Box

The Main pane of the Probe block dialog appears as follows:

Function Block Parameters: Probe				
Probe				
Probe a line for its width, sample time, and dimensions. Detect if it is complex signal or framed signal.				
Main Signal Attributes				
Probe width				
Probe sample time				
Detect complex signal				
Probe signal dimensions				
✓ Detect framed signal				
OK Cancel Help Apply				

Probe width

Select to output the width, or number of elements, of the probed signal.

Probe sample time

Select to output the sample time of the probed signal. The output is a 2x1 vector that specifies the period and offset of the sample time, respectively. See "How to Specify the Sample Time" for more information.

Detect complex signal

Select to output 1 if the probed signal is complex; otherwise, 0.

Probe signal dimensions

Select to output the dimensions of the probed signal.

Detect framed signal

Select to output 1 if the probed signal is framed; otherwise, 0.

The **Signal Attributes** pane of the Probe block dialog appears as follows:

🙀 Function Block Parameters: Probe				
Probe				
Probe a line for its width, sample time, and dimensions. Detect if it is complex signal or framed signal.				
Main Signal Attributes				
Data type for width: double				
Data type for sample time: double				
Data type for signal complexity: double				
Data type for signal dimensions: double				
Data type for signal frames: double				
OK Cancel Help Apply				

Note The Probe block ignores the **Data type override** setting of the Fixed-Point Tool.

Data type for width

Select the output data type for the width information.

Data type for sample time

Select the output data type for the sample time information.

Data type for signal complexity

Select the output data type for the complexity information.

Data type for signal dimensions Select the output data type for the dimensions information.

Data type for signal frames

Select the output data type for the frames information.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	Yes
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

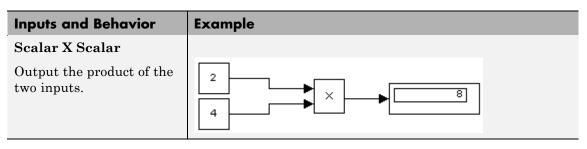
Product

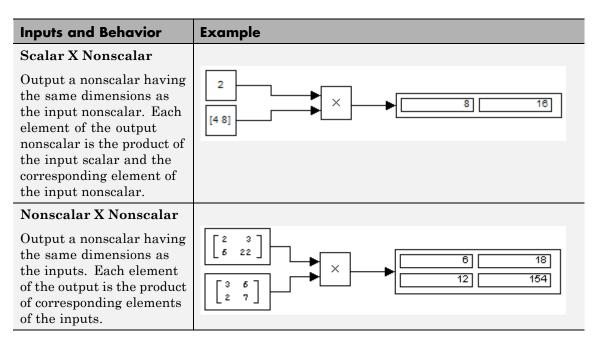
Purpose Multiply and divide scalars and nonscalars or multiply and invert matrices

Library Math Operations

Description

When used with default parameter values, the Product block outputs the result of multiplying its two inputs, which can be two scalars, a scalar and a nonscalar, or two nonscalars that have the same dimensions. The default parameter values that specify this behavior are:


- Multiplication: Element-wise(.*)
- Number of Inputs: 2


Default Product Block Use

Setting non-default values for either of these parameters can change a Product block to be functionally equivalent to a Divide block or a Product of Elements block. See the documentation of those two blocks for more information.

If all you need is to multiply two inputs to create an output, you can use the Product block with default parameter values. If you need additional capabilities, see "Product Block Capabilities" on page 2-765.

The following table shows the output of the Product block for some typical inputs using default block parameter values.

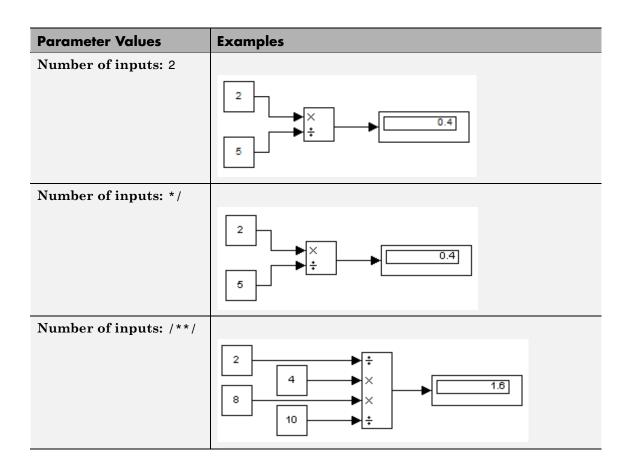
Product Block Capabilities

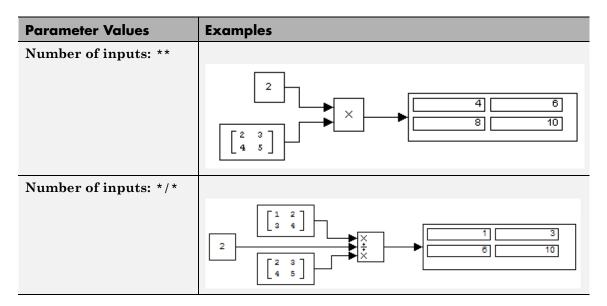
The Product block, the Divide block, and the Product of Elements block are actually the same underlying block with different default values for the **Number of Inputs** parameter. All three blocks can therefore provide the same capabilities. The Product block (or the Divide block or Product of Elements block if appropriately configured) can:

- Numerically multiply and divide any number of scalar, vector, or matrix inputs
- Perform matrix multiplication and division on any number of matrix inputs

The Product block performs scalar or matrix multiplication, depending on the value of the block's **Multiplication** parameter. The block accepts one or more inputs, depending on the block's **Number of** **inputs** parameter. The **Number of inputs** parameter also specifies the operation to be performed on each input.

The Product block can input any combination of scalars, vectors, and matrices for which the operation to be performed has a mathematically defined result. The block performs the specified operations on the inputs, then outputs the result.


The Product block has two modes: *Element-wise mode*, which processes nonscalar inputs element by element, and *Matrix mode*, which processes nonscalar inputs as matrices. The next two sections describe these two modes.


Element-wise Mode

When the value of the **Multiplication** parameter is element-wise(.*), the Product block is in *Element-wise mode*, in which it operates on the individual numeric elements of any nonscalar inputs. The MATLAB equivalent is the .* operator. In element-wise mode, the Product block can perform a variety of multiplication, division, and arithmetic inversion operations.

The value of the **Number of inputs** parameter controls both how many inputs exist and whether each is multiplied or divided to form the output. When the Product block in Element-wise mode has only one input, it is functionally equivalent to a Product of Elements block. When the block has multiple inputs, any nonscalar inputs must have identical dimensions, and the block outputs a nonscalar with those dimensions. To calculate the output, the block first expands any scalar input to a nonscalar that has the same dimensions as the nonscalar inputs.

This table shows the output of the Product block for some typical inputs, using the indicated values for the **Number of inputs** parameter.

Matrix Mode

When the value of the **Multiplication** parameter is matrix(*), the Product block is in *Matrix mode*, in which it processes nonscalar inputs as matrices. The MATLAB equivalent is the * operator. In Matrix mode, the Product block can invert a single square matrix, or multiply and divide any number of matrices that have dimensions for which the result is mathematically defined.

The value of the **Number of inputs** parameter controls both how many inputs exist and whether each input matrix is multiplied or divided to form the output. The syntax of **Number of inputs** is the same as in Element-wise mode. The difference between the modes is in the type of multiplication and division that occur.

Data TypeThe Product block accepts real or complex signals of any numeric data
type supported by Simulink software including fixed-point data types.
For a discussion of the data types supported by Simulink software, see
"Data Types Supported by Simulink".

The Product block does not support numeric division for complex signals with boolean or fixed-point data types. For other types, the block accepts complex signals as divisors only when the input and output signals all specify the same built-in data type. In this case, however, the block ignores its specified rounding mode.

The Product block accepts multidimensional signals when operating in Element-wise mode, but not when operating in Matrix mode. See "Signal Dimensions", "Element-wise Mode" on page 2-766, and "Matrix Mode" on page 2-768 for more information.

Parameters and Dialog Box

The Main pane of the Product block dialog box appears as follows:

🙀 Function Blo	ck Parameters: P	roduct		×
Product				
Multiply or divide inputs. Choose element-wise or matrix product and specify one of the following: a) * or / for each input port (e.g., **/*) b) scalar specifies the number of input ports to be multiplied When there is only one input port for element-wise product, multiply or divide elements over all dimensions or one specified dimension If / is specified with matrix product, compute the inverse of the corresponding input.				
Main Signal Attributes				
Number of inputs:				
2				
Multiplication: Element-wise(.*)				
Sample time (-1 for inherited):				
1				
	OK	Cancel	Help	Apply
	-			

Signal Attributes Pane

The **Signal Attributes** pane of the Product block dialog box appears as follows:

Function Block Parameters: Product				
Product				
Product Multiply or divide inputs. Choose element-wise or matrix product and specify one of the following: a) * or / for each input port (e.g., **/*) b) scalar specifies the number of input ports to be multiplied When there is only one input port for element-wise product, multiply or divide elements over all dimensions or one specified dimension If / is specified with matrix product, compute the inverse of the corresponding input.				
Main Signal Attributes				
Require all inputs to have the same data type				
Output minimum: Output maximum:				
Output data type: Inherit: Inherit via internal rule >>				
Integer rounding mode: Zero				
Saturate on integer overflow				
OK Cancel Help Apply				

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Number of inputs

Control two properties of the Product block:

- The number of input ports on the block
- Whether each input is multiplied or divided into the output

Settings

Default:2

• 1 or * or /

Has one input. In Element-wise mode, the input is processed as described for the Product of Elements block. In Matrix mode, if the parameter value is 1 or * the block outputs the input value. If the value is / the input must be a square matrix (including a scalar as a degenerate case) and the block outputs the matrix inverse. See "Element-wise Mode" on page 2-766 and "Matrix Mode" on page 2-768 for more information.

• An integer value > 1

Has number of inputs given by the integer value. The inputs are multiplied together in Element-wise mode or Matrix mode, as specified by the **Multiplication** parameter. See "Element-wise Mode" on page 2-766 and "Matrix Mode" on page 2-768 for more information.

• An unquoted string of two or more * and / characters

Has the number of inputs given by the length of the string. Each input that corresponds to a * character is multiplied into the output. Each input that corresponds to a / character is divided into the output. The operations occur in Element-wise mode or Matrix mode, as specified by the **Multiplication** parameter. See "Element-wise Mode" on page 2-766 and "Matrix Mode" on page 2-768 for more information.

Dependencies

Setting Number of Inputs to * and selecting Element-wise(.*) for Multiplication enable the following parameter:

• Multiply over

Command-Line Information

Multiplication

Specify whether the Product block operates in Element-wise mode or Matrix mode.

Settings Default: Element-wise(.*)

```
Element-wise(.*)
```

Operate in Element-wise mode.

Matrix(*)

Operate in Matrix mode.

Dependencies

Selecting Element-wise(.*) and setting Number of Inputs to * enable the following parameter:

• Multiply over

Command-Line Information

Multiply over

Affect multiplication on matrix input.

Settings

Default: All dimensions

All dimensions

Output a scalar that is product of all elements of the matrix, or the product of their inverses, depending on the value of **Number** of inputs.

Specified dimension

Output a vector, the composition of which depends on the value of the **Dimension** parameter.

Dependencies

This parameter is enabled by selecting Element-wise(.*) for Multiplication and setting Number of Inputs to * or 1 or /. Setting the parameter to Specified Dimension enables the Dimension parameter.

Command-Line Information

Product

Dimension

Affect multiplication on matrix input.

Settings

Default: 1

Minimum: 1

Maximum: 2

1

Output a vector that contains an element for each column of the input matrix.

2

Output a vector that contains an element for each row of the input matrix.

Tips

Each element of the output vector contains the product of all elements in the corresponding column or row of the input matrix, or the product of the inverses of those elements, depending on the value of **Number of inputs**:

• 1 or *

Multiply the values of the column or row elements

• /

Multiply the inverses of the column or row elements

Dependencies

This parameter is enabled by selecting **Specified Dimension** for **Multiply over**.

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Product

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

🔽 On

Require that all inputs have the same data type.

C Off

Do not require that all inputs have the same data type.

Command-Line Information

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

₽On

Lock scaling of outputs.

COff

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Zero

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Saturate on integer overflow

Specify whether overflows saturate.

Settings Default: Off

🔽 On

Overflows saturate.

C Off

Overflows do not saturate.

Tips

- When you select this check box, saturation applies to every internal operation on the block, not just the output or result.
- In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Command-Line Information

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the Hardware Implementation configuration parameters pane is set to ASIC/FPGA. Simulink software chooses the output data type without regard to hardware constraints. Otherwise. Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

- Inherit: Inherit from 'Constant value' Use data type of **Constant value** parameter. This option appears for some blocks.
- Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2⁰,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

Product

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the Show data type assistant button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias

Enter slope and bias.

- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Product

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting **Scaling** > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics	Direct Feedthrough	Yes	
	Sample Time	Specified in the Sample time parameter	
	Scalar Expansion	Yes	
	Dimensionalized	Yes	
	Multidimensionalized	Yes, only when the Multiplication parameter specifies Element-wise(.*)	
	Zero Crossing	No	

See Also • Divide

- Dot Product
- Product of Elements

Product of Elements

Purpose Copy or invert one scalar input, or collapse one nonscalar input

Library

Math Operations

Description

× T >

The Product of Elements block inputs one scalar, vector, or matrix. You can use the block to:

- Copy a scalar input unchanged
- Invert a scalar input (divide 1 by it)
- Collapse a vector or matrix to a scalar by multiplying together all elements or their inverses
- Collapse a matrix to a vector by multiplying together the elements or element inverses of each row or column

The Product of Elements block is functionally a Product block that has two block parameter values preset:

- Multiplication: Element-wise(.*)
- Number of Inputs: *

Setting non-default values for either of those parameters can change a Product of Element block to be functionally equivalent to a Product block or a Divide block. See the documentation of those two blocks for more information.

Parameters and Dialog Box

The Product of Elements block has the same parameters and dialog box as the Product block, plus the additional parameter **Multiply Over**, which has the default value All Dimensions:

Main Signal Attributes		
Number of inputs:		
*		
Multiplication:	Element-wise(,*)	
Multiply over:	All dimensions	
Sample time (-1 for inherited):		
-1		

If you set **Multiply Over** to Specified Dimension, the **Dimension** parameter appears below it.

Main Signal Attributes		
Number of inputs:		
*		
Multiplication: Element-wise(.*)		
Multiply over: Specified dimension		
Dimension:		
1		
Sample time (-1 for inherited):		
-1		

To just copy, invert, or collapse one input to create an output, you can use the Product of Elements block with default values for all parameters except **Number of elements**, **Multiply over**, and **Dimension**, whose values you might need to change. For additional capabilities, see the Product block documentation, which also describes the capabilities of the Product of Elements block's "Signal Attributes Pane" on page 2-770.

Number of elements

This parameter is the same as in the Product block, but it must be set to * (the default) or 1 or / to achieve the effect of a Product of Elements block.

If Number of elements is * or 1 the block:

- Copies a scalar input unchanged
- Collapses a vector input to a scalar by multiplying all of its elements together
- Collapses a matrix input to a scalar or vector by multiplying its elements together as specified by the **Multiply over** parameter.

If **Number of elements** is / the block icon changes to \square and the block:

- Outputs the arithmetic inverse of a scalar input
- Collapses a vector input to a scalar by multiplying the inverses of all of its elements together
- Collapses a matrix input to a scalar or vector by multiplying the inverses of its elements together as specified by the **Multiply over** parameter.

Multiply over

This parameter appears only when **Multiplication** is Element-wise(.*) and **Number of Inputs** is * or 1 or /. The parameter affects only a matrix input, and has no effect on a scalar or vector input. The possible values are:

All dimensions — The block outputs a scalar that is product of all elements of the matrix, or the product of their inverses, depending on the value of **Number of elements**.

Specified dimension — The block outputs a vector, the composition of which depends on the value of the **Dimension** parameter.

Dimension

This parameter appears only when the **Multiply over** parameter appears and is set to **Specified Dimension**. The parameter affects only a matrix input, and must be set to 1 for a scalar or vector input. The possible values are:

1 — Output a vector that contains an element for each column of the input matrix.

2 — Output a vector that contains an element for each row of the input matrix.

Each element of the output vector contains the product of all elements in the corresponding column or row of the input matrix, or the product of the inverses of those elements, depending on the value of **Number of elements**:

• 1 or *

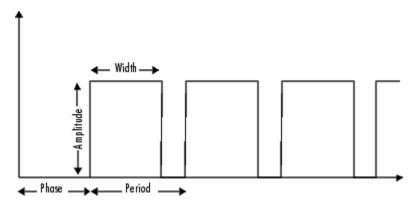
Multiply the values of the column or row elements

• /

Multiply the inverses of the column or row elements

Examples This table shows the output of the Product of Elements block for some typical inputs using default block parameter values, except as shown in the table.

Parameter Values	Examples
Multiplication: Element-wise(.*)	
Number of elements: *	
Multiplication: Element-wise(./)	
Number of elements: /	
Multiplication: Element-wise(.*)	
Number of elements: *	
Multiplication: Element-wise(.*)	
Number of elements: *	
Multiply Over: All Dimensions	
Multiplication: Element-wise(.*)	
Number of elements: *	
Multiply Over: Specified Dimension	
Dimension: 1	
Multiplication: Element-wise(.*)	
Number of elements: /	0.1867
Multiply Over: Specified Dimension	$\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 \\ \Pi \end{bmatrix} \longrightarrow \begin{bmatrix} 0.05 \\ 0.05 \end{bmatrix}$
Dimension: 2	


Purpose Generate square wave pulses at regular intervals

Library Sources

Description

The Pulse Generator block generates square wave pulses at regular intervals. The block's waveform parameters, **Amplitude**, **Pulse Width**, **Period**, and **Phase Delay**, determine the shape of the output waveform. The following diagram shows how each parameter affects the waveform.

The Pulse Generator can emit scalar, vector, or matrix signals of any real data type. To cause the block to emit a scalar signal, use scalars to specify the waveform parameters. To cause the block to emit a vector or matrix signal, use vectors or matrices, respectively, to specify the waveform parameters. Each element of the waveform parameters affects the corresponding element of the output signal. For example, the first element of a vector amplitude parameter determines the amplitude of the first element of a vector output pulse. All the waveform parameters must have the same dimensions after scalar expansion. The data type of the output is the same as the data type of the **Amplitude** parameter.

Use the **Pulse type** parameter to specify whether the block's output is time-based or sample-based. If you select sample-based, the block computes its outputs at fixed intervals that you specify. If you select time-based, Simulink software computes the block's outputs only at times when the output actually changes. This choice can result in fewer computations for computing the block's output over the simulation time period.

Depending on the pulse's waveform characteristics, the intervals between changes in the block's output can vary. For this reason, a time-based Pulse Generator block has a variable sample time. Simulink software uses brown as the sample time color of such blocks (see "Displaying Sample Time Colors" for more information).

Simulink software cannot use a fixed-step solver to compute the output of a time-based pulse generator. If you specify a fixed-step solver for models that contain time-based pulse generators, Simulink software computes a fixed sample time for the time-based pulse generators. Then the time-based pulse generators simulate as sample-based.

Tip If you use a fixed-step solver and the **Pulse type** is time-based, you must choose the step size such that the period, phase delay, and pulse width (in seconds) are integer multiples of the step size. For example, suppose that the period is 4 seconds, the pulse width is 75% (i.e., 3 s), and the phase delay is 1 s. In this case, the computed sample time is 1 s. Therefore, you must choose a fixed-step size that is 1 or that divides 1 exactly (e.g., 0.25). You can guarantee this by setting the fixed-step solver's step size to auto on the **Solver** pane of the Configuration Parameters dialog box.

If you select time-based as the block's pulse type, you must specify the pulse's phase delay and period in units of seconds. If you specify sample-based, you must specify the block's sample time in seconds, using the **Sample Time** parameter, then specify the block's phase delay and period as integer multiples of the sample time. For example, suppose that you specify a sample time of 0.5 second and want the pulse to repeat every two seconds. In this case, you would specify 4 as the value of the block's **Period** parameter.

Data Type Support

The Pulse Generator block outputs real signals of any numeric data type supported by Simulink software, including fixed-point data types. The data type of the output signal is the same as that of the **Amplitude** parameter.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Pulse Generator

Parameters and Dialog Box

Source Block Parameters: Pulse Generator
Pulse Generator
Output pulses:
if (t >= PhaseDelay) && Pulse is on Y(t) = Amplitude else Y(t) = 0 end
Pulse type determines the computational technique used.
Time-based is recommended for use with a variable step solver, while Sample-based is recommended for use with a fixed step solver or within a discrete portion of a model using a variable step solver.
Parameters
Pulse type: Time based
Time (t): Use simulation time
Amplitude:
1
Period (secs):
10
Pulse Width (% of period):
5
Phase delay (secs):
0
☑ Interpret vector parameters as 1-D
OK Cancel Help

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Pulse type

The pulse type for this block: time-based or sample-based. The default is time-based.

Time

Specifies whether to use simulation time or an external signal as the source of values for the output pulse's time variable. If you specify an external source, the block displays an input port for connecting the source. The output pulse differs as follows:

- If you select Use simulation time, the block generates an output pulse where the time variable equals the simulation time.
- If you select Use external signal, the block generates an output pulse where the time variable equals the value from the input port, which can differ from the simulation time.

Note If you select Use external signal and click **OK**, an **Apply** button appears the next time that you open the block dialog box. This **Apply** button disappears if you select Use simulation time and click **OK**.

Amplitude

The pulse amplitude. The default is 1.

Period

The pulse period specified in seconds if the pulse type is time-based or as number of sample times if the pulse type is sample-based. The default is 10 seconds.

Pulse width

The duty cycle specified as the percentage of the pulse period that the signal is on if time-based or as number of sample times if sample-based. The default is 5 percent.

Phase delay

The delay before the pulse is generated specified in seconds if the pulse type is time-based or as number of sample times if the pulse type is sample-based. The default is 0 seconds.

Sample time

The length of the sample time for this block in seconds. This parameter appears only if the block's pulse type is sample-based. See "How to Specify the Sample Time" in the Simulink User's Guide for more information.

Interpret vector parameters as 1-D

If you select this check box and the other parameters are one-row or one-column matrices, after scalar expansion, the block outputs a 1-D signal (vector). Otherwise the output dimensionality is the same as that of the other parameters. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink User's Guide.

Characteristics	Sample Time	Inherited
	Scalar Expansion	Yes, of parameters
	Dimensionalized	Yes
	Zero Crossing	No

Quantizer

Purpose	Discretize input at specified interval
---------	--

Library

Discontinuities

Description

The Quantizer block passes its input signal through a stair-step function so that many neighboring points on the input axis are mapped to one point on the output axis. The effect is to quantize a smooth signal into a stair-step output. The output is computed using the round-to-nearest method, which produces an output that is symmetric about zero.

y = q * round(u/q)

type single or double.

where \boldsymbol{y} is the output, \boldsymbol{u} the input, and \boldsymbol{q} the **Quantization interval** parameter.

The Quantizer block accepts and outputs real or complex signals of

Data Type Support

Parameters and Dialog Box

🙀 Function Block Parameters: Quantizer		
Quantizer		
Discretize input at given interval.		
Parameters		
Quantization interval:		
0.5		
✓ Treat as gain when linearizing		
Sample time (-1 for inherited):		
1		
OK Cancel Help Apply		

Quantization interval

The interval around which the output is quantized. Permissible output values for the Quantizer block are n*q, where n is an integer and q the **Quantization interval**. The default is 0.5.

Treat as gain when linearizing

Simulink software by default treats the Quantizer block as unity gain when linearizing. This is the large signal linearization case. If you clear this box, the linearization routines assume the small signal case and set the gain to zero.

Sample time (-1 for inherited)

Specify the sample time of this Outport block. See "How to Specify the Sample Time" in the online documentation for information on specifying sample times. The output of this block changes at the specified rate to reflect the value of its input.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	Yes, of parameter
	Dimensionalized	Yes
	Zero Crossing	No

Purpose Generate constantly increasing or decreasing signal

Library Sources

Description

The Ramp block generates a signal that starts at a specified time and value and changes by a specified rate. The block's **Slope**, **Start time**, and **Initial output** parameters determine the characteristics of the output signal. All must have the same dimensions after scalar expansion.

Data Type Support

The Ramp block outputs signals of type double.

Parameters and Dialog Box

rameters			
lope:			
itart time:			
D			
nitial output: D			
Interpret vect	or parameters as	:1-D	

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Slope

The rate of change of the generated signal. The default is 1.

Start time

The time at which the signal begins to be generated. The default is 0.

Initial output

The initial value of the signal. The default is **0**.

Interpret vector parameters as 1-D

If you select this option and the other parameters are one-row or one-column matrices, after scalar expansion, the block outputs a 1-D signal (vector). Otherwise, the output dimensionality is the same as that of the other parameters. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Using Simulink documentation.

Characteristics

S	Sample Time	Inherited from driven block
	Scalar Expansion	Yes
	Dimensionalized	Yes
	Zero Crossing	Yes

Random Number

Purpose Generate normally distributed random numbers

Library

Sources

Description

The Random Number block generates normally distributed random numbers. The seed is reset to the specified value each time a simulation starts.

By default, the sequence produced has a mean of 0 and a variance of 1, although you can vary these parameters. The sequence of numbers is repeatable and can be produced by any Random Number block with the same seed and parameters. To generate a vector of random numbers with the same mean and variance, specify the **Seed** parameter as a vector.

To generate uniformly distributed random numbers, use the Uniform Random Number block.

Avoid integrating a random signal, because solvers are meant to integrate relatively smooth signals. Instead, use the Band-Limited White Noise block.

All the block's numeric parameters must be of the same dimension after scalar expansion.

The Random Number block accepts and outputs signals of type double.

Data Type Support

Parameters and Dialog Box

🙀 Source Block Parameters: Random Number 🛛 🛛 🗙
Random Number
Output a normally (Gaussian) distributed random signal. Output is repeatable for a given seed.
Parameters
Mean:
0
Variance:
1
Seed:
0
Sample time:
0.1
▼ Interpret vector parameters as 1-D
OK Cancel Help

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Mean

The mean of the random numbers. The default is **0**.

Variance

The variance of the random numbers. The default is 1.

Seed

The starting seed for the random number generator. The seed must be 0 or a positive integer. The default is 0.

Sample time

The time interval between samples. The default is 0.1, which matches the default sample time of the Band-Limited White Noise block. See "How to Specify the Sample Time" in the online documentation for more information.

Interpret vector parameters as 1-D

If you select this option and the other parameters are one-row or one-column matrices, after scalar expansion, the block outputs a 1-D signal (vector). Otherwise, the output dimensionality is the same as that of the other parameters. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Using Simulink documentation.

Characteristics	Som
Characteristics	San

Sample Time	Specified in the Sample time parameter
Scalar Expansion	Yes, of parameters
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No
	Scalar Expansion Dimensionalized Multidimensionalized

Rate Limiter

Purpose	Limit rate of change of signal
---------	--------------------------------

Library

Discontinuities

Description

The Rate Limiter block limits the first derivative of the signal passing through it. The output changes no faster than the specified limit. The derivative is calculated using this equation.

$$rate = \frac{u(i) - y(i-1)}{t(i) - t(i-1)}$$

u(i) and t(i) are the current block input and time, and y(i-1) and t(i-1) are the output and time at the previous step. The output is determined by comparing *rate* to the **Rising slew rate** and **Falling slew rate** parameters:

• If *rate* is greater than the **Rising slew rate** parameter (*R*), the output is calculated as

$$y(i) = \Delta t \cdot R + y(i-1)$$

• If *rate* is less than the **Falling slew rate** parameter (*F*), the output is calculated as

 $y(i) = \Delta t \cdot F + y(i-1)$

• If *rate* is between the bounds of *R* and *F*, the change in output is equal to the change in input:

y(i) = u(i)

When the block is running in continuous mode (for example, **Sample time mode** is inherited and **Sample time** of the driving block is zero), the **Initial condition** is ignored. The block output at t = 0 is equal to the initial input:

y(0) = u(0)

When the block is running in discrete mode (for example, **Sample time mode** is inherited and **Sample time** of the driving block is nonzero), the **Initial condition** is preserved:

$$y(-1) = Ic$$

where Ic is the initial condition. The block output at t = 0 is calculated as if *rate* is outside the bounds of R and F. For t = 0, *rate* is calculated as follows:

$$rate = \frac{u(0) - y(-1)}{sample time}$$

Data TypeThe Rate Limiter block accepts and outputs signals of any numericSupportdata type supported by Simulink software, except Boolean. The Rate
Limiter block supports fixed-point data types.

Rate Limiter

Parameters and Dialog Box

Function Block Parameters: Rate Limiter
Rate Limiter
Limit rising and falling rates of signal.
Parameters
Rising slew rate:
1
Falling slew rate:
-1
Sample time mode: inherited
Initial condition:
0
✓ Treat as gain when linearizing
OK Cancel Help Apply

Rising slew rate

Specify the limit of the derivative of an increasing input signal. This parameter is tunable for fixed-point inputs.

Falling slew rate

Specify the limit of the derivative of a decreasing input signal. This parameter is tunable for fixed-point inputs.

Sample time mode

Specify the sample time mode, continuous or inherited from the driving block.

Initial condition

Set the initial output of the simulation. Simulink software does not allow you to set the initial condition of this block to inf or NaN.

Treat as gain when linearizing

Linearization commands in Simulink software treat this block as a gain in state space. Select this check box to cause the linearization commands to treat the gain as 1; otherwise, the commands treat the gain as 0.

Characteristics	Direct Feedthrough	Yes		
	Sample Time	Continuous or inherited (specified in the Sample time mode parameter)		
	Scalar Expansion	Yes, of input and parameters		
	Dimensionalized	Yes		
	Zero Crossing	No		

See Also Rate Limiter Dynamic

Rate Limiter Dynamic

Purpose	Limit rising and falling rates of signal		
Library	Discontinuities		
Description	The Rate Limiter Dynamic block limits the rising and falling rates of the signal. The external signal up sets the upper limit on the rising rate of the signal. The external signal 10 sets the lower limit on the falling rate of the signal.		
Data Type Support	contain this block. You must use The Rate Limiter Dynamic block	step solver to simulate models that a fixed-step solver. accepts signals of any numeric data rare, including fixed-point data types.	
Parameters and Dialog Box	Function Block Parameters: Rate Rate Limiter Dynamic (mask) (link) Limit rising and falling rates of the signals input (upper limit) and the third input (low	s at the second input by using the first	
Characteristics	Direct Feedthrough Scalar Expansion	Yes Yes	

See Also Rate Limiter

Purpose Handle transfer of data between blocks operating at different rates

Library Signal Attributes

Description

>	F	1	þ
	Ē	Ì	

The Rate Transition block transfers data from the output of a block operating at one rate to the input of a block operating at a different rate. Use the block parameters to trade data integrity and deterministic transfer for faster response or lower memory requirements. To learn about data integrity and deterministic data transfer, see "Data Transfer Problems" in the Real-Time Workshop User's Guide.

Options

Transition Handling Options	Block Parameter Settings
• Data integrity	Select:
• Deterministic data transfer	• Ensure data integrity
• Maximum latency	during data transfer
	• Ensure deterministic data transfer
• Data integrity	Select:
• Nondeterministic data transfer	• Ensure data integrity
• Minimum latency	during data transfer
• Higher memory requirements	Clear:
	• Ensure deterministic data transfer
Potential loss of data integrity	Clear:
• Nondeterministic data transfer	• Ensure data integrity
• Minimum latency	during data transfer
• Lower memory requirements	• Ensure deterministic data transfer

Rate Transition

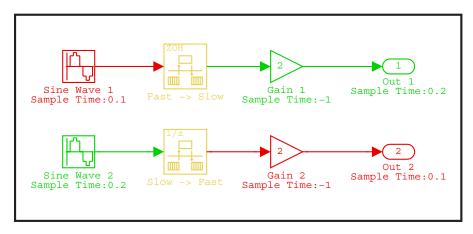
Dependencies	The behavior of the Rate Transition block depends on:			
	• Sample times of the ports to which the block connects (see "Effects of Synchronous Sample Times" on page 2-821 and "Effects of Asynchronous Sample Times" on page 2-823)			
	• Priorities of the tasks for the source and destination sample times (see "Sample time properties" in the Simulink documentation)			
Block Labels	"Solvers" in the When you update	odel specifies a fixed- or variable-step solver (see e Simulink documentation) your diagram, a label appears on the Rate Transition simulation behavior.		
	Label	Block Behavior		
	ZOH	Acts as a zero-order hold		
	1/z	Acts as a unit delay		

Does nothing

Copies input to output under semaphore control

Copies input to output using double buffers

Unprotected copy of input to output


Buf

Db_buf

Сору

No0p

The block behavior label shows the method that ensures safe transfer of data between tasks operating at different rates. You can use the sample-time colors feature (see "Displaying Sample Time Colors" in the Simulink User's Guide) to display the relative rates that the block bridges. Consider, for example, the following diagram.

Sample-time colors and the block behavior label show that the Rate Transition block at the top of the diagram acts as a zero-order hold in a fast-to-slow transition and the bottom Rate Transition block acts as a unit delay in a slow-to-fast transition.

See "Sample Rate Transitions" in the Real-Time Workshop User's Guide for more information.

Effects of Synchronous Sample Times

The following table summarizes how each label appears if the sample times of the input and output ports (inTs and outTs) are periodic, or synchronous.

Block Setti	ngs	Block Label		
Rate Transition	Conditions for Rate Transition Block	With Data Integrity and Determinism	With Only Data Integrity	Without Data Integrity or Determinism
inTs =	inTsOffset < outTsOffset	None (error)	Buf	Copy or NoOp
outTs (Equal)	inTsOffset = outTsOffset	Copy or NoOp (see note that follows the table)	Copy or NoOp (see note that follows the table)	(see note that follows the table)
	inTsOffset > outTsOffset	None (error)	Db_buf	
inTs <	inTs=outTs / N	ZOH	Buf	
outTs	<pre>inTsOffset, outTsOffset = 0</pre>			
(Fast to slow)	inTs = outTs / N	None (error)		
510 (1)	$inTsOffset \leq outTsOffset$			
	inTs=outTs / N	None (error)	Db_buf	
	inTsOffset > outTsOffset			
	inTs \neq outTs / N	None (error)		
inTs >	inTs=outTs * N	1/z	Db_buf	
outTs	$\verb"inTsOffset", \verb"outTsOffset" = 0$			
(Slow to fast)	inTs=outTs * N	None (error)		
1450)	$inTsOffset \leq outTsOffset$			
	inTs=outTs * N	None (error)		
	inTsOffset > outTsOffset			
	inTs≠outTs * N	None (error)		

KEY

Block Setti	ngs	Block Label		
Rate Transition	Conditions for Rate Transition Block	With Data Integrity and Determinism	With Only Data Integrity	Without Data Integrity or Determinism

- inTs, outTs: Sample times of input and output ports, respectively
- inTsOffset, outTsOffset: Sample time offsets of input and output ports, respectively
- N: Integer value > 1

Note If you select **Block reduction** in the Optimization pane of the Configuration Parameters dialog box, **Copy** reduces to **NoOp**. No code generation occurs for a Rate Transition block with a **NoOp** label. To prevent a block from being reduced when block reduction is on, add a test point to the block output (see "Working with Test Points" in the Simulink documentation).

Effects of Asynchronous Sample Times

The following table summarizes how each label appears if the sample time of the input or output port (inTs or outTs) is not periodic, or asynchronous.

Block Settings	Block Label		
	With Data Integrity and Determinism	With Only Data Integrity	Without Data Integrity or Determinism
inTs = outTs	Сору	Сору	Сору
$inTs \neq outTs$	None (error)	Db_buf	
KEY			

Block Settings	Block Label		
	With Data Integrity and Determinism	With Only Data Integrity	Without Data Integrity or Determinism

• inTs, outTs: Sample times of input and output ports, respectively

Data TypeThe Rate Transition block accepts signals of any data type supported by
Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink User's Guide.

Parameters and Dialog Box

Function Block A	Paramete	ers: Rate	Transition		
RateTransition					
Co	o trade off a transfer. block's beh d output p ate its beh H: ::	transfer de The defaul avior depe oorts. Upda avior as fol Zero Or Unit De Copy in Copy in	elay and code ef t configuration a nds on option se ting the block di ows: "der Hold lay put to output ur put to output u ected copy from	fficiency for saf assures safe an attings and/or ti agram causes to nder semaphore using double buf	ety and d deterministic he sample ext on the control ifers
Parameters					
🔽 Ensure data inte	egrity durir	ng data tra	nsfer		
🔽 Ensure determin	nistic data	transfer (m	aximum delay)		
Initial conditions:					
0					
Output port sample	time ontio	ne Censif			
		ons: Jopecii	У		
Output port sample	e time:				
-1					
1.					
1.					
· ·					

Ensure data integrity during data transfer

Selecting this check box results in generated code that ensures data integrity when the block transfers data. If you select this check box and the transfer is nondeterministic (see **Ensure deterministic data transfer** below), the generated code uses double-buffering to prevent the fast block from interrupting the data transfer. Otherwise, the generated code uses a copy operation to effect the data transfer. The copy operation consumes less memory than double-buffering but is also interruptible, which can lead to loss of data during nondeterministic data transfers. Select this check box if you want the generated code to operate with maximum responsiveness (i.e., nondeterministically) and data integrity. See "Rate Transition Block Options" in the Real-Time Workshop User's Guide for more information.

Ensure deterministic data transfer (maximum delay)

Selecting this check box results in generated code that transfers data at the sample rate of the slower block, i.e., deterministically. If you do not select this check box, data transfers occur as soon as new data is available from the source block and the receiving block is ready to receive the data. You avoid transfer delays, thus ensuring that the system operates with maximum responsiveness. However, transfers can occur unpredictably, which is undesirable in some applications. See "Rate Transition Block Options" in the Real-Time Workshop User's Guide for more information.

Initial conditions

This parameter applies only to slow-to-fast transitions. It specifies the initial output of the Rate Transition block at the beginning of a transition when there is no output from the slow block connected to the input of the Rate Transition block. Simulink software does not allow the initial output of this block to be inf or NaN.

Output port sample time options

Specifies a mode for setting the output port sample time. The options are:

- Specify Allows you to use the **Output port sample time** parameter to specify the output rate to which the Rate Transition block converts its input rate.
- Inherit Specifies that the Rate Transition block inherits an output rate from the block to which its output port is connected.

• Multiple of input port sample time — Allows you to use the **Sample time multiple (>0)** parameter to specify the Rate Transition block's output rate as a multiple of its input rate.

Output port sample time

This parameter is visible only if the **Output port sample time options** parameter is set to **Specify**. Enter a value that specifies the output rate to which the block converts its input rate. The default value (-1) specifies that the output rate is inherited from the block to which the Rate Transition block's output port is connected. See "How to Specify the Sample Time" in the Simulink User's Guide for information on how to specify the output rate.

Sample time multiple (>0)

This parameter is visible only if the **Output port sample time options** parameter specifies Multiple of input port sample time. Enter a positive value that specifies the output rate as a multiple of the input port sample time. The default value (1) specifies that the output rate is the same as the input rate. A value of 0.5 specifies that the output rate is half of the input rate, while a value of 2 specifies that the output rate is twice the input rate.

Bus Support The Rate Transition block is a bus-capable block. The input can be a virtual or nonvirtual bus signal, with the restriction that **Initial conditions** must be zero or a nonzero scalar. All signals in a nonvirtual bus input to a Rate Transition block must have the same sample time, even if the elements of the associated bus object specify inherited sample times. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus. See "Using Buses" and "Bus-Capable Blocks" in the Simulink User's Guide for more information.

Characteristics **H**

Bus-capable	Yes, with restrictions as noted above
Direct Feedthrough	No, for slow-to-fast transitions that are protected, i.e., for which you select the Ensure data integrity during data transfer check box. Yes, otherwise.
Sample Time	This block supports discrete-to-discrete transitions.
Scalar Expansion	Yes, of input.
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Purpose Convert real and/or imaginary inputs to complex signal

Library

Math Operations

Description

The Real-Imag to Complex block converts real and/or imaginary inputs to a complex-valued output signal.

The inputs can both be arrays (vectors or matrices) of equal dimensions, or one input can be an array and the other a scalar. If the block has an array input, the output is a complex array of the same dimensions. The elements of the real input are mapped to the real parts of the corresponding complex output elements. The imaginary input is similarly mapped to the imaginary parts of the complex output signals. If one input is a scalar, it is mapped to the corresponding component (real or imaginary) of all the complex output signals.

The input signals and real or imaginary output parameter can be of any data type supported by Simulink software, except Boolean. The Real-Imag to Complex block supports fixed-point data types. The output is of the same type as the input or parameter that determines the output.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Data Type Support

See the preceding description.

Parameters and Dialog Box

Function Block Parameters: Real-Imag to Complex
Real-Imag To Complex
Construct a complex output from real and/or imaginary input.
Parameters
Input: Real and imag
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

Input

Specifies the kind of input: a real input, an imaginary input, or both.

Real (Imag) part

If the input is a real-part signal, this parameter specifies the constant imaginary part of the output signal. If the input is the imaginary part, this parameter specifies the constant real part of the output signal. Note that the title of this field changes to reflect its usage.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block

Scalar Expansion	Yes, of the input when the function requires two inputs
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Relational Operator

- **Purpose** Perform specified relational operation on inputs
- **Library** Logic and Bit Operations

Description

The Relational Operator block performs the specified comparison of its two inputs.

You select the relational operator connecting the two inputs with the **Relational Operator** parameter. The block updates to display the selected operator. The supported operations are given below. In each case, the first input corresponds to the top input port and the second input to the bottom input port. (See "How to Rotate a Block" in the Simulink documentation for a description of the port order for various block orientations.)

Operation	Description
==	TRUE if the first input is equal to the second input
~=	TRUE if the first input is not equal to the second input
<	TRUE if the first input is less than the second input
<=	TRUE if the first input is less than or equal to the second input
>=	TRUE if the first input is greater than or equal to the second input
>	TRUE if the first input is greater than the second input

You can specify inputs as scalars, arrays, or a combination of a scalar and an array:

- For scalar inputs, the output is a scalar.
- For array inputs, the output is an array of the same dimensions, where each element is the result of an element-by-element comparison of the input arrays.

	• For mixed scalar/array inputs, the output is an array, where each element is the result of a comparison between the scalar and the corresponding array element.	
	The input with the smaller positive range is converted to the data type of the other input offline using round-to-nearest and saturation. This conversion is performed prior to comparison.	
	The output data type is specified with the Output data type parameter. The output equals 1 for TRUE and 0 for FALSE.	
	Note The output data type selected should represent zero exactly. Data types that satisfy this condition include signed and unsigned integers and any floating-point data type.	
Data Type Support	The Relational Operator block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types. One input can be real and the other complex if the operator is == or !=.	
	For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.	

Parameters and Dialog Box

The **Main** pane of the Relational Operator block dialog box appears as follows:

🙀 Function Block Parameters: Relational Operator		
Relational Operator		
Applies the selected relational operator to the inputs and outputs the result. The top (or left) input corresponds to the first operand.		
Main Signal Attributes		
Relational operator: <=		
F Enable zero-crossing detection		
Sample time (-1 for inherited):		
-1		
OK Cancel Help Apply		

The **Signal Attributes** pane of the Relational Operator block dialog box appears as follows:

🙀 Function Block Parameters: Relational Operator 🛛 🗙				
Relational Operator				
Applies the selected relational operator to the inputs and outputs the result. The top (or left) input corresponds to the first operand.				
Main Signal Attributes				
Require all inputs to have the same data type				
Output data type: boolean 🔹 >>				
OK Cancel Help Apply				

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

Relational operator

Designate the relational operator used to compare the two inputs.

Settings

Default: <=

TRUE if the first input is less than or equal to the second input

==

<=

TRUE if the first input is equal to the second input

~=

TRUE if the first input is not equal to the second input

<

TRUE if the first input is less than the second input

<=

TRUE if the first input is less than or equal to the second input

>=

TRUE if the first input is greater than or equal to the second input

>

TRUE if the first input is greater than the second input

Command-Line Information

Enable zero-crossing detection

Select to enable zero-crossing detection.

Settings

Default: On

🔽 On

Enable zero-crossing detection.

C Off

Do not enable zero-crossing detection.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

🔽 On

Require that all inputs have the same data type.

C Off

Do not require that all inputs have the same data type.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: boolean

boolean

Specifies the output data type as boolean.

Inherit: Logical

Use the **Implement logic signals as boolean data** model configuration parameter (see "Implement logic signals as boolean data (vs. double)") to specify the output data type.

Note This option is intended to support models created before the boolean option became available. Use one of the other options, preferably boolean, for new models.

Command-Line Information

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

- Slope and bias Enter slope and bias.
- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics

Direct Feedthrough	Yes
Sample Time	Specified in the Sample time parameter
Scalar Expansion	Yes, of inputs
Dimensionalized	Yes
Multidimensionalized	Yes
Zero-Crossing Detection	Yes, if enabled.

Relay

Purpose	Switch output between two constants
---------	-------------------------------------

Library

Discontinuities

Description

The Relay block allows its output to switch between two specified values. When the relay is on, it remains on until the input drops below the value of the **Switch off point** parameter. When the relay is off, it remains off until the input exceeds the value of the **Switch on point** parameter. The block accepts one input and generates one output.

The **Switch on point** value must be greater than or equal to the **Switch off point**. Specifying a **Switch on point** value greater than the **Switch off point** value models hysteresis, whereas specifying equal values models a switch with a threshold at that value.

Note When the initial input falls between the **Switch off point** and **Switch on point** values, the initial output is the value when the relay is off.

Data Type Support

The Relay block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

The ${\bf Main}$ pane of the Relay block dialog box appears as follows:

🙀 Function Block Parameters: Relay	×
Relay	
Output the specified 'on' or 'off' value by comparing the input to the specified thresholds. The on/off state of the relay is not affected by input between the upper and lower limits.	
Main Signal Attributes	
Switch on point:	
eps	
Switch off point:	
eps	
Output when on:	
1	
Output when off:	
0	
Enable zero-crossing detection	
Sample time (-1 for inherited):	
-1	7
OK Cancel Help Apply	

Switch on point

The "on" threshold for the relay. The **Switch on point** parameter is converted to the input data type offline using round-to-nearest and saturation.

Switch off point

The "off" threshold for the relay. The **Switch off point** parameter is converted to the input data type offline using round-to-nearest and saturation.

Output when on

The output when the relay is on.

Output when off

The output when the relay is off.

Enable zero-crossing detection

Select to enable zero-crossing detection to detect switch-on and switch-off points. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink documentation for more information.

The **Signal Attributes** pane of the Relay block dialog box appears as follows:

🙀 Functi	ion Block Param	eters: Relay	,		×
Relay-					
	he specified 'on' or ds. The on/off sta er limits.				
Main	Signal Attributes				
Output n	ninimum:		Output ma	ximum:	
[]			[]		
Outout d	ata type: Inherit: A	ll ports same d	atatype	_	>>
		04	Concol	1 11-1-	é – e lu
		ОК	Cancel	Help	Apply

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \longrightarrow to display the Data Type Assistant, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter

Scalar Expansion	Yes
Dimensionalized	Yes
Zero-Crossing Detection	Yes, if enabled

Repeating Sequence

dic signal	
li	c signal

Library Sources

Description

The Repeating Sequence block outputs a periodic scalar signal having a waveform that you specify. You can specify any waveform, using the block dialog's **Time values** and **Output values** parameters. The **Times value** parameter specifies a vector of sample times. The **Output values** parameter specifies a vector of signal amplitudes at the corresponding sample times. Together, the two parameters specify a sampling of the output waveform at points measured from the beginning of the interval over which the waveform repeats (i.e., the signal's period). For example, by default, the **Time values** and **Output values** parameters are both set to [0 2]. This default setting specifies a sawtooth waveform that repeats every 2 seconds from the start of the simulation and has a maximum amplitude of 2. The Repeating Sequence block uses linear interpolation to compute the value of the waveform between the specified sample points.

Data Type Support

The Repeating Sequence block outputs real signals of type double.

Parameters and Dialog Box

🙀 Block Parameters: Repeating Sequence	×
Repeating table (mask) (link)	
Output a repeating sequence of numbers specified in a table of time-value pairs. Values of time should be monotonically increasing.	
Parameters	
Time values:	
02	
Output values:	
[0 2]	
<u> </u>	

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Time values

A vector of monotonically increasing time values. The default is $[0 \ 2]$.

Output values

A vector of output values. Each corresponds to the time value in the same column. The default is $[0 \ 2]$.

Characteristics	Sample Time	Continuous
	Scalar Expansion	No
	Dimensionalized	No
	Zero Crossing	No

See Also Repeating Sequence Interpolated, Repeating Sequence Stair

- **Purpose** Output discrete-time sequence and repeat, interpolating between data points
- Library

Sources

Description

The Repeating Sequence Interpolated block outputs a discrete-time sequence and then repeats it. Between data points, the block uses the method specified by the **Lookup Method** parameter to determine the output.

Data Type Support

The Repeating Sequence Interpolated block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types. Parameters and Dialog Box The **Main** pane of the Repeating Sequence Interpolated block dialog box appears as follows:

Source Block Parameters: Repeating Sequence Interpola 🗙
Repeating Sequence Interpolated (mask) (link)
Discrete time sequence is output, then repeated. Between data points, the specified lookup method is used to determine the output.
Main Signal Attributes
Vector of output values:
[31421].'
Vector of time values:
[0 0.1 0.5 0.6 1].'
Lookup Method: Interpolation-Use End Values
Sample time:
0.01
OK Cancel Help

Vector of output values

Column vector containing output values of the discrete time sequence.

Vector of time values

Column vector containing time values. The time values must be strictly increasing, and the vector must have the same size as the vector of output values.

Lookup Method

Specify the lookup method to determine the output between data points.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the *Simulink User's Guide* for more information.

The **Signal Attributes** pane of the Repeating Sequence Interpolated block dialog box appears as follows:

Source Block Parameter	s: Repeating S	equence Inter	polated X
-Repeating Sequence Interpola	ated (mask) (link)		
Discrete time sequence is outp specified lookup method is use			a points, the
Main Signal Attributes			
Output minimum:	Outpu	t maximum:	
0			
Output data type: double		•	>>
	ок	Cancel	

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

• Parameter range checking (see "Checking Parameter Values")

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

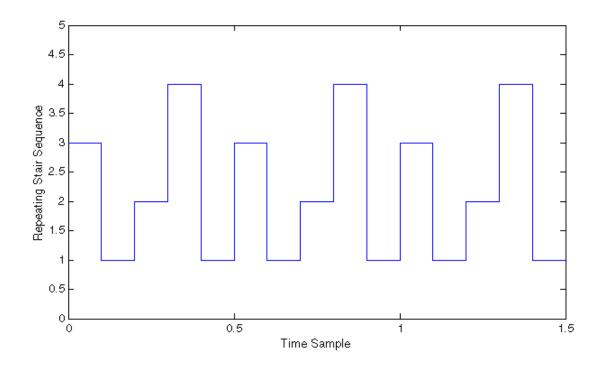
See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Repeating Sequence, Repeating Sequence Stair

Repeating Sequence Stair


Library Sources

Description

h∿

The Repeating Sequence Stair block outputs and repeats a discrete time sequence.

You can specify the stair sequence with the Vector of output values parameter. For example, the vector can be specified as $[3\ 1\ 2\ 4\ 1]'$, producing the stair sequence shown in the plot.

Data Type Support

The Repeating Sequence Stair block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Parameters and Dialog Box

The **Main** pane of the Repeating Sequence Stair block dialog box appears as follows:

Source Block Parameters: Repeating Sequence Stair
Repeating Sequence Stair (mask) (link)
Discrete time sequence is output, then repeated.
Main Signal Attributes
Vector of output values:
[31421].'
Sample time:
-1
OK Cancel Help

Vector of output values

Vector containing values of the repeating stair sequence.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the *Simulink User's Guide* for more information.

The **Signal Attributes** pane of the Repeating Sequence Stair block dialog box appears as follows:

Source Block Parameters: Repeating Sequence Stair		
Repeating Sequence Stair (mask) (link)		
Discrete time sequence is output, then repeated.		
Main Signal Attributes		
Output minimum: Output maximum:		
Output data type: double >>		
OK Cancel Help		

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values")
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No

See Also Repeating Sequence, Repeating Sequence Interpolated

Reshape

Purpose Change dimensionality of signa

Library

Math Operations

Description

>U(:)⊳ Reshape The Reshape block changes the dimensionality of the input signal to a dimensionality that you specify, using the block's **Output dimensionality** parameter. For example, you can use the block to change an N-element vector to a 1-by-N or N-by-1 matrix signal, and vice versa.

The **Output dimensionality** parameter lets you select any of the following output options.

Output Dimensionality	Description
1-D array	Converts a multidimensional array to a vector (1-D array) array signal. The output vector consists of the first column of the input matrix followed by the second column, etc. (This option leaves a vector input unchanged.)
Column vector	Converts a vector, matrix, or multidimensional input signal to a column matrix, i.e., an M-by-1 matrix, where M is the number of elements in the input signal. For matrices, the conversion is done in column-major order. For multidimensional arrays, the conversion is done along the first dimension.

Output Dimensionality	Description
Row vector	Converts a vector, matrix, or multidimensional input signal to a row matrix, i.e., a 1-by-N matrix where N is the number of elements in the input signal. For matrices, the conversion is done in column-major order. For multidimensional arrays, the conversion is done along the first dimension.
Customize	Converts the input signal to an output signal whose dimensions you specify, using the Output dimensions parameter. The value of the Output dimensions parameter can be a one- or multi-element vector. A value of [N] outputs a vector of size N. A value of [M N] outputs an M-by-N matrix. The number of elements of the input signal must match the number of elements specified by the Output dimensions parameter. For multidimensional arrays, the conversion is done along the first dimension.
Derive from reference input port	Creates a second input port, Ref, on the block. Derives the dimensions of the output signal from the dimensions of the signal input to the Ref input port. Selecting this option disables the Output dimensions parameter. When you select this parameter, the input signals for both inport ports, U and Ref, must have the same sampling mode (sample-based or frame-based).

Data Type Support

The Reshape block accepts and outputs signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Reshape

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

Reshape				
Change the dimension		r matrix input s	ignal. Output	
 a one-dimensional ar a column vector (Mx 				
- a row vector (1xN m				
- a matrix or vector w				or
- with dimensions deri	ved from dimer	isions of refere	ence port.	
Parameters				
Output dimensionality	: 1-D array			•
Output dimensions:				
· · · · · · · · · · · · · · · · · · ·				
[1,1]				
[

Output dimensionality

The dimensionality of the output signal.

Output dimensions

Specifies a custom output dimensionality. This option is enabled only if you select Customize as the value of the **Output dimensionality** parameter.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	N/A

Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Rounding Function

Purpose	Apply rounding function to signal
Library	Math Operations
Description	The Rounding Function block applies a rounding function to the input signal to produce the output signal. You can select one of the following rounding functions from the Function list:
	• floor
	Rounds each element of the input signal to the nearest integer value towards minus infinity.

• ceil

Rounds each element of the input signal to the nearest integer towards positive infinity.

• round

Rounds each element of the input signal to the nearest integer.

• fix

Rounds each element of the input signal to the nearest integer towards zero.

The name of the selected function appears on the block.

The input signal can be a scalar, vector, or matrix signal having realor complex-valued elements of type double. The output signal has the same dimensions, data type, and numeric type as the input. Each element of the output signal is the result of applying the selected rounding function to the corresponding element of the input signal. **Tip** Use the Rounding Function block instead of the Fcn block when you want vector or matrix output, because the Fcn block produces only scalar output.

Also, the Rounding Function block provides two more rounding modes. The Fcn block supports floor and ceil, but does not support round and fix.

The Rounding Function block accepts and outputs real signals of type

Data Type Support

Parameters and Dialog Box

Function Block Parameters: Rounding Function
Rounding
Rounding operations.
Parameters
Function: floor
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

Function

double or single.

The rounding function.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics

Direct Feedthrough	Yes
Sample Time	Inherited from driving block
Scalar Expansion	N/A
Dimensionalized	Yes
Zero Crossing	No

Saturation

Purpose	Limit range of signal
---------	-----------------------

Library

Discontinuities

Description

The Saturation block imposes upper and lower bounds on a signal. When the input signal is within the range specified by the **Lower limit** and **Upper limit** parameters, the input signal passes through unchanged. When the input signal is outside these bounds, the block clips the signal to the upper or lower bound.

When the **Lower limit** and **Upper limit** parameters are set to the same value, the block outputs that value.

Data Type Support

The Saturation block accepts real signals of any numeric data type supported by Simulink software, except Boolean. The Saturation block supports fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Saturation

Parameters and	The Main pane of the Saturation block dialog box appears as follows:		
Dialog	Function Block Parameters: Saturation		
Box	Saturation		
	Limit input signal to the upper and lower saturation values.		
	Main Signal Attributes		
	Upper limit:		
	0.5		
	Lower limit:		
	-0.5		
	✓ Treat as gain when linearizing		
	Enable zero-crossing detection		
	Sample time (-1 for inherited):		
	-1		
	OK Cancel Help Apply		

Actors The Main nene of the Seturation block dialog her ennours as follow

The **Signal Attributes** pane of the Saturation block dialog box appears as follows:

Function Block Parameters: Saturation
Saturation
Limit input signal to the upper and lower saturation values.
Main Signal Attributes
Output minimum: Output maximum:
Output data type: Inherit: Same as input >>
Integer rounding mode: Floor
OK Cancel Help Apply

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Upper limit

Specify the upper bound on the input signal.

Settings

Default: 0.5

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

Tip

- When the input signal to the Saturation block is above this value, the output of the block is clipped to this value.
- The **Upper limit** parameter is converted to the output data type offline using round-to-nearest and saturation.

Command-Line Information

Lower limit

Specify the lower bound on the input signal.

Settings

Default: -0.5

Minimum: value from the Output minimum parameter

Maximum: value from the Output maximum parameter

Tips

- When the input signal to the Saturation block is below this value, the output of the block is clipped to this value.
- The **Lower limit** parameter is converted to the output data type offline using round-to-nearest and saturation.

Command-Line Information

Treat as gain when linearizing

Select this parameter to cause the linearization commands to treat the gain as 1

Settings

Default: On

🔽 On

Select to cause the linearization commands to treat the gain as 1.

C Off

Clear to cause the linearization commands to treat the gain as 0.

Tips

Linearization commands in Simulink software treat this block as a gain in state space.

Command-Line Information

Enable zero-crossing detection

Select to enable zero-crossing detection.

Settings

Default: On

🔽 On

Enable zero-crossing detection.

C Off

Do not enable zero-crossing detection.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Saturation

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings

Default: Off

₽On

Lock scaling of outputs.

$\Box_{\rm Off}$

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Saturation

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA, Simulink software chooses the output data type without regard to hardware constraints. Otherwise. Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

- Inherit: Inherit from 'Constant value' Use data type of **Constant value** parameter. This option appears for some blocks.
- Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2⁰,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

Saturation

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the Show data type assistant button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias

Enter slope and bias.

- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Saturation

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

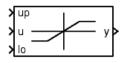
See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of parameters and input
	Dimensionalized	Yes
	Zero Crossing	Yes, if enabled.

See Also Saturation Dynamic


Saturation Dynamic

FUIDOSE Bound range of input	Purpose	Bound range of input
-------------------------------------	---------	----------------------

Library	
---------	--

Discontinuities

Description

The Saturation Dynamic block bounds the range of the input signal to upper and lower saturation values. The input signal outside of these limits saturates to one of the bounds where

- The input below the lower limit is set to the lower limit.
- The input above the upper limit is set to the upper limit.

The input for the upper limit is the up port, and the input for the lower limit is the 10 port.

Data TypeThe Saturation Dynamic block accepts signals of any numeric data typeSupportsupported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

Function Block Parameters: Saturation Dynamic	×
Saturation Dynamic (mask) (link)	7
Bound the range of the second input by using the first input (upper limit) and the third input (lower limit).	
Signal Attributes	
Output minimum: Output maximum:	
Output data type: Inherit: Same as second input >>	
Integer rounding mode: Floor	
Saturate on integer overflow	
OK Cancel Help Apply	

Output minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Output maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

• Simulation range checking (see "Checking Signal Ranges")

• Automatic scaling of fixed-point data types

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Same as second input
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the Show data type assistant button \longrightarrow to display the Data Type Assistant, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate on integer overflow

Select to have overflows saturate.

When you select this check box, saturation applies to every internal operation on the block, not just the output or result. In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes

See Also Saturation

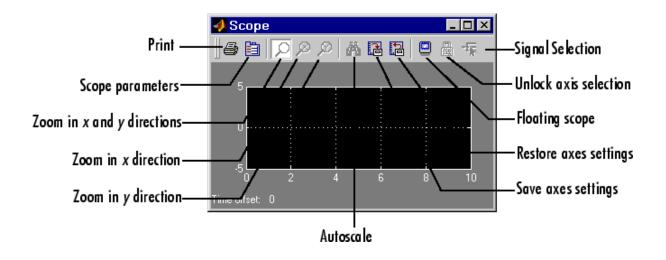
Scope and Floating Scope

Library Sinks

Description

The Scope block displays its input with respect to simulation time.

The Scope block can have multiple axes (one per port) and all axes have a common time range with independent *y*-axes. The Scope block allows you to adjust the amount of time and the range of input values displayed. You can move and resize the Scope window and you can modify the Scope's parameter values during the simulation.


The Scope Block described here is not the same as the Scope Viewer. For help on the scope viewer, see "Things to Know When Using Viewers".

When you start a simulation the Scope windows are not opened, but data is written to connected Scopes. As a result, if you open a Scope after a simulation, the Scope's input signal or signals will be displayed.

If the signal is continuous, the Scope produces a point-to-point plot. If the signal is discrete, the Scope produces a stair-step plot.

Note By default, the Scope block only displays major time step values. However, if a variable-step solver is employed and if the Refine parameter is set to a value greater than 1, minor (intermediate) time step values are displayed in direct proportion to the Refine setting.

The Scope provides toolbar buttons that enable you to zoom in on displayed data, display all the data input to the Scope, preserve axis settings from one simulation to the next, limit data displayed, and save data to the workspace. The toolbar buttons are labeled in this figure, which shows the Scope window as it appears when you open a Scope block.

Note Do not use Scope blocks inside library blocks that you create. Instead, provide the library blocks with output ports to which scopes can be connected to display internal data.

Color Coding Used When Displaying Multiple Signals

The scope block can display one signal per axes. When displaying a vector or matrix signal on the same axis, the Scope block assigns colors to each signal element, in this order:

- 1 Yellow
- 2 Magenta
- 3 Cyan
- 4 Red
- 5 Green
- 6 Dark Blue

The Scope block cycles through the colors if a signal has more than six elements.

Y-Axis Limits

You set *y*-limits by right-clicking an axis and choosing **Axes Properties**. The following dialog box appears.

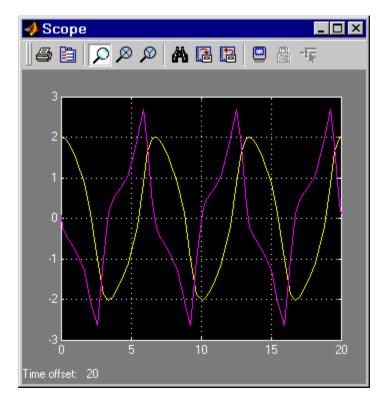
🛃 'Scope' properties: axis 1		_ 🗆 ×
Y-min: 3	Y-max: 3	
Title ('% <signallabel>' rep [%<signallabel></signallabel></signallabel>	placed by signal n	ame):
ОК	Cancel	Apply

Y-min

Enter the minimum value for the y-axis.

Y-max

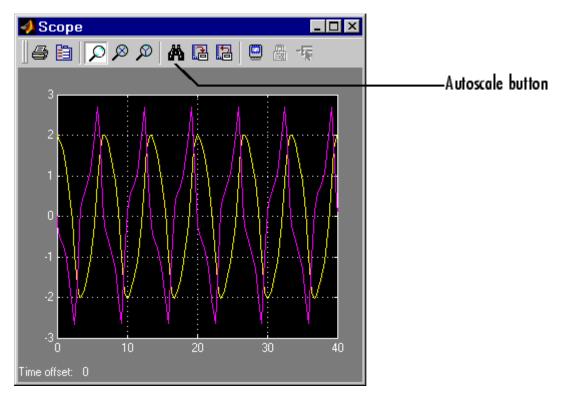
Enter the maximum value for the y-axis.


Title

Enter the title of the plot. You can include a signal label in the title by typing %<SignalLabel> as part of the title string (%<SignalLabel> is replaced by the signal label).

Note You cannot add a title to a floating scope.

Time Offset


This figure shows the Scope block displaying the output of the vdp model. The simulation was run for 40 seconds. Note that this scope shows the final 20 seconds of the simulation. The **Time offset** field displays the time corresponding to 0 on the horizontal axis. Thus, you

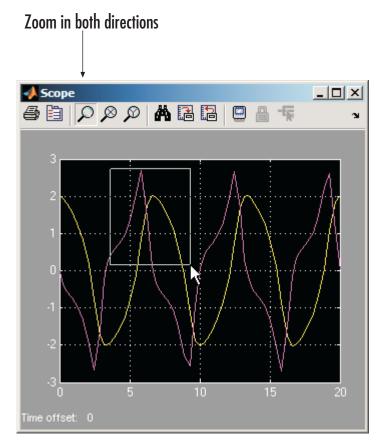
have to add the offset to the fixed time range values on the *x*-axis to get the actual time.

Autoscaling the Scope Axes

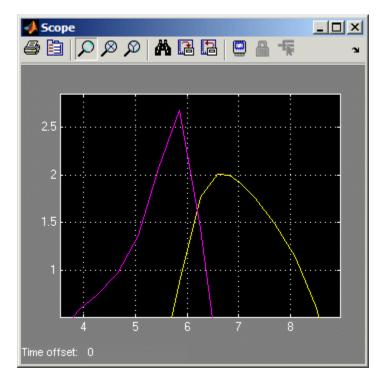
This figure shows the same output after you click the **Autoscale** toolbar button, which automatically scales both axes to display all stored simulation data. In this case, the *y*-axis was not scaled because it was already set to the appropriate limits.

If you click the **Autoscale** button while the simulation is running, the axes are autoscaled based on the data displayed on the current screen, and the autoscale limits are saved as the defaults. This enables you to use the same limits for another simulation.

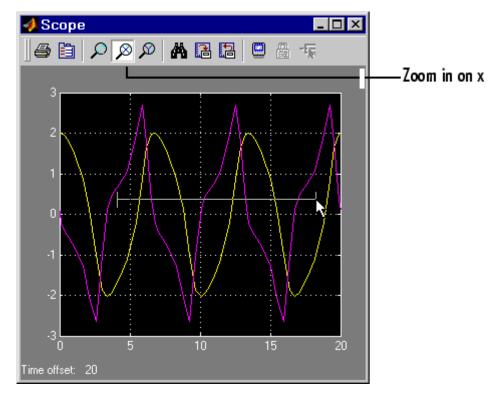
Note Simulink software does not buffer the data that it displays on a floating Scope. It can therefore scale the contents of a floating Scope only when data is being displayed, i.e., when a simulation is running. When a simulation is not running, Simulink software disables (grays) the **Zoom** button on the toolbar of a floating Scope to indicate that it cannot scale its contents.


Zooming

You can zoom in on data in both the x and y directions at the same time, or in either direction separately. The zoom feature is not active while the simulation is running.


To zoom in on data in both directions at the same time, make sure you select the leftmost **Zoom** toolbar button. Then, define the zoom region using a bounding box. When you release the mouse button, the Scope displays the data in that area. You can also click a point in the area you want to zoom in on.

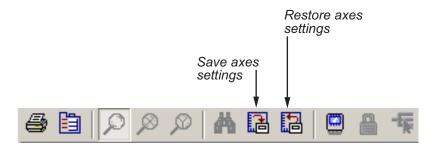
If the scope has multiple *y*-axes, and you zoom in on one set of *x*-*y* axes, the *x*-limits on all sets of *x*-*y* axes are changed so that they match, because all *x*-*y* axes must share the same time base (*x*-axis).


This figure shows a region of the displayed data enclosed within a bounding box.

This figure shows the zoomed region, which appears after you release the mouse button.

To zoom in on data in just the x direction, click the middle **Zoom** toolbar button. Define the zoom region by positioning the pointer at one end of the region, pressing and holding down the mouse button, then moving the pointer to the other end of the region. This figure shows the Scope after you define the zoom region, but before you release the mouse button.

When you release the mouse button, the Scope displays the magnified region. You can also click a point in the area you want to zoom in on.


Zooming in the y direction works the same way except that you click the rightmost **Zoom** toolbar button before defining the zoom region. Again, you can also click a point in the area you want to zoom in on.

Note Simulink software does not buffer the data that it displays on a floating scope. It therefore cannot zoom the contents of a floating scope. To indicate this, Simulink software disables (grays) the **Zoom** button on the toolbar of a floating scope.

Saving and Restoring the Axes Settings

The **Save axes settings** toolbar button enables you to store the current *x*- and *y*-axes settings so you can apply them to the next simulation.

Use the **Restore axes settings** button to restore the saved settings.

Tip If you select the Save axes settings button on the toolbar, the block specifies its current *y*-limits as the values of the **Y-min** and **Y-max** parameters (see "Y-Axis Limits" on page 2-904). Similarly, the block specifies its current *x*-axis limits as the value of the **Time range** parameter (see "General Parameters Pane" on page 2-912).

Scope Parameters

The **Scope Parameters** dialog box lets you change axis limits, set the number of axes, time range, tick labels, sampling parameters, and saving options. To display the dialog, select the **Parameters** button on the toolbar of the Scope block's display

or double-click the Scope viewer's display.

🛃 'Scope' parameters 📃 🗌 🗙		
General Data history Tip: try right clicking on axes		
Axes		
Number of axes: 1 Floating scope		
Time range: auto		
Tick labels: bottom axis only 💌		
Sampling		
Decimation 1		
OK Cancel Help Apply		

For information on the **General** pane, see "General Parameters Pane" on page 2-912

For information on the **Data history** pane, see "Data History Parameters Pane" on page 2-917

General Parameters Pane

You set the axis parameters, time range, tick labels and decimation or sample time in the **General** pane.

Number of axes

Set the number of *y*-axes in this data field. With the exception of the floating scope, there is no limit to the number of axes the Scope block can contain. All axes share the same time base (*x*-axis), but have independent *y*-axes. Note that the number of axes is equal to the number of input ports.

Time range

Change the *x*-axis limits by entering a number or auto in the **Time range** field. Entering a number of seconds causes each screen to display the amount of data that corresponds to that

number of seconds. Enter **auto** to set the *x*-axis to the duration of the simulation. Do not enter variable names in these fields.

Tick labels

Specifies whether to label axes ticks. The options are:

all	Label ticks on the outside of all axes
inside	Place tick labels inside all axes (available only on scope viewers)
bottom-axis only	Place tick labels outside the bottom (or only) axes
none	Do not label ticks

Sampling

Use this control to select either a **Decimation** factor or **Sample time** interval. Once the selection has been made, enter a number in the data field.

Floating scope

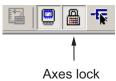
Selecting this option turns a Scope block into a floating scope.

A floating scope is a Scope block that can display the signals carried on one or more lines. You can create a Floating Scope block in a model either by copying a Scope block from the Simulink Sinks library into a model and selecting **Floating scope**, or by copying the Floating Scope block from the Sinks library into the model window.

To add signals to a floating scope during simulation, you can either click on signals in your block diagram, or use the Signal Selector (for more information on the signal selector, see "The Signal Selector").

To add signals to a floating scope while the simulation is running by clicking on signals:

• Open the scope


• Select the line to display the signals it carries

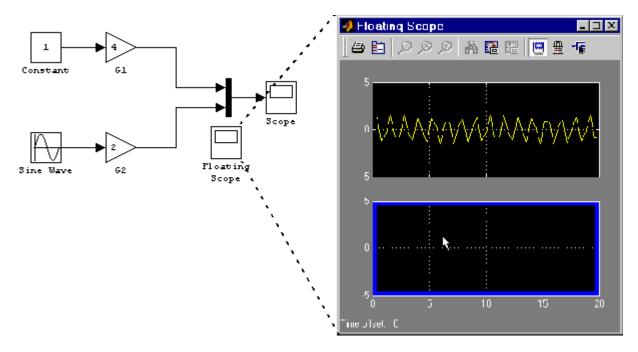
It might be necessary to click the **Autoscale data** button on the floating scope's toolbar to display the signal

• You can add multiple lines by holding down the **Shift** key while clicking another line

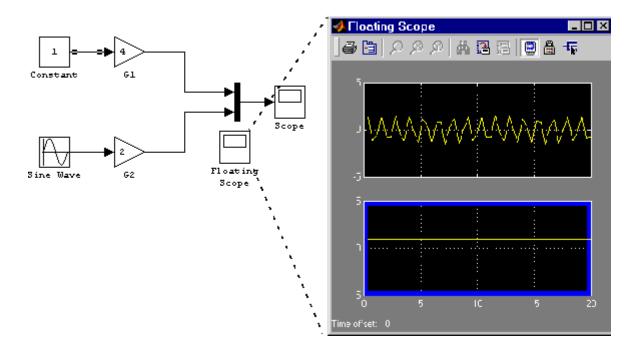
Note For you to add signals, the floating scope must have its axes unlocked.

Click the Axes lock icon to lock and unlock the axes.

The axes are highlighted in blue when they are unlocked.


To use the Signal Selector to add signals:

- Open the floating scope
- Right-click your mouse in the floating scope and select **Signal Selection** from the pop-up menu
- From the displayed list, select the signals to be added to the floating scope


It might be necessary to click the **Autoscale data** button on the floating scope's toolbar to display the signal

You can have more than one floating scope in a model, but only one set of axes in one scope can be active at a given time. Active floating scopes show the active axes by making them blue. Selecting or deselecting lines affects the active floating scope only. Other floating scopes continue to display the signals that you selected when they were active. In other words, inactive floating scopes are locked, in that their signal displays cannot change.

To specify display of a signal on one of the axes of a multiaxis floating scope, click the axis. Simulink software draws a blue border around the axis.

Then click the signal you want to display in the block diagram or the Signal Selector. When you run the model, the selected signal appears in the selected axis.

If you plan to use a floating scope during a simulation, you should disable signal storage reuse. See "Signal storage reuse" in "Optimization Pane" for more information.

Data History Parameters Pane

📣 'Scope' parameters
General Data history Tip: try right clicking on axes
I Limit data points to last: 5000
Save data to workspace
Variable name: ScopeData
Format: Structure with time
OK Cancel Help Apply

This pane lets you control the amount of data that the Scope stores and displays. You can also choose to save data to the workspace in this pane. You apply the current parameters and options by clicking the **Apply** or **OK** button. The values that appear in these fields are the values that are used in the next simulation.

Limit data points to last

You can limit the number of data points saved to the workspace by selecting the **Limit data points to last** check box and entering a value in its data field. The Scope relies on its data history for zooming and autoscaling operations. If the number of data points is limited to 1,000 and the simulation generates 2,000 data points, only the last 1,000 are available for regenerating the display.

Save data to workspace

You can automatically save the data collected by the Scope at the end of the simulation by selecting the **Save data to workspace** check box. If you select this option, the **Variable name** and **Format** fields become active.

Note When using a floating scope, **Save data to workspace** is disabled to show that data logging is not supported.

Variable name

Enter a variable name in the **Variable name** field. The specified name must be unique among all data logging variables being used in the model. Other data logging variables are defined on other Scope blocks, To Workspace blocks, and simulation return variables such as time, states, and outputs. Being able to save Scope data to the workspace means that it is not necessary to send the same data stream to both a Scope block and a To Workspace block.

Format

Data can be saved in one of three formats: Array, Structure, or Structure with time. Use Array only for a Scope with one set of axes. For Scopes with more than one set of axes, use Structure if you do not want to store time data and use Structure with time if you want to store time data.

Printing the Contents of a Scope Window

To print the contents of a Scope window, open the **Print** dialog box by clicking the **Print** icon, the leftmost icon on the Scope toolbar.

Creating an Editable Figure from a Scope Block

To create a figure that looks identical to the Scope window but can be annotated using the Plot Editing Tools, use the simplot command. Only Scope blocks that save data to the MATLAB workspace from the **Data history** pane are compatible with this command. For example, on the **Data history** pane for the Scope block in vdp.mdl, check the **Save data to workspace** option and select Structure with time from

....

the **Format** list. After running the simulation, a figure can be created with the command

simplot(ScopeData)

Data TypeThe Scope block accepts real signals of any data type supported by
Simulink software, including fixed-point and enumerated data types.
The Scope block accepts homogeneous vectors.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Characteristics

Sample Time	Inherited from driving block or can be set
States	0
Multidimensionalized	Yes

1.0

Selector

Purpose Select input elements from vector, matrix, or multidimensional signal

Library Signal Routing

Description

╳┓ ┙┓ ┛ The Selector block generates as output selected or reordered elements of an input vector, matrix, or multidimensional signal.

A Selector block accepts vector, matrix, or multidimensional signals as input. The parameter dialog box and the block's appearance change to reflect the number of dimensions of the input.

Based on the value you enter for the **Number of input dimensions** parameter, a table of indexing settings is displayed. Each row of the table corresponds to one of the input dimensions in **Number of input dimensions**. For each dimension, you define the elements of the signal to work with. Specify a vector signal as a 1-D signal and a matrix signal as a 2-D signal. When you configure the Selector block for multidimensional signal operations, the block icon changes.

For example, assume a 5-D signal with a one-based index mode. The table of the Selector block dialog changes to include one row for each dimension. If you define each dimension with the following entries:

• 1

Index Option, select Select all

• 2

Index Option, select Starting index (dialog)

Index, enter 2

Output Size, enter 5

• 3

Index Option, select Index vector (dialog)

Index, enter [1 3 5]

• 4

Index Option, select Starting index (port)
Output Size, enter 8

• 5

Index Option, select Index vector (port)

The output will be Y=U(1:end,2:6,[1 3 5],Idx4:Idx4+7,Idx5), where Idx4 and Idx5 are the index ports for dimensions 4 and 5.

Data Type Support The data port of the Selector block accepts signals of any signal type and any data type supported by Simulink software, including fixed-point and enumerated data types. The data port accepts mixed-type signals. The index port accepts only built-in data types, except boolean data types. The elements of the output have the same type as the corresponding selected input elements.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Selector

Parameters and Dialog Box The parameter dialog box appears as follows when you set **Index Option** to Starting index (port).

Function Block Parameters: Selector			
Selector			
Select or reorder specified elements of a multidimensional input signal. The index to each element is identified from an input port or this dialog. You can choose the indexing method for each dimension by using the "Index Option" parameter.			
Parameters			
Number of input dimensions: 1			
Index mode: One-based		-	
Index Option	Index	Output Size	
1 Starting index (port)	from port <idx1></idx1>	1	
Input port size: 3			
Sample time (-1 for inherited): -1			
OK Cancel Help Apply			

Number of input dimensions

Enter the number of dimensions of the input signal.

Index mode

Specifies the indexing mode: One-based or Zero-based. If One-based is selected, an index of 1 specifies the first element of the input vector, 2, the second element, and so on. If Zero-based is selected, an index of 0 specifies the first element of the input vector, 1, the second element, and so on.

Index Option

Define, by dimension, how the elements of the signal are to be indexed. From the list, choose:

• Select all

This is the default. No further configuration is required. All elements are selected.

• Index vector (dialog)

Enables the **Index** column. Enter the vector of indices of the elements.

Index vector (port)

No further configuration is required.

• Starting index (dialog)

Enables the **Index** and **Output Size** columns. Enter the starting index of the range of elements to be selected in the **Index** column and the number of elements to be selected in the **Output Size** column.

Starting index (port)

Enables the **Output Size** column. Enter the number of elements to be selected in the **Output Size** column.

The Index and Output Size columns are displayed as relevant.

Index

If the **Index Option** is Index vector (dialog), enter the index of each element you are interested in.

If the **Index Option** is Starting index vector (dialog), enter the starting index of the range of elements to be selected.

Output Size

Enter the width (number of elements from the starting point) of the block output signal.

Input port size

Specify the width of the block input signal (-1 for inherited) — 1-D signals only.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Selector

Note For 1-D signals, the **Sample time** parameter is applicable only with the **Index Option** set to Starting index (port) or Index vector (port). For all other **Input Option** settings, the Selector block becomes a virtual block and the **Sample time** parameter does not appear.

Sample TimeSpecified in the Sample time parameter.DimensionalizedYesMultidimensionalizedYesZero crossingNo

Purpose Include S-function in model

Library

User-Defined Functions

Description

> system

The S-Function block provides access to S-functions from a block diagram. The S-function named as the **S-function name** parameter can be a Level-1 M-file or a Level-1 or Level-2 C MEX-file S-function (see "Overview of S-Functions" in *Writing S-Functions* for information on how to create S-functions).

Note Use the M-File S-Function block to include a Level-2 M-file S-function in a block diagram.

The S-Function block allows additional parameters to be passed directly to the named S-function. The function parameters can be specified as MATLAB expressions or as variables separated by commas. For example,

A, B, C, D, [eye(2,2);zeros(2,2)]

Note that although individual parameters can be enclosed in brackets, the list of parameters must not be enclosed in brackets.

The S-Function block displays the name of the specified S-function and the number of input and output ports specified by the S-function. Signals connected to the inputs must have the dimensions specified by the S-function for the inputs.

Depends on the implementation of the S-Function block.

Data Type Support

S-Function

Parameters and Dialog Box

🙀 Function Block Parameters: S-Function	×	
-S-Function		
User-definable block. Blocks can be written in C, M (level-1), Fortran, and Ada and must conform to S-function standards. The variables t, x, u, and flag are automatically passed to the S-function by Simulink. You can specify additional parameters in the 'S-function parameters' field. If the S-function block requires additional source files for the Real-Time Workshop build process, specify the filenames in the 'S-function modules' field. Enter the filenames only; do not use extensions or full pathnames, e.g., enter 'src src1', not 'src.c src1.c'.		
Parameters		
S-function name: system	Edit	
S-function parameters:		
S-function modules:		
OK Cancel Help	Apply	

S-function name

The S-function name.

S-function parameters

Additional S-function parameters. See the preceding block description for information on how to specify the parameters.

S-function modules

This parameter applies only if this block represents a C MEX-file S-function and you intend to use the Real-Time Workshop software to generate code from the model containing the block. See "Specifying Additional Source Files for an S-Function" in the Real-Time Workshop online documentation for information on using this parameter.

Characteristics

Direct Feedthrough	Depends on contents of S-function
Sample Time	Depends on contents of S-function
Scalar Expansion	Depends on contents of S-function
Dimensionalized	Depends on contents of S-function
Multidimensionalized	Yes
Zero Crossing	No

S-Function Builder

Purpose	Create S-function from C code that you provide		
Library	User-Defined Functions		
Description	The S-Function Builder block creates a C MEX-file S-function from specifications and C source code that you provide. See "Building S-Functions Automatically" for detailed instructions on using the S-Function Builder block to generate an S-function.		
> system >	Instances of the S-Function Builder block also serve as wrappers for generated S-functions in Simulink models. When simulating a model containing instances of an S-Function Builder block, Simulink software invokes the generated S-function associated with each instance to compute the instance's output at each time step.		
	Note The S-Function Builder block does not support masking. However, you can mask a Subsystem block that contains an S-Function Builder block. See "Working with Block Masks" in the Simulink documentation for more information.		
Data Type Support	The S-Function Builder can accept and output complex, 1-D or 2-D signals of any data type supported by Simulink software. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.		
Parameters and Dialog Box	See "S-Function Builder Dialog Box" in the online documentation for information on using the S-Function Builder block's parameter dialog box.		

Purpose Shift bits or binary point of signal

Library Logic and Bit Operations

Description The Shift Arithmetic block can shift the bits or the binary point of a signal, or both.

For example, the effects of binary point shifts two places to the right and two places to the left on an input of data type sfix(8) are shown below.

Shift Operation	Binary Value	Decimal Value
No shift (original number)	11001.011	-6.625
Binary point shift right by two places	1100101.1	-26.5
Binary point shift left by two places	110.01011	-1.65625

This block performs arithmetic bit shifts on signed numbers. Therefore, the most significant bit is recycled for each bit shift. The effects of bit shifts two places to the right and two places to the left on an input of data type sfix(8) follow.

Shift Operation	Binary Value	Decimal Value
No shift (original number)	11001.011	-6.625
Bit shift right by two places	11110.010	-1.75
Bit shift left by two places	00101.100	5.5

Data Type Support

The Shift Arithmetic block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types, except boolean type.

Parameters and Dialog Box

Function Block Parameters: Shift Arithmetic			
Shift Arithmetic (mask) (link)			
This block can arithmetically shift the bits and/or the binary point of a signal. The effect of these actions can be interpreted as a combination of a multiplication by a power of two and a change in scaling. The power of two multiplication term is 2^(NumBinaryPointShiftsRight - NumBitShiftsRight) Negative values for shifts right are actually positive shift lefts. If the input is a floating point type, the power of two multiplication is carried out, but no change in scaling is applied.			
Parameters			
Number of bits to shift right (use negative value to shift left):			
8			
Number of places by which binary point shifts right (use negative value to shift left):			
0			
OK Cancel Help Apply			

Number of bits to shift right

The number of places the bits of the input signal is shifted. A positive value indicates a shift right, while a negative value indicates a shift left.

Number of places by which binary point shifts right

The number of places the binary point of the input signal is shifted. A positive value indicates a shift right, while a negative value indicates a shift left.

Characteristics Dire

5	Direct Feedthrough	Yes
	Sample Time	Inherited
	Scalar Expansion	Yes

Library Math

Math Operations

Description

Data Type

Support

• The output is 1 when the input is greater than zero.

The Sign block indicates the sign of the input:

- The output is 0 when the input is equal to zero.
- The output is -1 when the input is less than zero.

The Sign block accepts real signals of any numeric data type supported by Simulink software, including fixed-point data types. The output is a signed data type with the same number of bits as the input, and with nominal scaling (a slope of one and a bias of zero).

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Function Block Parameters: Sign	×
Signum	
Output 1 for positive input, -1 for negative input, and 0 for 0 input. = signum(u) \ensuremath{u}	У
-Parameters	
Enable zero-crossing detection	
Sample time (-1 for inherited):	
-1	
OK Cancel Help App	/

Parameters and Dialog Box

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics

Direct Feedthrough	Yes
Sample Time	Specified in the Sample time parameter
Scalar Expansion	N/A
Dimensionalized	Yes
Zero-Crossing Detection	Yes, if enabled.

Purpose	Create and generate intercha waveforms are piecewise lines	ngeable groups of signals whose ar
Library	Sources	
Description	The Signal Builder block allows you to create interchangeable groups of piecewise linear signal sources and use them in a model. See "Working with Signal Groups" in the "Working with Signals" chapter of the Simulink documentation.	
	Note Use the signalbuilder Builder blocks programmatica	r function to create and access Signal ally.
Data Type Support	The Signal Builder block outp type double.	outs a scalar or array of real signals of
Parameters and Dialog Box	The Signal Builder block has the same dialog box as that of a Subsystem block. To display the dialog box, select Subsystem Parameters from the block's context menu.	
Characteristics	Sample Time	Continuous
	Scalar Expansion	Yes, of parameters
	Dimensionalized	Yes

Yes

Zero Crossing

Signal Conversion

Purpose	Convert signal to new type without altering signal values	
Library	Signal Attributes	
Description	The Signal Conversion block converts a signal from one type to another. The block's Output parameter lets you select the type of conversion to be performed.	
Data Type Support	The Signal Conversion block accepts virtual or nonvirtual signals of any data type.	
Parameters and Dialog Box	Block Parameters: Signal Conversion ? ★ Signal Conversion Convert a signal to a new type without altering signal values. a) The 'Contiguous copy' option creates a contiguous segment of memory to store a copy of an input signal when specifying signal storage attributes for a collection of discontiguous signals. With optimizations enabled, the copy does not occur if the operation is superfluous. b) The 'Bus copy' option outputs a copy of the incoming bus. This is useful for use with non-virtual inports in non-virtual subsystems. c) The Virtual bus' option converts the input bus to a virtual bus. d) The 'Nonvirtual bus' option converts the input bus to a non-virtual bus. Parameters Output: Contiguous copy ① K Cancel Help Apply	

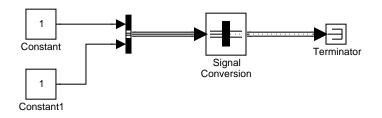
Output

Specifies the type of conversion to be performed. The options are:

• Contiguous copy

Converts a muxed signal, whose elements occupy discontiguous areas of memory, to a vector signal, whose elements occupy contiguous areas of memory. The block does this by allocating a contiguous area of memory for the elements of the muxed signal and copying the values from the discontiguous areas (represented by the block's input) to the contiguous areas (represented by the block's output) at each time step. You can also use this setting to connect a block with a constant sample time to an output port of an enabled subsystem. For more information, see Using Blocks with Constant Sample Times in Enabled Subsystems. For an example involving Real-Time Workshop software, see "Reusable Code and Referenced Models".

• Bus copy


Outputs a copy of the bus connected to the block's input. This setting is useful when passing a bus signal whose components have different data types to a nonvirtual Inport block in an Atomic Subsystem. See "Using Composite Signals" in the Simulink documentation for more information.

• Virtual bus

Converts a nonvirtual bus to a virtual bus. In general, virtual buses can save memory where nonvirtual buses are not required.

• Nonvirtual bus

Converts a virtual bus to a nonvirtual bus as in the following example. This setting is useful when passing a virtual bus signal to a modeling construct that requires a nonvirtual bus, such as a Model block.

Note The virtual bus to be converted to a nonvirtual bus must be defined by a bus object, i.e., an instance of Simulink.Bus class. See the Bus Creator block for more information.

Override optimizations and always copy signal

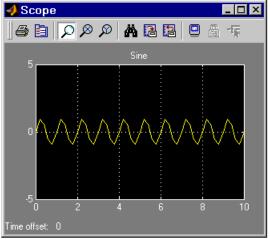
This option is enabled only for Contiguous copy conversion. If the elements of the input signal occupy contiguous areas of memory, Simulink software eliminates the block from the compiled model as an optimization unless you select this option.

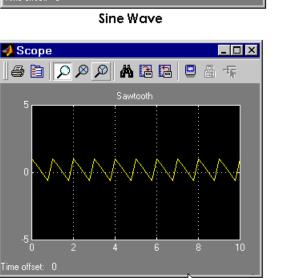
Characteristics

Sample Time	Inherited
Scalar Expansion	n/a
Dimensionalized	n/a
Multidimensionalized	Yes
Zero Crossing	No

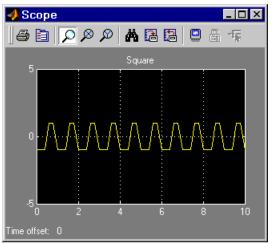
Purpose Generate various waveform
--

Sources


Library


Description

0000	þ
------	---


The Signal Generator block can produce one of four different waveforms: sine wave, square wave, sawtooth wave, and random wave. The signal parameters can be expressed in Hertz (the default) or radians per second. This figure shows each signal displayed on a Scope using default parameter values.

Signal Generator



Sawtooth Wave

Square Wave

Random Wave

A negative **Amplitude** parameter value causes a 180-degree phase shift. You can generate a phase-shifted wave at other than 180 degrees

	in a variety of ways, including connecting a Clock block signal to a MATLAB Fcn block and writing the equation for the particular wave.
	You can vary the output settings of the Signal Generator block while a simulation is in progress. This is useful to determine quickly the response of a system to different types of inputs.
	The block's Amplitude and Frequency parameters determine the amplitude and frequency of the output signal. The parameters must be of the same dimensions after scalar expansion. If the Interpret vector parameters as 1-D option is off, the block outputs a signal of the same dimensions as the Amplitude and Frequency parameters (after scalar expansion). If the Interpret vector parameters as 1-D option is on, the block outputs a vector (1-D) signal if the Amplitude and Frequency parameters are row or column vectors, i.e. single row or column 2-D arrays. Otherwise, the block outputs a signal of the same dimensions as the parameters.
Data Type Support	The Signal Generator block outputs a scalar or array of real signals of type double.

Parameters and Dialog Box

Source Block Parameters: Signal Generator
Signal Generator
Output various wave forms: Y(t) = Amp*Waveform(Freq, t)
Parameters
Wave form: sine
Time (t): Use simulation time
Amplitude:
1
Frequency:
1
Units: Hertz
✓ Interpret vector parameters as 1-D
OK Cancel Help

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Wave form

The wave form: a sine wave, square wave, sawtooth wave, or random wave. The default is a sine wave. This parameter cannot be changed while a simulation is running.

Time

Specifies whether to use simulation time as the source of values for the waveform's time variable or an external signal. If you specify an external time source, the block displays an input port for the time source.

Amplitude

The signal amplitude. The default is 1.

Frequency

The signal frequency. The default is 1.

Units

The signal units: Hertz or radians/sec. The default is Hertz.

Interpret vector parameters as 1-D

If selected, column or row matrix values for the **Amplitude** and **Frequency** parameters result in a vector output signal (see "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation). This option is not available when an external signal specifies time. In this case, if the **Amplitude** and **Frequency** parameters are column or row matrix values, the output is a 1-D vector.

Characteristics

Sample Time	Continuous
Scalar Expansion	Yes, of parameters
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Signal Specification

Purpose Specify desired dimensions, sample time, data type, numeric type, and other attributes of signal

Library

Signal Attributes

Description

inherit

The Signal Specification block allows you to specify the attributes of the signal connected to its input and output ports. If the specified attributes conflict with the attributes specified by the blocks connected to its ports, Simulink software displays an error when it compiles the model, for example, at the beginning of a simulation. If no conflict exists, Simulink software eliminates the Signal Specification block from the compiled model. In other words, the Signal Specification block is a virtual block. It exists only to specify the attributes of a signal and plays no role in the simulation of the model.

You can use the Signal Specification block to ensure that the actual attributes of a signal meet desired attributes. For example, suppose that you and a colleague are working on different parts of the same model and you use Signal Specification blocks to connect your part of the model with your colleague's. Now, if your colleague changes the attributes of a signal without informing you, the attributes entering the corresponding Signal Specification block do not match and Simulink software reports an appropriate error.

The Signal Specification block can also be used to ensure correct propagation of signal attributes throughout a model. The capability of allowing many attributes to be propagated from block to block in Simulink software is very powerful. However, because blocks may not specify some or all of the attributes of the signals they accept or output, it is possible to create models that don't have enough information to correctly propagate attributes around the model. For these cases, the Signal Specification block is a good way of providing the information Simulink software needs. Using the Signal Specification block also helps speed up model compilation when blocks are missing signal attributes.

Data Type Support

The Signal Specification block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The input data type must match the data type specified by the **Data type** parameter.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

Function Block Parameters: Signal Specification		
SignalSpecification		
Specify attributes of a signal line.		
Parameters		
Dimensions (-1 for inherited):		
-1		
Sample time (-1 for inherited):		
-1		
Minimum: Maximum:		
Data type: Inherit: auto 💌 >>		
Signal type: auto		
Sampling mode: auto		
OK Cancel Help Apply		

Dimensions

Specify the dimension's of the block's input and output signals. Valid values are

- -1 Inherited from the block to which it is connected
- n Vector signal of width n
- [m n] Matrix signal having m rows and n columns

Sample Time

Specify the sample time at which the block is updated. Valid values are

- -1 Inherited from the block to which it is connected
- period >= 0
- [period, offset]
- [0, -1]
- [-1, -1]

where period is the sample rate and offset is the offset of the sample period from time zero. See "How to Specify the Sample Time" in the online documentation for more information.

Minimum

Specify the minimum value that the block should output. The default value, [], is equivalent to -Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Maximum

Specify the maximum value that the block should output. The default value, [], is equivalent to Inf. Simulink software uses this value to perform:

- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: auto
- The name of a built-in data type, for example, single
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button button to display the **Data Type Assistant**, which helps you set the **Data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Data type** parameter.

Signal type

Specify the numeric type (real or complex) of the input and output signal. To let Simulink software determine the numeric type, set this parameter to auto.

Sampling mode

Specify the sampling mode (sample-based or frame-based) of this block. To let Simulink software determine the sampling mode, set this parameter to auto.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Specified by the block's Sample time parameter.

Scalar Expansion	No
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

Purpose Implement sine and/or cosine wave in fixed point using lookup table approach that exploits quarter wave symmetry

Library Lookup Tables (Sine block or Cosine block)

Description

cos(2*pi*u)

The Sine and Cosine block implements a sine and/or cosine wave in fixed point using a lookup table method that exploits quarter wave symmetry.

The Sine and Cosine block can output the following functions of the input signal, depending upon what you select for the **Output formula** parameter:

- $sin(2\pi u)$
- cos(2πu)
- exp(i2πu)
- $\sin(2\pi u)_{and}\cos(2\pi u)$

You define the number of lookup table points in the **Number of data points for lookup table** parameter. The block implementation is most efficient when you specify the lookup table data points to be $(2^n)+1$, where n is an integer.

Use the **Output word length** parameter to specify the word length of the fixed-point output data type. The fraction length of the output is the output word length minus 2.

Data TypeThe Sine and Cosine block accepts signals of any numeric data typeSupportsupported by Simulink software, including fixed-point data types. The
output of the block is a fixed-point data type.

Parameters and Dialog Box

Function Block Parameters: Sine
Sine and Cosine (mask) (link)
Implement sine and cosine functions in fixed point using a lookup table approach that exploits quarter wave symmetry. The output fraction length equals the output word length minus 2.
The most efficient implementation is obtained when the number of data points is (2^n)+1 where n is an integer.
Parameters
Output formula sin(2*pi*u)
Number of data points for lookup table:
(2^5)+1
Output word length:
16
OK Cancel Help Apply

Output formula

Select the signal(s) to output.

Number of data points for lookup table

Specify the number of data points to retrieve from the lookup table. The implementation is most efficient when you specify the lookup table data points to be $(2^n)+1$, where n is an integer.

Output word length

Specify the word length for the fixed-point data type of the output signal. The fraction length of the output is the output word length minus 2.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	N/A

See Also Sine Wave, Trigonometric Function

Sine Wave

Purpose G	enerate sine wave
-----------	-------------------

Sources

Library

Description

The Sine Wave block provides a sinusoid. The block can operate in either time-based or sample-based mode.

Time-Based Mode

The output of the Sine Wave block is determined by

 $y = Amplitude \times sin(frequency \times time + phase) + bias$

Time-based mode has two submodes: continuous mode or discrete mode. The value of the **Sample time** parameter determines whether the block operates in continuous mode or discrete mode:

- 0 (the default) causes the block to operate in continuous mode.
- >0 causes the block to operate in discrete mode.

See "How to Specify the Sample Time" in the online documentation for more information.

Using the Sine Wave Block in Continuous Mode

A **Sample time** parameter value of **0** causes the block to operate in continuous mode. When operating in continuous mode, the Sine Wave block can become inaccurate due to loss of precision as time becomes very large.

Using the Sine Wave Block in Discrete Mode

A **Sample time** parameter value greater than zero causes the block to behave as if it were driving a Zero-Order Hold block whose sample time is set to that value.

Using the Sine Wave block in this way allows you to build models with sine wave sources that are purely discrete, rather than models that are hybrid continuous/discrete systems. Hybrid systems are inherently more complex and as a result take longer to simulate. The Sine Wave block in discrete mode uses an incremental algorithm rather than one based on absolute time. As a result, the block can be useful in models intended to run for an indefinite length of time, such as in vibration or fatigue testing.

The incremental algorithm computes the sine based on the value computed at the previous sample time. This method makes use of the following identities:

```
sin(t + \Delta t) = sin(t) cos(\Delta t) + sin(\Delta t) cos(t)

cos(t + \Delta t) = cos(t) cos(\Delta t) - sin(t) sin(\Delta t)
```

These identities can be written in matrix form:

$sin(t + \Delta t)$	_	$\cos(\Delta t)$	$sin(\Delta t)$	sin(t)
$\cos(t + \Delta t)$	-	$-\sin(\Delta t)$	$\cos{(\Delta t)}$	$\cos(t)$

Since Δt is constant, the following expression is a constant:

```
\begin{bmatrix} \cos(\Delta t) & \sin(\Delta t) \\ -\sin(\Delta t) & \cos(\Delta t) \end{bmatrix}
```

Therefore the problem becomes one of a matrix multiplication of the value of sin(t) by a constant matrix to obtain $sin(t+\Delta t)$.

Discrete mode reduces but does not eliminate accumulation of roundoff errors. This is because the computation of the block's output at each time step depends on the value of the output at the previous time step.

Sample-Based Mode

Sample-based mode uses the following formula to compute the output of the Sine Wave block.

 $y = A \times \sin(2 \times \pi \times (k + o)/p) + b$

where

• A is the amplitude of the sine wave.

- p is the number of time samples per sine wave period.
- k is a repeating integer value that ranges from 0 to p-1.
- o is the offset (phase shift) of the signal.
- b is the signal bias.

In this mode, Simulink software sets k equal to 0 at the first time step and computes the block's output, using the preceding formula. At the next time step, Simulink software increments k and recomputes the output of the block. When k reaches p, Simulink software resets k to 0 before computing the block's output. This process continues until the end of the simulation.

The sample-based method of computing the block's output does not depend on the result of the previous time step to compute the result at the current time step. It therefore avoids roundoff error accumulation. However, it has one potential drawback. If the block is in a conditionally executed subsystem and the conditionally executed subsystem pauses and then resumes execution, the output of the Sine Wave block might no longer be in sync with the rest of the simulation. Thus, if the accuracy of your model requires that the output of conditionally executed Sine Wave blocks remain in sync with the rest of the model, you should use time-based mode for computing the output of the conditionally executed blocks.

Parameter Dimensions

The block's numeric parameters must be of the same dimensions after scalar expansion. If the **Interpret vector parameters as 1-D** option is off, the block outputs a signal of the same dimensions and dimensionality as the parameters. If the **Interpret vector parameters as 1-D** option is on and the numeric parameters are row or column vectors (i.e., single row or column 2-D arrays), the block outputs a vector (1-D array) signal; otherwise, the block outputs a signal of the same dimensionality and dimensions as the parameters.

Data Type Support

The Sine Wave block accepts and outputs real signals of type double.

Sine Wave

Parameters and Dialog Box

	ers: Sine Wave		
Sine Wave			
Output a sine way	e:		
O(t) = Amp*Sin(2	!*pi*Freq*t+Phase) + I	Bias	
Sine type determin types are related t		technique used. The	parameters in the two
Samples per perio	d = 2*pi / (Frequency	* Sample time)	
Number of offset s	amples = Phase * Sa	mples per period / (2*p	5i)
	ased sine type if numa bsolute time) occur.	erical problems due to	running for large time
Parameters			
Sine type: Time			_
			j``
Time (t): Use sin	nulation time		-
Amplitude:			
1			
Bias:			
0			
Frequency (rad/s	ec):		
1	•		
Phase (rad):			
0			
Sample time:			
0			
	r parameters as 1-D		
I+ Interpret vecto	n parameters as 1-D		

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Sine type

Type of sine wave generated by this block, either time- or sample-based. Some of the other options presented by the Sine Wave dialog box depend on whether you select time-based or sample-based as the value of **Sine type** parameter.

Time

Specifies whether to use simulation time as the source of values for the sine wave's time variable or an external source. If you specify an external time source, the block displays an input port for the time source.

Amplitude

The amplitude of the signal. The default is 1.

Bias

Constant value added to the sine to produce the output of this block.

Frequency

The frequency, in radians/second. The default is 1 rad/s. This parameter appears only if you choose time-based as the **Sine type** of the block.

Samples per period

Number of samples per period. This parameter appears only if you choose sample-based as the **Sine type** of the block.

Phase

The phase shift, in radians. The default is 0 radians. This parameter appears only if you choose time-based as the **Sine type** of the block.

Number of offset samples

The offset (discrete phase shift) in number of sample times. This parameter appears only if you choose sample-based as the **Sine type** of the block.

Sample time

The sample period. The default is 0. If the sine type is sample-based, the sample time must be greater than 0. See "How to Specify the Sample Time" in the online documentation for more information.

Interpret vector parameters as 1-D

If selected, column or row matrix values for the Sine Wave block's numeric parameters result in a vector output signal; otherwise, the block outputs a signal of the same dimensionality as the parameters. If this option is not selected, the block always outputs a signal of the same dimensionality as the block's numeric parameters. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation. This option is not available when an external signal specifies time. In this case, if the block's numeric parameters are column or row matrix values, the output is a 1-D vector.

Characteristics

Sample Time	Specified in the Sample time parameter
Scalar Expansion	Yes, of parameters
Dimensionalized	Yes
Zero Crossing	No

Sine Wave Function

Purpose Generate sine wave, using external signal as time sourc	Purpose	Generate sine	wave, using externa	l signal as	time source
--	---------	---------------	---------------------	-------------	-------------

Library

Math Operations

Description

This block is the same as the Sine Wave block with its **Time** parameter set to Use external source. See the documentation for the Sine Wave block for more information.

Slider Gain

Purpose Vary scalar gain using slider

Library Math Operations

Description Use the Slider Gain block to vary a scalar gain during a simulation using a slider. The block accepts one input and generates one output.

Data Type Support

Parameters

and Dialog Box Data type support for the Slider Gain block is the same as that for the Gain block (see Gain).

📣 Slider Gain		_ 🗆 🗙
4		×
Low		High
0	1	2
	Help	Close

Low

The lower limit of the slider range. The default is 0.

High

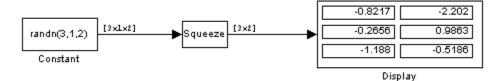
The upper limit of the slider range. The default is 2.

The edit fields indicate (from left to right) the lower limit, the current value, and the upper limit. You can change the gain in two ways: by manipulating the slider, or by entering a new value in the current value field. You can change the range of gain values by changing the lower and upper limits. Close the dialog box by clicking the **Close** button.

If you click the slider's left or right arrow, the current value changes by about 1% of the slider's range. If you click the rectangular area to either side of the slider's indicator, the current value changes by about 10% of the slider's range.

To apply a vector or matrix gain to the block input, consider using the Gain block.

Characteristics


5	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	Yes, of the gain
	States	0
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Т

Purpose	Remove singleton dimensions from multidimensional signal
Library	Math Operations
Description	The Squeeze block removes singleton dimensions from its multidimensional input signal. A singleton dimension is any dimension whose size is one.
	Note The Squeeze block operates only on signals whose number of

Note The Squeeze block operates only on signals whose number of dimensions is greater than two. Scalar, one-dimensional (vector), and two-dimensional (matrix) signals pass through the Squeeze block unchanged.

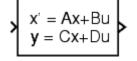
For example, the Squeeze block in the following diagram converts a multidimensional array of size 3-by-1-by-2 into a 3-by-2 signal.

Data Type Support The Squeeze block accepts input signals of any dimension and of any data type that Simulink software supports, including fixed-point and enumerated data types. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink".

Squeeze

Parameters and Dialog Box

🙀 Function Blo	ock Parameters:	Squeeze		×
C Squeeze				
dimension is a	eton dimensions of r dimension whose s) and 2-D signals pa	size is 1. For examp	ple, a 2x1x3 sigr	
	OK	Cancel	Help	Apply


Characteristics	Direct Feedthrough	Yes		
	Sample Time	Inherited from driving block		
	Scalar Expansion	N/A		
	Dimensionalized	Yes		
	Multidimensionalized	Yes		
	Zero Crossing	No		

See Also Reshape

- Purpose Implement linear state-space system
- Library Continuous

Description

The State-Space block implements a system whose behavior is defined by

 $\begin{aligned} x &= Ax + Bu \\ y &= Cx + Du \end{aligned}$

where x is the state vector, u is the input vector, and y is the output vector. The matrix coefficients must have these characteristics, as illustrated in the following diagram:

- A must be an n-by-n matrix, where n is the number of states.
- B must be an n-by-m matrix, where m is the number of inputs.
- C must be an r-by-n matrix, where r is the number of outputs.
- D must be an r-by-m matrix.

The block accepts one input and generates one output. The input vector width is determined by the number of columns in the B and D matrices. The output vector width is determined by the number of rows in the C and D matrices.

Simulink software converts a matrix containing zeros to a sparse matrix for efficient multiplication.

Specifying the Absolute Tolerance for the Block's States

By default Simulink software uses the absolute tolerance value specified in the **Configuration Parameters** dialog box (see "Solver Pane") to solve the states of the State-Space block. If this value does not provide sufficient error control, specify a more appropriate value in the **Absolute tolerance** field of the State-Space block's dialog box. The value that you specify is used to solve all the block's states.

A State-Space block accepts and outputs real signals of type double.

Data Type Support

State-Space

Parameters and Dialog Box

Function Block	Parameters	: State-Space		
State Space				
State-space mode dx/dt = Ax + Bu y = Cx + Du	: l:			
Parameters				
A:				
1				
B:				
1				
C:				
1				
D: 1				
Initial conditions:				
0				
Absolute tolerance	e:			
auto				
State Name: (e.g.	, 'position')			
"				
	ОК	Cancel	Help	Apply

A, B, C, D

The matrix coefficients.

Initial conditions

The initial state vector. Simulink software does not allow the initial conditions of this block to be inf or NaN.

Absolute tolerance

Absolute tolerance used to solve the block's states. You can enter auto or a numeric value. If you enter auto, Simulink software determines the absolute tolerance (see "Solver Pane"). If you enter a numeric value, Simulink software uses the specified value to solve the block's states. Note that a numeric value overrides the setting for the absolute tolerance in the **Configuration Parameters** dialog box.

State Name

Use this to assign a unique name to each state. The state names apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes, for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.

The number of states must be evenly divided by the number of state names. There can be fewer names than the number of states, but there cannot be more names than states.

For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.

To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Characteristics	Direct Feedthrough	Only if $D \neq 0$		
	Sample Time	Continuous		
	Scalar Expansion	Yes, of the initial conditions		

States	Depends on the size of A
Dimensionalized	Yes
Zero Crossing	No

Purpose	Generate step function
Library	Sources
Description	The Step block provides a step between two definable levels at a specified time. If the simulation time is less than the Step time parameter value, the block's output is the Initial value parameter value. For simulation time greater than or equal to the Step time , the output is the Final value parameter value.
	The block's numeric parameters must be of the same dimensions after scalar expansion. If the Interpret vector parameters as 1-D option is off, the block outputs a signal of the same dimensions and dimensionality as the parameters. If the Interpret vector parameters as 1-D option is on and the numeric parameters are row or column vectors (i.e., single row or column 2-D arrays), the block outputs a vector (1-D array) signal; otherwise, the block outputs a signal of the same dimensionality and dimensions as the parameters.
Data Type Support	The Step block outputs real signals of type double.

Parameters and Dialog Box

🙀 Source Block Parameters: Step 🛛 🛛 🔀
Step
Output a step.
Parameters
Step time:
Initial value:
0
Final value:
1
Sample time:
0
✓ Interpret vector parameters as 1-D
Enable zero-crossing detection
OK Cancel Help

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Step time

The time, in seconds, when the output jumps from the **Initial** value parameter to the **Final value** parameter. The default is 1 second.

Initial value

The block output until the simulation time reaches the **Step time** parameter. The default is **0**.

Final value

The block output when the simulation time reaches and exceeds the **Step time** parameter. The default is 1.

Sample time

Sample rate of step. See "How to Specify the Sample Time" in the online documentation for more information.

Interpret vector parameters as 1-D

If selected, column or row matrix values for the Step block's numeric parameters result in a vector output signal; otherwise, the block outputs a signal of the same dimensionality as the parameters. If this option is not selected, the block always outputs a signal of the same dimensionality as the block's numeric parameters. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation.

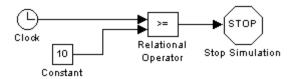
Enable zero-crossing detection

Select to enable zero-crossing detection to detect step times. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Characteristics	Sample Time	Specified in the Sample time parameter		
	Scalar Expansion	Yes, of parameters		
	Dimensionalized	Yes		
	Zero-Crossing Detection	Yes, if enabled.		

Stop Simulation

- **Purpose** Stop simulation when input is nonzero
- **Library** Sinks


Description

The Stop Simulation block stops the simulation when the input is nonzero.

The simulation completes the current time step before terminating. If the block input is a vector, any nonzero vector element causes the simulation to stop.

You can use this block in conjunction with the Relational Operator block to control when the simulation stops. For example, this model stops the simulation when the input signal reaches 10.

The Stop block cannot be used to pause the simulation. To create a block that pauses the simulation, see "Creating Pause Blocks" in the Simulink documentation for more information.

Data Type Support

The Stop Simulation block accepts real signals of type double or Boolean.

Parameters	Sink Block Parameters: Stop Simulation	1
and Dialog Box	Stop Stop simulation when input is non-zero.	
	OK Cancel Help Apply	

Characteristics	Sample Time	Inherited from driving block		
Dimensionalized		Yes		

Purpose Represent system within another system

Library

Ports & Subsystems

Description

Å

A Subsystem block represents a subsystem of the system that contains it. The Subsystem block can represent a virtual subsystem or a nonvirtual subsystem. The primary difference is that nonvirtual subsystems provide the ability to control when the contents of the subsystem are evaluated. Nonvirtual subsystems are executed as a single unit (atomic execution) by the Simulink engine. A subsystem is virtual unless the block is conditionally executed and/or you have selected the block **Treat as atomic unit** check box.

Note To determine if a subsystem is virtual, use the get_param function to obtain the value of the IsSubsystemVirtual property for the block. This property returns a read-only boolean value for the block. See "Block-Specific Parameters" on page 8-96 for the subsystem block you are interested in.

An Atomic Subsystem block is a Subsystem block that has its **Treat as atomic unit** parameter selected by default. You can create conditionally executed nonvirtual subsystems that are executed only when a transition occurs on a triggering, function-call, action, or enabling input (see "Creating Conditional Subsystems").

You can create a subsystem in these ways:

- Copy the Subsystem (or Atomic Subsystem) block from the Ports & Subsystems library into your model. You can then add blocks to the subsystem by opening the Subsystem block and copying blocks into its window.
- Select the blocks and lines that are to make up the subsystem using a bounding box, then choose **Create Subsystem** from the **Edit** menu. Simulink software replaces the blocks with a Subsystem block. When you open the block, the window displays the blocks you

selected, adding Inport and Outport blocks to reflect signals entering and leaving the subsystem.

The number of input ports drawn on the Subsystem block's icon corresponds to the number of Inport blocks in the subsystem. Similarly, the number of output ports drawn on the block corresponds to the number of Outport blocks in the subsystem.

See "Creating Subsystems" in the Simulink User's Guide for more information about subsystems.

Data TypeSee Inport for information on the data types accepted by a subsystem'sSupportinput ports. See Outport for information on the data types output by a
subsystem's output ports.

Parameters and Dialog Box

Function	Block Parame	ters: Subsy	stem			
Subsystem-						
Select the s	ettings for the s	ubsystem blo	ck.			
Parameters						
Chau part l	abels FromPor	H.co.o.				
Show port i	ibels [FromPor	ucon				<u> </u>
Read/Write	permissions:	ReadWrite				•
Name of en	or callback fund	tion:				
,						
Permit hiera	rchical resolutio	n: All				-
🔽 Treat as	atomic unit					
Minimize	algebraic loop o	occurrences				
Sample time	(-1 for inherite	d):				
-1	(-,.				
1-1						
Real-Time V	/orkshop systen	n code: Auto)			-
~			L .	- 1	. 1	
0		OK	Cancel	He	elp	Apply

Show port labels

Cause Simulink software to display labels for the subsystem's ports on the subsystem's icon.

Settings

Default: FromPortIcon

none

Does not display port labels on the subsystem block.

FromPortIcon

If the corresponding port icon displays a signal name, display the signal name on the subsystem block. Otherwise, display the port block's name.

FromPortBlockName

Display the name of the corresponding port block on the subsystem block.

SignalName

If a name exists, display the name of the signal connected to the port on the subsystem block; otherwise, the name of the corresponding port block.

Command-Line Information

Read/Write permissions

Control user access to the contents of the subsystem.

Settings

Default: ReadWrite

ReadWrite

Enables opening and modification of subsystem contents.

ReadOnly

Enables opening but not modification of the subsystem. If the subsystem resides in a block library, you can create and open links to the subsystem and can make and modify local copies of the subsystem but cannot change the permissions or modify the contents of the original library instance.

NoReadOrWrite

Disables opening or modification of subsystem. If the subsystem resides in a library, you can create links to the subsystem in a model but cannot open, modify, change permissions, or create local copies of the subsystem.

Command-Line Information

Name of error callback function

Enter name of a function to be called if an error occurs while Simulink software is executing the subsystem.

Settings

Default: ' '

Simulink software passes two arguments to the function: the handle of the subsystem and a string that specifies the error type. If no function is specified, Simulink software displays a generic error message if executing the subsystem causes an error.

Command-Line Information

Permit hierarchical resolution

Specify whether to resolve names of workspace variables referenced by this subsystem.

Settings

Default: All

A11

Resolve all names of workspace variables used by this subsystem, including those used to specify block parameter values and Simulink data objects (for example, Simulink.Signal objects).

None

Resolve only names of workspace variables used to specify block parameter values, data store memory (where no block exists), signals, and states marked as "must resolve".

ExplicitOnly

Do not resolve any workspace variable names.

Command-Line Information

Treat as atomic unit

Causes Simulink software to treat the subsystem as a unit when determining the execution order of block methods.

Settings

Default: Off

Cause Simulink software to treat the subsystem as a unit when determining the execution order of block methods. For example, when it needs to compute the output of the subsystem, Simulink software invokes the output methods of all the blocks in the subsystem before invoking the output methods of other blocks at the same level as the subsystem block.

C Off

Cause Simulink software to treat all blocks in the subsystem as being at the same level in the model hierarchy as the subsystem when determining block method execution order. This can cause execution of methods of blocks in the subsystem to be interleaved with execution of methods of blocks outside the subsystem.

Dependencies

This parameter enables:

- Minimize algebraic loop occurrences.
- Sample time
- **Real-Time Workshop system code** (requires a Real-Time Workshop license)

Command-Line Information

Minimize algebraic loop occurrences

Try to eliminate any algebraic loops that include the subsystem.

Settings

Default: Off

🔽 On

Try to eliminate any algebraic loops that include the subsystem.

C Off

Does not try to eliminate any algebraic loops that include the subsystem.

Dependency

This parameter is enabled by **Treat as atomic unit**.

Command-Line Information

Propagate execution context across subsystem boundary

Enable execution context propagation across this subsystem's boundary.

Settings

Default: Off

🔽 On

Enables execution context propagation across this subsystem's boundary.

Does not enable execution context propagation across this subsystem's boundary.

Dependency

This parameter is enabled only if the subsystem is conditionally executed.

Command-Line Information

Warn if function-call inputs are context-specific

Simulink software displays a warning if it has to compute any of this function-call subsystem's inputs directly or indirectly during execution of a function-call.

Settings

Default: Off

🔽 On

Simulink software displays a warning if it has to compute any of this function-call subsystem's inputs directly or indirectly during execution of a function-call.

C Off

Simulink software does not display a warning if it has to compute any of this function-call subsystem's inputs directly or indirectly during execution of a function-call.

Dependency

This parameter is enabled only if the subsystem is a function-call subsystem.

The option is effective only if the **Context-dependent inputs** diagnostic on the **Configuration Parameters > Connectivity** dialog box is set to Use local settings.

Command-Line Information

Sample time (-1 for inherited)

Specify whether all blocks in this subsystem must run at the same rate or can run at different rates.

Settings

Default: -1

• -1

Specify the inherited sample time. Use this sample time if the blocks in the subsystem can run at different rates.

• inf

Specify constant sample time

• [Ts 0]

Specify periodic sample time.

Tips

- If the blocks in the subsystem can run at different rates, specify the subsystem's sample time as inherited (-1).
- If all blocks must run at the same rate, specify the sample time corresponding to this rate as the value of the subsystem's **Sample time** parameter.
- If any of the blocks in the subsystem specify a different sample time (other than -1 or inf), Simulink software displays an error message when you update or simulate the model. For example, suppose all the blocks in the subsystem must run 5 times a second. To ensure this, specify the sample time of the subsystem as 0.2. In this example, if any of the blocks in the subsystem specify a sample time other than 0.2, -1, or inf, Simulink software displays an error when you update or simulate the model.

Dependencies

This parameter is enabled by Treat as atomic unit.

Command-Line Information

Real-Time Workshop system code

Specify the code format to be generated for an atomic (nonvirtual) subsystem.

Settings

Default: Auto

Auto

Real-Time Workshop software chooses the optimal format for you based on the type and number of instances of the subsystem that exist in the model.

Inline

Real-Time Workshop software inlines the subsystem unconditionally.

Function

Real-Time Workshop software generates a separate, non-reentrant function with no arguments, and optionally place the subsystem code in a separate file.

Reusable function

Real-Time Workshop software generates a function with arguments that allows the subsystem's code to be shared by other instances of it in the model.

Tip

If you select Reusable function while your generated code is under source control, set **Real-Time Workshop file name options** to Use subsystem name, Use function name, or User specified. Otherwise, the names of your code files change whenever you modify your model, which prevents source control on your files.

Dependencies

- Real-Time Workshop license required
- This parameter is enabled by **Treat as atomic unit**.
- Setting this parameter to Function or Reusable function enables the following parameters:

- Real-Time Workshop function name options
- Real-Time Workshop file name options
- Function with separate data (requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file)
- Memory section for initialize/terminate functions (requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file)
- Memory section for execution functions (requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file)

Command-Line Information

Real-Time Workshop function name options

Specify how Real-Time Workshop software is to name the function it generates for the subsystem.

Settings

Default: Auto

Auto

Assign a unique function name using the default naming convention, *model_subsystem()*, where *model* is the name of the model and *subsystem* is the name of the subsystem (or that of an identical one when code is being reused).

Use subsystem name

Use the subsystem name as the function name.

User specified

Assign a unique, valid C or C++ function name that you specify.

Tip

If you specify Use subsystem name and the subsystem is a library block, Real-Time Workshop software names the function (and filename) with the name of the library block, regardless of the names used for that subsystem in the model.

Dependencies

- Real-Time Workshop license required
- Selecting User specified enables the **Real-Time Workshop** function name option parameter.
- This parameter is enabled by **Treat as atomic unit**.

Command-Line Information

Real-Time Workshop function name

Specify a unique, valid C or C++ function name for subsystem code.

Settings

Default: ' '

Use this parameter if you want to give the function a specific name instead of allowing the Real-Time Workshop code generator to assign its own autogenerated name or use the subsystem name.

Dependencies

This parameter is enabled by setting **Real-Time Workshop function** name options to User specified.

Command-Line Information

Real-Time Workshop file name options

Specify how Real-Time Workshop software is to name the separate file for the function it generates for the subsystem.

Settings

Default: Auto

Auto

Generate the function code within the module generated from the subsystem's parent system, or, if the subsystem's parent is the model itself, within the file model.c or model.cpp

Use subsystem name

Generate a separate file and name it with the name of the subsystem or library block

Use function name

Generate a separate file and name it with the function name you specify for **Real-Time Workshop function name options**

User specified $$\operatorname{Assign}$ a unique, valid C or C++ function name that you specify

Tip

If you specify Use subsystem name, the subsystem filename is mangled if the model contains Model blocks, or if a model reference target is being generated for the model. In these situations, the filename for the subsystem consists of the subsystem name prefixed by the model name.

Dependencies

- Real-Time Workshop license required
- Setting this parameter to User specified enables the **Real-Time** Workshop filename (no extension) parameter.

Command-Line Information

Real-Time Workshop file name (no extension)

Specify how Real-Time Workshop software is to name the file for the function it generates for the subsystem.

Settings

Default: ' '

• The filename that you specify does not have to be unique. However, avoid giving non-unique names that result in cyclic dependencies (for example, sys_a.h includes sys_b.h, sys_b.h includes sys_c.h, and sys_c.h includes sys_a.h).

Dependencies

- Real-Time Workshop license required
- This parameter is enabled by setting **Real-Time Workshop file name options** to User specified.

Command-Line Information

Function with separate data

Generate subsystem function code in which the internal data for an atomic subsystem is separated from its parent model and is owned by the subsystem.

Settings

Default: Off

🔽 On

Generate subsystem function code in which the internal data for an atomic subsystem is separated from its parent model and is owned by the subsystem. As a result, the generated code for the atomic subsystem is easier to trace and test. The data separation also tends to reduce the size of data structures throughout the model.

C Off

Do not generate subsystem function code in which the internal data for an atomic subsystem is separated from its parent model and is owned by the subsystem.

Dependencies

- Requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file.
- This parameter is enabled by setting **Real-Time Workshop system** code to Function.
- Selecting this check box enables Memory section for constants, Memory section for internal data, and Memory section for parameters.

Command-Line Information

Memory section for initialize/terminate functions

Indicate how the Real-Time Workshop Embedded Coder software is to apply memory sections to the subsystem's initialization and termination functions.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's function code

Default

Not apply memory sections to the subsystem's system code, overriding any model-level specification

The memory section of interest Apply one of the model's memory sections to the subsystem

Tips

- The possible values vary depending on what (if any) package of memory sections you have set for the model's configuration. See "Memory Sections", "Configuring Memory Sections", and "Real-Time Workshop Pane: Memory Sections" in the Real-Time Workshop Embedded Coder documentation.
- If you have not configured the model with a package, Inherit from model is the only value that appears. Otherwise, the list includes Default and all memory sections the model's package contains.
- These options can be useful for overriding the model's memory section settings for the given subsystem.

Dependencies

- Requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file.
- This parameter is enabled by setting **Real-Time Workshop system** code to Function.

Command-Line Information

Memory section for execution functions

Indicate how the Real-Time Workshop Embedded Coder software is to apply memory sections to the subsystem's execution functions.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's function code

Default

Not apply memory sections to the subsystem's system code, overriding any model-level specification

The memory section of interest

Apply one of the model's memory sections to the subsystem

Tips

- The possible values vary depending on what (if any) package of memory sections you have set for the model's configuration. See "Memory Sections", "Configuring Memory Sections", and "Real-Time Workshop Pane: Memory Sections" in the Real-Time Workshop Embedded Coder documentation.
- If you have not configured the model with a package, Inherit from model is the only value that appears. Otherwise, the list includes Default and all memory sections the model's package contains.
- These options can be useful for overriding the model's memory section settings for the given subsystem.

Dependencies

- Requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file.
- This parameter is enabled by setting **Real-Time Workshop system** code to Function.

Command-Line Information

Memory section for constants

Indicate how the Real-Time Workshop Embedded Coder software is to apply memory sections to the subsystem's data.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's data

Default

Not apply memory sections to the subsystem's data, overriding any model-level specification

The memory section of interest

Apply one of the model's memory sections to the subsystem

Tips

- Can be useful for overriding the model's memory section settings for the given subsystem.
- The possible values vary depending on what (if any) package of memory sections you have set for the model's configuration. See "Configuring Memory Sections" in the Real-Time Workshop Embedded Coder User's Guide.
- If you have not configured the model with a package, Inherit from model is the only value that appears. Otherwise, the list includes Default and all memory sections the model's package contains.

Dependencies

- Requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file.
- This parameter is enabled by setting **Real-Time Workshop system** code to Function and by selecting the Function with separate data check box.

Command-Line Information

Memory section for internal data

Indicate how the Real-Time Workshop Embedded Coder software is to apply memory sections to the subsystem's data.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's data

Default

Not apply memory sections to the subsystem's data, overriding any model-level specification

The memory section of interest

Apply one of the model's memory sections to the subsystem

Tips

- Can be useful for overriding the model's memory section settings for the given subsystem.
- The possible values vary depending on what (if any) package of memory sections you have set for the model's configuration. See "Configuring Memory Sections" in the Real-Time Workshop Embedded Coder User's Guide.
- If you have not configured the model with a package, Inherit from model is the only value that appears. Otherwise, the list includes Default and all memory sections the model's package contains.

Dependencies

- Requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file.
- This parameter is enabled by setting **Real-Time Workshop system** code to Function and by selecting the Function with separate data check box.

Command-Line Information

Memory section for parameters

Indicate how the Real-Time Workshop Embedded Coder software is to apply memory sections to the subsystem's data.

Settings

Default: Inherit from model

Inherit from model

Apply the root model's memory sections to the subsystem's function code

Default

Not apply memory sections to the subsystem's system code, overriding any model-level specification

The memory section of interest

Apply one of the model's memory sections to the subsystem

Tips

- Can be useful for overriding the model's memory section settings for the given subsystem.
- The possible values vary depending on what (if any) package of memory sections you have set for the model's configuration. See "Configuring Memory Sections" in the Real-Time Workshop Embedded Coder User's Guide.
- If you have not configured the model with a package, Inherit from model is the only value that appears. Otherwise, the list includes Default and all memory sections the model's package contains.

Dependencies

- Requires a Real-Time Workshop Embedded Coder license and an ERT-based system target file.
- This parameter is enabled by setting **Real-Time Workshop system** code to Function and by selecting the Function with separate data check box.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

Characteristics

Sample Time	Depends on the blocks in the subsystem
Dimensionalized	Depends on the blocks in the subsystem
Multidimensionalized	Depends on the blocks in the subsystem
Zero Crossing	Yes, for enable and trigger ports if present

Purpose Add or subtract inputs

Library Math Operations

Description

The Sum block performs addition or subtraction on its inputs. This block can add or subtract scalar, vector, or matrix inputs. It can also collapse the elements of a signal.

You specify the operations of the block with the **List of signs** parameter. Plus (+), minus (-), and spacer (|) characters indicate the operations to be performed on the inputs:

- If there are two or more inputs, then the number of + and characters must equal the number of inputs. For example, "+-+" requires three inputs and configures the block to subtract the second (middle) input from the first (top) input, and then add the third (bottom) input.
- All nonscalar inputs must have the same dimensions. Scalar inputs will be expanded to have the same dimensions as the other inputs.
- A spacer character creates extra space between ports on the block's icon.
- For a round Sum block, the first input port is the port closest to the 12 o'clock position going in a counterclockwise direction around the block. Similarly, other input ports appear in counterclockwise order around the block.
- If only addition of all inputs is required, then a numeric parameter value equal to the number of inputs can be supplied instead of "+" characters.
- If only one input port is required, a single "+" or "-" collapses the element via the specified operation.

The Sum block first converts the input data type(s) to its accumulator data type, then performs the specified operations. The block converts the result to its output data type using the specified rounding and overflow modes.

Sum, Add, Subtract, Sum of Elements

Data Type Support	The Sum block accepts real or complex signals of any numeric data type supported by Simulink software, including fixed-point data types. The inputs may be of different data types unless you select the Require all inputs to have the same data type parameter.
Parameters and Dialog Box	The Main pane of the Sum block dialog box appears as follows: Function Block Parameters: Sum Add or subtract inputs. Specify one of the following: a) string containing + or - for each input port, for spacer between ports (e.g. ++ - ++) b) scalar, >= 1, specifies the number of input ports to be summed. When there is only one input port, add or subtract elements over all dimensions or one specified dimension Main Signal Attributes Icon shape: round List of signs: ++ Sample time (-1 for inherited): -1
	OK Cancel Help Apply

The **Signal Attributes** pane of the Sum block dialog box appears as follows:

🙀 Function Block Parameters: Sum 🛛 🗶	
Sum Add or subtract inputs. Specify one of the following: a) string containing + or - for each input port, for spacer between ports (e.g. ++ - ++) b) scalar, >= 1, specifies the number of input ports to be summed. When there is only one input port, add or subtract elements over all dimensions or one specified dimension	
Main Signal Attributes	
Require all inputs to have the same data type	
Accumulator data type: Inherit: Inherit via internal rule >>	
Output minimum: Output maximum: □ □	
Output data type: Inherit: Inherit via internal rule >>	
Integer rounding mode: Floor	
Saturate on integer overflow	
OK Cancel Help Apply	

Show data type assistant

Display the Data Type Assistant.

Settings

The **Data Type Assistant** helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Icon shape

Designate the icon shape of the block.

Settings

Default: round

rectangular

Designate the icon shape of the block as rectangular.

round

Designate the icon shape of the block as round.

Command-Line Information

List of signs

Enter plus (+) and minus (-) characters.

Settings

Default: |++

- Addition is the default operation, so if you only want to add the inputs, enter the number of input ports.
- For a single vector input, "+" or "-" will collapse the vector using the specified operation.
- Enter as many plus (+) and minus (-) characters as there are inputs.

Tips

You can manipulate the positions of the input ports on the block by inserting spacers (|) between the signs in the **List of signs** parameter. For example, "++| --" creates an extra space between the second and third input ports.

Dependencies

Entering only one element enables the **Sum over** parameter.

Command-Line Information

Sum over

Select dimension over which to perform the sum over operation.

Settings

Default: All dimensions

All dimensions

Sum all input elements, yielding a scaler.

Specified dimension

Display the **Dimension** parameter, where you specify the dimension over which to perform the operation.

Dependencies

Selecting Specified dimension enables the **Dimension** parameter.

This parameter is enabled by **List of signs** when that parameter has only one element.

Command-Line Information

Dimension

Specify the dimension over which to perform the operation.

Settings

Default: 1

The block follows the same summation rules as the MATLAB $\operatorname{\mathsf{sum}}$ function.

Suppose that you have a 2-by-3 matrix U.

• Setting **Dimension** to 1 results in the output *Y* being computed as:

$$Y = \sum\nolimits_{i=1}^{2} U(i,j)$$

• Setting **Dimension** to 2 results in the output *Y* being computed as:

$$Y = \sum\nolimits_{j=1}^{3} U(i,j)$$

If the specified dimension is greater than the dimension of the input, an error message appears.

Dependencies

This parameter is enabled by setting ${\bf Sum \ over}$ to Specified dimension.

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Require all inputs to have the same data type

Require that all inputs have the same data type.

Settings

Default: Off

🔽 On

Require that all inputs have the same data type.

C Off

Do not require that all inputs have the same data type.

Command-Line Information

Lock scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings Default: Off

Default: O

₽_{On}

Lock scaling of outputs.

 \Box_{Off}

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Saturate on integer overflow

Specify whether overflows saturate.

Settings Default: Off

🔽 On

Overflows saturate.

C Off

Overflows do not saturate.

Tips

- When you select this check box, saturation applies to every internal operation on the block, not just the output or result.
- In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Command-Line Information

Accumulator data type

Specify the accumulator data type.

Settings

Default: Inherit: Inherit via internal rule

Inherit: Inherit via internal rule Use internal rule to determine accumulator data type.

Inherit: Same as first input Use data type of first input signal.

double

Accumulator data type is double.

single

Accumulator data type is single.

int8

Accumulator data type is int8.

uint8

Accumulator data type is uint8.

int16

Accumulator data type is int16.

uint16

Accumulator data type is uint16.

int32

Accumulator data type is int32.

uint32

Accumulator data type is uint32.

fixdt(1,16,0)

Accumulator data type is fixed point fixdt(1,16,0).

fixdt(1,16,2^0,0)

Accumulator data type is fixed point fixdt(1,16,2⁰,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the *Simulink User's Guide* for more information.

Mode

Select the category of accumulator data to specify

Settings

Default: Inherit

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit via internal rule
- Same as first input

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double
- single
- int8
- uint8
- int16
- uint16
- int32
- uint32

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks.

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text to the right. Below are the possible values, which can vary by block:

• <data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button for the accumulator data type.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point for the accumulator data type.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point for the accumulator data type.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

 ${\bf Default:}\ {\tt Best \ precision \ or \ Binary \ point}$

Binary point Specify binary point location.

Slope and bias Enter slope and bias.

Best precision Specify best-precision values. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point for the accumulator data type.

Selecting Binary point enables:

• Fraction length

Selecting Slope and bias enables:

- Slope
- Bias

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point for the accumulator data type.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2^0

Specify any positive real number.

Dependencies

This parameter is enabled by selecting **Scaling** > Slope and bias for the accumulator data type.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias for the accumulator data type.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA. Simulink software chooses the output data type without regard to hardware constraints. Otherwise. Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

- Inherit: Inherit from 'Constant value'
 Use data type of Constant value parameter. This option appears
 for some blocks.
- Inherit: Inherit via back propagation A rule that inherits a data type

```
Inherit: Same as input
     Use data type of sole input signal. This option appears for some
     blocks.
Inherit: Same as first input
     Use data type of first input signal. This option appears for some
     blocks.
Inherit: Same as accumulator
     Output data type same as accumulator data type. This option
     appears for some blocks.
double
     Output data type is double.
single
     Output data type is single.
int8
     Output data type is int8.
uint8
     Output data type is uint8.
int16
     Output data type is int16.
uint16
     Output data type is uint16.
int32
     Output data type is int32.
uint32
     Output data type is unt32.
fixdt(1,16,0)
     Output data type is fixed point fixdt(1,16,0).
fixdt(1,16,2<sup>0</sup>,0)
     Output data type is fixed point fixdt(1,16,2^0,0).
```

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting Mode > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

Slope and bias

Enter slope and bias.

- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

Characteristics

5	Direct Feedthrough	Yes
	Sample Time	Specified in the ${\bf Sample time}$ parameter
	Scalar Expansion	Yes
	States	0
	Dimensionalized	Yes
	Multidimensionalized	Yes, only along the specified dimension
	Zero Crossing	No

Switch

Purpose Switch output between first input and third input based on value of second input

Library Sign

Signal Routing

Description

The Switch block passes through the first input or the third input based on the value of the second input. The first and third inputs are called *data inputs*. The second input is called the *control input*. See "How to Rotate a Block" in the Simulink User's Guide for a description of the port order for various block orientations.

You select the condition under which the first input is passed with the **Criteria for passing first input** parameter. You can make the block check whether the control input is greater than or equal to the threshold value, purely greater than the threshold value, or nonzero. If the control input meets the condition set in the **Criteria for passing first input** parameter, the first input is passed. Otherwise, the third input is passed.

Note If the data inputs to the switch are buses, the element names of both buses must be the same to ensure that the output bus has the same element names no matter which input bus is selected. You can ensure that your model meets this requirement by using a bus object to define the buses with the model's **Element name mismatch** diagnostic set to error. See "Connectivity Diagnostics Overview" for more information.

To immediately back propagate a known output data type to the first and third input ports, set the **Output data type** parameter to Inherit: Inherit via internal rule and select the **Require all data port inputs to have the same data type** check box.

Data Type Support

The control signal can be of any data type supported by Simulink software, including fixed-point and enumerated types. The control signal cannot be complex. If it is enumerated, the block's **Threshold** parameter must be a value of the same enumerated type, and the block compares the underlying integers of the control signal and the **Threshold**.

The data signals can be of any data type supported by Simulink software. If either data signal is of an enumerated type, the other must be of the same enumerated type.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink User's Guide.

The **Main** pane of the Switch block dialog box appears as follows:

Parameters and Dialog Box

🙀 Function Block Parameters: Switch 🛛 🛛 🔀		
Switch		
Pass through input 1 when input 2 satisfies the selected criterion; otherwise, pass through input 3. The inputs are numbered top to bottom (or left to right). The input 1 pass-through criteria are input 2 greater than or equal, greater than, or not equal to the threshold. The first and third input ports are data ports, and the second input port is the control port.		
Main Signal Attributes		
Criteria for passing first input: u2 >= Threshold		
Threshold:		
0		
Enable zero-crossing detection		
Sample time (-1 for inherited):		
-1		
OK Cancel Help Apply		

The **Signal Attributes** pane of the Switch block dialog box appears as follows:

🙀 Function Block Parameters: Switch			
Switch			
Pass through input 1 when input 2 satisfies the selected criterion; otherwise, pass through input 3. The inputs are numbered top to bottom (or left to right). The input 1 pass-through criteria are input 2 greater than or equal, greater than, or not equal to the threshold. The first and third input ports are data ports, and the second input port is the control port.			
Main Signal Attributes			
Require all data port inputs to have the same data type			
Output minimum: Output maximum:			
Output data type: Inherit: Inherit via internal rule >>			
Integer rounding mode: Floor			
Saturate on integer overflow			
OK Cancel Help Apply			

Show data type assistant

Display the Data Type Assistant.

Settings

The Data Type Assistant helps you set the Output data type parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Command-Line Information

Criteria for passing first input

Select the condition under which the first input is passed. If the control input meets the condition set in this parameter, the first input is passed. Otherwise, the third input is passed.

Settings

Default: u2 >= Threshold

u2 >= Threshold

Check whether the control input is greater than or equal to the threshold value.

u2 > Threshold

Check whether the control input is greater than the threshold value.

u2 ~=0

Check whether the control input is nonzero.

Note The u2 ~=0 mode is not supported for enumerated data types.

Tip

When the control input is a Boolean signal, use one these combinations of condition and threshold value:

- u2 >= Threshold, where the threshold value equals 1
- u2 > Threshold, where the threshold value equals 0
- u2 ~=0

Otherwise, the Switch block ignores threshold values and uses the Boolean value for signal routing. For a value of 1, the first input is passed, and for a value of 0, the third input is passed. A warning message that describes this behavior also appears in the MATLAB Command Window.

Dependencies

Selecting u2 ~=0 disables the **Threshold** parameter.

Command-Line Information

Threshold

Assign the switch threshold that determines which input is passed to the output.

Settings

Default: 0

Minimum: value from the Output minimum parameter

Maximum: value from the $Output\ maximum\ parameter$

Dependencies

This parameter is disabled by setting Criteria for passing first input to $u^2 \sim =0$.

Command-Line Information

Enable zero-crossing detection

Select to enable zero-crossing detection.

Settings

Default: On

🔽 On

Enable zero-crossing detection.

C Off

Do not enable zero-crossing detection.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

Require all data port inputs to have the same data type

Require all data inputs to have the same data type.

Settings Default: Off

🔽 On

Require all data inputs to have the same data type.

C Off

Do not require all data inputs to have the same data type.

Command-Line Information

Require all data inputs to have the same data type.

Lock output scaling against changes by the autoscaling tool

Select to lock scaling of outputs.

Settings

Default: Off

₽_{On}

Lock scaling of outputs.

$\Box_{\rm Off}$

Do not lock scaling of outputs.

Dependencies

This parameter is enabled when you enter an expression for the **Output data type** or **Data type** parameter.

Command-Line Information

Integer rounding mode

Select the rounding mode for fixed-point operations.

Settings

Default: Floor

Ceiling

Round both positive and negative numbers toward positive infinity.

Convergent

Round number to the nearest representable value. In the case of a tie, round to the nearest even stored value.

Floor

Round both positive and negative numbers toward negative infinity.

Nearest

Round number to the nearest representable value. In the case of a tie, round toward positive infinity.

Round

Round number to the nearest representable value. In the case of a tie, round positive numbers toward positive infinity and round negative numbers toward negative infinity.

Simplest

This option provides for an optimization of the rounding code for several blocks.

Zero

Round number toward zero.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

For more information, see "Rounding" in the Simulink Fixed Point User's Guide.

Saturate on integer overflow

Specify whether overflows saturate.

Settings Default: Off

🔽 On

Overflows saturate.

C Off

Overflows do not saturate.

Tips

- When you select this check box, saturation applies to every internal operation on the block, not just the output or result.
- In general, the code generation process can detect when overflow is not possible, in which case, no saturation code is generated.

Command-Line Information

Output minimum

Specify the minimum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to -Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output maximum

Specify the maximum value that the block should output.

Settings

Default: []

The default value, [], is equivalent to Inf.

Simulink software uses this value to perform:

- Parameter range checking (see "Checking Parameter Values") for some blocks
- Simulation range checking (see "Checking Signal Ranges")
- Automatic scaling of fixed-point data types

Tip

This number must be a double scalar value.

Command-Line Information

Output data type

Specify the output data type.

Settings

Default: Inherit: Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block), Inherit: Inherit from 'Constant value' (Constant block default), Inherit: Inherit via back propagation (Data Type Conversion block), Inherit: Same as input (Saturation block)

Inherit: Inherit via internal rule

This option appears for some blocks. Simulink software chooses a combination of output scaling and data type that requires the smallest amount of memory consistent with accommodating the calculated output range and maintaining the output precision of the block and with the word size of the targeted hardware implementation specified for the model. If the **Device type** parameter on the **Hardware Implementation** configuration parameters pane is set to ASIC/FPGA, Simulink software chooses the output data type without regard to hardware constraints. Otherwise, Simulink software chooses the smallest available hardware data type capable of meeting the range and precision constraints. For example, if the block multiplies an input of type int8 by a gain of int16 and ASIC/FPGA is specified as the targeted hardware type, the output data type is sfix24. If Unspecified (assume 32-bit Generic), i.e., a generic 32-bit microprocessor, is specified as the target hardware, the output data type is int32. If none of the word lengths provided by the target microprocessor can accommodate the output range, Simulink software displays an error message in the Simulation Diagnostics Viewer.

Inherit: Inherit from 'Constant value'

Use data type of **Constant value** parameter. This option appears for some blocks.

Inherit: Inherit via back propagation A rule that inherits a data type

Inherit: Same as input Use data type of sole input signal. This option appears for some blocks. Inherit: Same as first input Use data type of first input signal. This option appears for some blocks. Inherit: Same as accumulator Output data type same as accumulator data type. This option appears for some blocks. double Output data type is double. single Output data type is single. int8 Output data type is int8. uint8 Output data type is uint8. int16 Output data type is int16. uint16 Output data type is uint16. int32 Output data type is int32. uint32 Output data type is unt32. fixdt(1,16,0) Output data type is fixed point fixdt(1,16,0). fixdt(1,16,2^0,0) Output data type is fixed point fixdt(1,16,2^0,0).

<data type expression>

The name of a data type object, for example Simulink.NumericType

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying Block Output Data Types" in the *Simulink User's Guide* for more information.

Mode

Select the category of data to specify

Settings

Default: Inherit (Constant, Data Type Conversion, Discrete Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Built in (Logical Operator, Relational Operator)

Inherit

Inheritance rules for data types. Selecting Inherit enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- Inherit from 'Constant value' (Constant block default)
- Inherit via internal rule (Discrete-Time Integrator, Gain, Product, Sum, Switch block default)
- Inherit via back propogation (Data Type Conversion block default)
- auto (Inport, Outport block default)
- Logical (see Configuration Parameters: Optimization)
- Same as first input
- Same as input (Saturation block default)
- Same as accumulator

Built in

Built-in data types. Selecting Built in enables a second menu/text box to the right. Below are the possible values, which can vary by block:

- double (Constant, Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch block default)
- single

- int8
- uint8
- int16
- uint16
- int32
- uint32
- boolean (Logical Operator, Relational Operator block default)

Fixed point

Fixed-point data types.

Enumerated

Enumerated data types. This option is available on some blocks. Selecting Enumerated enables a second menu/text box to the right. Below are the possible values, which can vary by block:

• <class name>

Expression

Expressions that evaluate to data types. Selecting Expression enables a second menu/text box to the right. Below are the possible values, which can vary by block:

<data type expression>

Dependency

This parameter is enabled by the **Show data type assistant** button.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Using the Data Type Assistant" in the Simulink User's Guide.

Signedness

Specify whether you want the fixed-point data to be signed or unsigned.

Settings

Default: Signed

Signed

Specify the fixed-point data to be signed.

Unsigned

Specify the fixed-point data to be unsigned.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Word length

Specify the bit size of the word that will hold the quantized integer.

Settings

Default: 16

Minimum: 0

Maximum: 32

Large word sizes represent large values with greater precision than small word sizes.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and minimize quantization errors.

Settings

Default: Best precision (Constant), Binary point (Data Type Conversion, Discrete-Time Integrator, Gain, Inport, Outport, Product, Saturation, Sum, Switch), Integer (Logical Operator, Relational Operator)

```
Binary point
```

Specify binary point location.

- Slope and bias Enter slope and bias.
- Best precision Specify best-precision values. This option appears for some blocks.
- Integer

Specify integer. This setting has the same result as specifying a binary point location and setting fraction length to 0. This option appears for some blocks.

Dependencies

This parameter is enabled by selecting **Mode** > Fixed point.

Selecting Binary point enables:

- Fraction length
- Calculate Best-Precision Scaling

Selecting Slope and bias enables:

- Slope
- Bias
- Calculate Best-Precision Scaling

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Fraction length

Specify fraction length for fixed-point data type.

Settings

Default: 0

Binary points can be positive or negative integers.

Dependencies

This parameter is enabled by selecting **Scaling** > Binary point.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Slope

Specify slope for the fixed-point data type.

Settings

Default: 2⁰

Specify any positive real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

Switch

Bias

Specify bias for the fixed-point data type.

Settings

Default: 0

Specify any real number.

Dependencies

This parameter is enabled by selecting Scaling > Slope and bias.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

See "Specifying a Fixed-Point Data Type" in the *Simulink User's Guide* for more information.

BusThe Switch block is a bus-capable block. The data inputs can be virtual
or nonvirtual bus signals subject to the following restrictions:

- All the buses must be equivalent (same hierarchy with identical names and attributes for all elements).
- All signals in a nonvirtual bus input to a Switch block must have the same sample time, even if the elements of the associated bus object specify inherited sample times.

You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus. See Using Buses and Bus-Capable Blocks for more information.

Characteristics

stics	Bus-capable	Yes, with restrictions as noted above
	Direct Feedthrough	Yes
	Sample Time	Specified in the Sample time parameter

Scalar Expansion	Yes
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	Yes, if enabled

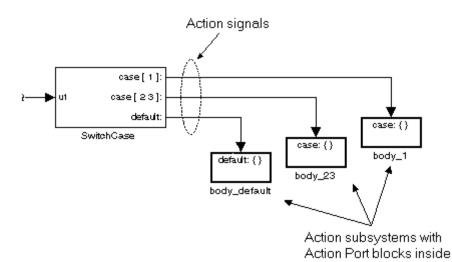
See Also Multiport Switch

Switch Case

Purpose Implement C-like switch control flow statement

Ports & Subsystems

Library


Description

case[1]:

default:

u1

The following shows a completed Simulink C-like switch control flow statement in the subsystem of the Switch Case block.

A Switch Case block receives a single input, which it uses to form case conditions that determine which subsystem to execute. Each output port case condition is attached to a Switch Case Action subsystem. The cases are evaluated top down starting with the top case. If a case value (in brackets) corresponds to the actual value of the input, its Switch Case Action subsystem is executed.

The preceding switch control flow statement can be represented by the following pseudocode:

```
switch (u1) {
  case [u1=1]:
    body_1;
    break;
```

```
case [u1=2 or u1=3]:
body_23;
break;
default:
bodydefault;
}
```

You construct a Simulink switch control flow statement like the example shown as follows:

- 1 Place a Switch Case block in the current system and attach the input port labeled u1 to the source of the data you are evaluating.
- **2** Open the **Block Parameters** dialog of the Switch Case block and enter as follows:
 - a Enter the Case conditions field with the individual cases.

Each case can be an integer or set of integers specified with MATLAB cell notation. See the **Case conditions** field in the "Parameters and Dialog Box" section of this reference.

b Select the **Show default case** check box to show a default case output port on the Switch Case block.

If all other cases are false, the default case is taken.

3 Create a Switch Case Action subsystem for each case port you added to the Switch Case block.

These consist of subsystems with Action Port blocks inside them. When you place the Action Port block inside a subsystem, the subsystem becomes an atomic subsystem with an input port labeled Action.

4 Connect each case output port and the default output port of the Switch Case block to the Action port of an Action subsystem.

Each connected subsystem becomes a case body. This is indicated by the change in label for the Switch Case Action subsystem block and the Action Port block inside of it to the name case{}.

During simulation of a switch control flow statement, the Action signals from the Switch Case block to each Switch Case Action subsystem turn from solid to dashed.

5 In each Switch Case Action subsystem, enter the Simulink logic appropriate to the case it handles. All blocks in a Switch Case Action Subsystem must run at the same rate as the driving Switch Case block. You can achieve this by setting each block's sample time parameter to be either inherited (-1) or the same value as the Switch Case block's sample time.

Note As demonstrated in the preceding pseudocode example, cases for the Switch Case block contain an implied break after their Switch Case Action subsystems are executed. There is no fall-through behavior for the Simulink switch control flow statement as found in standard C switch statements.

Data Type Support

Input to the port labeled u1 of a Switch Case block can be a scalar value of any numeric data type supported by Simulink software, including a fixed-point data type. The input to u1 cannot be Boolean or have an enumerated type. Noninteger inputs are truncated. Data outputs are action signals to Switch Case Action subsystems that are created with Action Port blocks and subsystems. See Action Port.

Parameters and Dialog Box

Perform a switch-case operation on the input. The input must be a scalar and its value will be truncated. The case conditions are specified using the MATLAB cell notation, where each case is a cell element. For example, entering $\{1, [2,3]\}$ as the case condition implies that port 1 is run when the input is 1 and port 2 is run when the input is either 2 or 3. If the default case is shown, then port 3 is run for		
Parameters Case conditions (e.g. {1,[2,3]}):		
{1}		
Show default case:		
Enable zero-crossing detection		
Sample time (-1 for inherited):		
-1		
OK Cancel Help Apply		

Function Block Parameters: Switch Case

SwitchCase Block

Case conditions

Case conditions are specified using MATLAB cell notation where each cell is a case condition consisting of integers or arrays of integers. In the preceding dialog example, entering {1,[7,9,4]} specifies that output port case[1] is run when the input value is 1, and output port case[7 9 4] is run when the input value is 7, 9, or 4.

You can use colon notation to specify a range of case conditions. For example, entering $\{[1:5]\}$ specifies that output port case[1 2 3 4 5] is run when the input value is 1, 2, 3, 4, or 5. Depending on block size, cases with long lists of conditions are displayed in shortened form in the Switch Case block, using a terminating ellipsis (...).

Show default case

If you select this check box, the default output port appears as the last case on the Switch Case block. This case is run when the input value does not match any of the case values specified in the **Case conditions** field.

Enable zero-crossing detection

Select to enable use of zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	No
	Dimensionalized	No
	Zero-Crossing Detection	Yes, if enabled

Purpose Represent subsystem whose execution is triggered by Switch Case block

Library

Ports & Subsystems

Description

This block is a Subsystem block that is preconfigured to serve as a starting point for creating a subsystem whose execution is triggered by a Switch Case block.

Note All blocks in a Switch Case Action Subsystem must run at the same rate as the driving Switch Case block. You can achieve this by setting each block's sample time parameter to be either inherited (-1) or the same value as the Switch Case block's sample time.

For more information, see the Switch Case block and "Modeling Control Flow Logic" in the "Creating a Model" chapter of the Simulink documentation.

Tapped Delay

Purpose	Delay scalar signal multiple sample periods and output all delayed versions
Library	Discrete
Description	The Tapped Delay block delays an input by the specified number of sample periods and outputs all the delayed versions. Use this block to discretize a signal in time or resample a signal at a different rate.
	The block accepts one scalar input and generates an output vector that contains each delay. Specify the order of the delays in the output vector with the Order output vector starting with parameter:
	• Oldest orders the output vector starting with the oldest delay version and ending with the newest delay version.
	• Newest orders the output vector starting with the newest delay version and ending with the oldest delay version.
	Specify the output vector for the first sampling period with the Initial condition parameter. Careful selection of this parameter can minimize unwanted output behavior.
	Specify the time between samples with the Sample time parameter. Specify the number of delays with the Number of delays parameter. A value of -1 instructs the block to inherit the number of delays by back propagation. Each delay is equivalent to the z^{-1} discrete-time operator, which is represented by the Unit Delay block.
Data Type Support	The Tapped Delay block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Tapped Delay

Parameters and Dialog Box

Function Block Parameters: Tapped Delay
Tapped Delay Line (mask) (link)
Delay a signal N sample periods and output all the delay versions.
Parameters
Initial condition:
0.0
Sample time:
-1
Number of delays:
4
Order output vector starting with: Oldest
Include current input in output vector
OK Cancel Help Apply

Initial condition

Specify the initial output of the simulation. The **Initial condition** parameter is converted from a double to the input data type offline using round-to-nearest and saturation. Simulink software does not allow you to set the initial condition of this block to inf or NaN.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online Simulink documentation for more information.

Number of delays

Specify the number of discrete-time operators.

Order output vector starting with

Specify whether to output the oldest delay version first, or the newest delay version first.

Include current input in output vector

Select to include the current input in the output vector.

Characteristics	Direct Feedthrough	Yes, when Include current input in output vector check box is selected. No, otherwise.
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes, of initial conditions

Purpose	Terminate unconnected output port	
Library	Sinks	
Description	The Terminator block can be used to cap blocks whose output ports are not connected to other blocks. If you run a simulation with blocks having unconnected output ports, Simulink software issues warning messages. Using Terminator blocks to cap those blocks avoids warning messages.	
Data Type Support	The Terminator block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types. For a discussion on the data types supported by Simulink software, see	
Parameters and Dialog Box	"Data Types Supported by Simulink" in the Simulink documentation.	

Characteristics	Sample Time	Inherited from driving block
	Dimensionalized	Yes
	Multidimensionalized	Yes

Time-Based Linearization

Purpose Generate linear models in base workspace at specific times

Library Model-Wide Utilities

Description

T=1

This block calls linmod or dlinmod to create a linear model for the system when the simulation clock reaches the time specified by the **Linearization time** parameter. No trimming is performed. The linear model is stored in the base workspace as a structure, along with information about the operating point at which the snapshot was taken. Multiple snapshots are appended to form an array of structures.

The block sets the following model parameters to the indicated values:

- BufferReuse = 'off'
- RTWInlineParameters = 'on'
- BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended by _Timed_Based_Linearization, for example, vdp_Timed_Based_Linearization. The structure has the follow fields:

Field	Description
а	The A matrix of the linearization
b	The B matrix of the linearization
С	The C matrix of the linearization
d	The D matrix of the linearization
StateName	Names of the model's states
OutputName	Names of the model's output ports
InputName	Names of the model's input ports

Field	Description
OperPoint	A structure that specifies the operating point of the linearization. The structure specifies the operating point time (OperPoint.t). The states (OperPoint.x) and inputs (OperPoint.u) fields are not used.
Ts	The sample time of the linearization for a discrete linearization

Use the Trigger-Based Linearization block if you need to generate linear models conditionally.

You can use state and simulation time logging to extract the model states and inputs at operating points. For example, suppose that you want to get the states of the f14 demo model at linearization times of 2 seconds and 5 seconds.

- Open the model and drag an instance of this block from the Model-Wide Utilities library and drop the instance into the model.
- **2** Open the block's parameter dialog box and set the **Linearization time** to 2 and 5.
- **3** Open the model's **Configuration Parameters** dialog box.
- 4 Select the Data Import/Export pane.
- 5 Check States and Time on the Save to Workspace control panel
- 6 Select OK to confirm the selections and close the dialog box.
- **7** Simulate the model.

At the end of the simulation, the following variables appear in the MATLAB workspace: f14_Timed_Based_Linearization, tout, and xout.

8 Get the indices to the operating point times by entering the following at the MATLAB command line:

```
ind1 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);
ind2 = find(f14_Timed_Based_Linearization(1).OperPoint.t==tout);
```

9 Get the state vectors at the operating points.

```
x1 = xout(ind1,:);
x2 = xout(ind2,:);
```

Not applicable.

Data Type Support

Parameters and Dialog Box

Block Parameters: Timed-Based Linearization
Timed Linearization (mask) (link)
Generate linear models in the base workspace at specific times.
Parameters
Linearization time:
1
Sample time (of linearized model):
0
OK Cancel Help Apply

Linearization time

Time at which you want the block to generate a linear model. Enter a vector of times if you want the block to generate linear models at more than one time step.

Sample time (of linearized model)

Specify a sample time to create discrete-time linearizations of the model (see "Discrete-Time System Linearization" on page 4-122).

Characteristics	Sample Time	Specified in the Sample time parameter
	Dimensionalized	No

See Also Trigger-Based Linearization

Purpose	Write data to file	
Library	Sinks	
Description	The To File block i	
yuntitled.mat	writes the signal da of the output file. I	

The To File block inputs a scalar or vector signal of type double and writes the signal data to a MAT-file. The block's icon shows the name of the output file. If the output file exists at the time the simulation starts, the block overwrites the file. The block writes to the output file incrementally, so memory overhead during simulation is low. The file automatically closes when simulation is complete.

Note If simulation terminates abnormally, the To File block may have written a MAT-file that contains some data, but the file is unusable.

The To File block writes data as a matrix of two or more rows. The block writes one column to the MAT-file for each time step. The first element of the column contains the simulation time. The remainder of the column contains scalar or vector data for the time shown at the top of the column. The stored matrix has this form:

 $\begin{bmatrix} t_1 & t_2 & \dots & t_{final} \\ u & 1_1 & u & 1_2 & \dots & u & 1_{final} \\ \dots & & & & \\ u & n_1 & u & n_2 & \dots & u & n_{final} \end{bmatrix}$

To avoid the overhead of compressing data in real time, the To File block writes an uncompressed MAT-file. To compress the file, load and save it in MATLAB. The resaved file will be smaller because MATLAB software automatically compresses MAT-files.

The MAT-file can contain at most 10^8 elements, where each timestamp and each data value counts as one element. Thus if N is the number of time steps in the file, and W is the width of the data, N(W+1) cannot exceed 10^8 . If writing the next column to the file would cause the number of elements to exceed 10^8 , the To File block discards the unwritten column, closes the file, and posts a warning. Simulation continues without interruption, but the To File block discards all subsequent data. The truncated MAT-file is syntactically valid and can be used as input to a subsequent simulation, or loaded into MATLAB for any purpose.

Controlling When Data is Written to the File

For a fixed-step solver, the block's **Decimation** and **Sample Time** parameters control when data is written to the file. For a variable-step solver, the **Configuration Parameters > Data Import/Export Pane > "Output options"** parameter controls the amount of data available to the To File block, and the block's **Decimation** and **Sample Time** parameters control how much of this data the block actually writes.

For example, if you need to ensure that data is written at identical time points over multiple simulations with a varying-step solver, set **Output Options** to Produce specified output only and enter the desired time vector in the **Output times** field. See "Importing Data from a Workspace" for guidelines on choosing time vectors for discrete systems.

Saving Data for Use by a From File Block

The From File block can use data written by a To File block without any modifications to the data or other special provisions.

Saving Data for Use by a From Workspace Block

The From Workspace block requires data that is the transposition of the data written by the To File block. To provide the required format, use MATLAB commands to load and transpose the data from MAT-file. You will then be able to use a From Workspace block to access the data.

Limitation on To File block in a Referenced Model

When a To File block exists in a referenced model, that model must be a single-instance model. Only one instance of such a model can exist in a model hierarchy. Otherwise, the corresponding To File blocks in different instances of the referenced model would all try to write to the same data file, which could not provide a useful result. See "General Reusability Limitations" for more information.

Data Type Support

The To File block accepts only vector and scalar data, and all data must be of type double. The To File block does not accept matrix signals or complex data. To save other kinds of data, use a To Workspace block to save the data to the MATLAB workspace. You can then save the data to a file.

Parameters and Dialog Box

🙀 Sink Block Parameters: To File 🛛 🔀
To File
Write time and input to specified MAT file in row format. Time is in row 1.
Parameters
Filename:
untitled.mat
Variable name:
ans
Decimation:
1
Sample time (-1 for inherited):
-1
OK Cancel Help Apply
or carear hop Appy

Filename

The pathname or filename of the MAT-file in which to store the output. On UNIX systems, the pathname can start with a tilde (~) character signifying your home directory. The default filename is untitled.mat. If you specify a filename without path information, Simulink software stores the file in the MATLAB working directory. (To determine the working directory, type

pwd at the MATLAB command line.) If the file already exists, Simulink software overwrites it.

Variable name

The name of the matrix contained in the named file. The default name is **ans**.

Decimation

Specifies writing data at every nth sample, where n is the decimation factor. The default decimation is 1, which writes data at every time step.

Sample time

Specifies the sample period and offset at which to collect points. This parameter is useful when you are using a variable-step solver where the interval between time steps might not be constant. The default is-1, which inherits the sample time from the driving block when determining the points to write. See "How to Specify the Sample Time" for more information.

Characteristics	Sample Time	Specified in the Sample time parameter
	Dimensionalized	Yes

See Also "Importing and Exporting Data", From File, From Workspace, To Workspace

To Workspace

Purpose Write data to MATLAB workspace

Library

Description

simout

The To Workspace block inputs a signal and writes the signal data to the MATLAB workspace. The block writes the data to an array or structure that has the name specified by the block's **Variable name** parameter. The **Save format** parameter determines the output format.

Array

Sinks

Selecting this option causes the To Workspace block to save the input as an N-dimensional array where N is one more than the number of dimensions of the input signal. For example, if the input signal is a 1-D array (i.e., a vector), the resulting workspace array is two-dimensional. If the input signal is a 2-D array (i.e., a matrix), the array is three-dimensional.

The way samples are stored in the array depends on whether the input signal is a scalar or vector or a matrix. If the input is a scalar or a vector, each input sample is output as a row of the array. For example, suppose that the name of the output array is simout. Then, simout(1,:) corresponds to the first sample, simout(2,:) corresponds to the second sample, etc. If the input signal is a matrix, the third dimension of the workspace array corresponds to the values of the input signal at specified sampling point. For example, suppose again that simout is the name of the resulting workspace array. Then, simout(:,:,1) is the value of the input signal at the first sample point; simout(:,:,2) is the value of the input signal at the second sample point; etc.

For variable-step solvers, the **Output options** found on the **Data Import/Export** pane of the Configuration Parameters dialog box determine the amount of data available to the To Workspace block. For example, if you need to ensure that data is written at identical time points over multiple simulations, select the Produce specified output only option in the Configuration Parameters dialog box and enter the desired time vector. Block parameters then control when and how much of this data the To Workspace block writes:

- The **Limit data points to last** parameter indicates how many sample points to save. If the simulation generates more data points than the specified maximum, the simulation saves only the most recently generated samples. To capture all the data, set this value to inf.
- The **Decimation** parameter allows you to write data at every nth sample, where n is the decimation factor. The default decimation, 1, writes data at every time step.
- The **Sample time** parameter allows you to specify a sampling interval at which to collect points. This parameter is useful when you are using a variable-step solver where the interval between time steps might not be the same. The default value of -1 causes the block to inherit the sample time from the driving block when determining the points to write. See "How to Specify the Sample Time" in the online documentation for more information.

During the simulation, the block writes data to an internal buffer. When the simulation is completed or paused, that data is written to the workspace. Its icon shows the name of the array to which the data is written.

Structure

This format consists of a structure with three fields: time, signals, and blockName. The time field is empty. The blockName field contains the name of the To Workspace block. The signals field contains a structure with three fields: values, dimensions, and label. The values field contains the array of signal values. The dimensions field specifies the dimensions of the values array. The label field contains the label of the input line.

Structure with Time

This format is the same as Structure except that the time field contains a vector of simulation time steps. This is the only format output by a To Workspace block that can be read directly by a From Workspace block. Structure with Time format does not support frame-based signals: use Array or Structure format instead.

Examples

In a simulation where the start time is 0, the **Limit data points to last** is 100, the **Decimation** is 1, and the **Sample time** is 0.5. The To Workspace block collects a maximum of 100 points, at time values of 0, 0.5, 1.0, 1.5, ..., seconds. Specifying a **Decimation** value of 1 directs the block to write data at each step.

In a similar example, the **Limit data points to last** is 100 and the **Sample time** is 0.5, but the **Decimation** is 5. In this example, the block collects up to 100 points, at time values of 0, 2.5, 5.0, 7.5, ..., seconds. Specifying a **Decimation** value of 5 directs the block to write data at every fifth sample. The sample time ensures that data is written at these points.

In another example, all parameters are as defined in the first example except that the **Limit data points to last** is 3. In this case, only the last three sample points collected are written to the workspace. If the simulation stop time is 100, data corresponds to times 99.0, 99.5, and 100.0 seconds (three points).

Saving Data for Use by a From File Block

The From File block can read data written by a To Workspace block subject to the following requirements:

- The data must include the simulation times. The easiest way to include time data in the simulation output is to specify a variable for time on the **Data Import/Export** pane of the **Configuration Parameters** dialog box. See "Data Import/Export Pane" for more information.
- The data must be the transposition of the data saved to the workspace by the To Workspace block. Before saving the data to a MAT-file, transpose it to the form expected by the From File block.
- The data in the file must be scalar or vector data of type double.

Saving Data for Use by a From Workspace Block

In a To Workspace block, use the Structure with Time format to save sample-based data if you intend to use a From Workspace block to play back the data in another simulation.

Data TypeThe To Workspace block can save real or complex inputs of any
data type supported by Simulink software, including fixed-point and
enumerated data types, to the MATLAB workspace.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

🙀 Sink Block Parameters: To Workspace 🛛 🗙				
- To Workspace				
Write input to specified array or structure in MATLAB's main workspace. Data is not available until the simulation is stopped or paused.				
Parameters				
Variable name:				
simout				
Limit data points to last:				
inf				
Decimation:				
1				
Sample time (-1 for inherited):				
-1				
Save format: Structure				
🔲 Log fixed-point data as an fi object				
OK Cancel Help Apply				

Variable name

The name of the array that holds the data.

Limit data points to last

The maximum number of input samples to be saved. The default is inf samples.

Decimation

A decimation factor. The default is 1.

Sample time

The sample time at which to collect points. See "How to Specify the Sample Time" for more information.

Save format

Format in which to save simulation output to the workspace. The default is structure.

Log fixed-point data as a fi object

Select to log fixed-point data to the MATLAB workspace as a Simulink Fixed-Point fi object. Otherwise, fixed-point data is logged to the workspace as double.

Characteristics	Sample Time	Specified in the Sample time parameter
	Dimensionalized	Yes
	Multidimensionalized	Yes

See Also "Importing and Exporting Data", From File, From Workspace, To File

Transfer Fcn

Purpose	Model linear system	by transfer function
---------	---------------------	----------------------

Library Continuous

Description

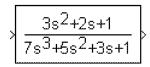
The Transfer Fcn block models a linear system by a transfer function of the Laplace-domain variable s. The block can model both single-input single-output (SISO) and single-input multiple output (SIMO) systems.

This block assumes that the transfer function has the following form

$$H(s) = \frac{y(s)}{u(s)} = \frac{num(s)}{den(s)} = \frac{num(1)s^{nn-1} + num(2)s^{nn-2} + \dots + num(nn)}{den(1)s^{nd-1} + den(2)s^{nd-2} + \dots + den(nd)}$$

where u and y are the system's input and outputs, respectively, nn and nd are the number of numerator and denominator coefficients, respectively. num and den contain the coefficients of the numerator and denominator in descending powers of s. The order of the denominator must be greater than or equal to the order of the numerator. This block also assumes that the transfer functions for the outputs of a multiple output system have the same denominator and that the numerators of the transfer functions have the same order.

To model a single-output system, enter a vector containing the system transfer function's numeric coefficients in the **Numerator coefficient** field in the block's parameter dialog box. Enter a vector containing the transfer function's denominator coefficients in the **Denominator coefficient** field. In this case, the input and output of the block are scalar time-domain signals.


To model a multiple-output system, enter a matrix in the **Numerator coefficient** field where each row of the matrix contains the numerator coefficients of a transfer function that determines one of the block's outputs. Enter a vector containing the denominator coefficients common to the system's transfer functions in the **Denominator coefficient** field. In this case, the block's input is a scalar and the block's output is a vector each of whose elements is an output of the system modeled by the block.

Initial conditions are preset to zero. If you need to specify initial conditions, convert to state-space form using tf2ss and use the State-Space block. The tf2ss utility provides the A, B, C, and D matrices for the system. For more information, type help tf2ss or consult the *Control System Toolbox*TM documentation.

Transfer Fcn Display

The numerator and denominator are displayed on the Transfer Fcn block depending on how they are specified:

• If each is specified as an expression, a vector, or a variable enclosed in parentheses, the icon shows the transfer function with the specified coefficients and powers of *s*. If you specify a variable in parentheses, the variable is evaluated. For example, if you specify **Numerator** as [3,2,1] and **Denominator** as (den) where den is [7,5,3,1], the block looks like this:

• If each is specified as a variable, the block shows the variable name followed by (s). For example, if you specify **Numerator** as num and **Denominator** as den, the block looks like this:

Specifying the Absolute Tolerance for the Block's States

By default Simulink software uses the absolute tolerance value specified in the **Configuration Parameters** dialog box (see "Absolute tolerance") to solve the states of the Transfer Fcn block. If this value does not provide sufficient error control, specify a more appropriate value in the **Absolute tolerance** field of the Transfer Fcn block's dialog box. The value that you specify is used to solve all the block's states.

Transfer Fcn

Data Type Support

Parameters and Dialog Box The Transfer Fcn block accepts and outputs signals of type double.

🙀 Function Block Parameters: Transfer Fcn		
Transfer Fcn		
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s.		
Parameters		
Numerator coefficient:		
[1]		
Denominator coefficient:		
[1 1]		
Absolute tolerance:		
auto		
State Name: (e.g., 'position')		
^{II}		
OK Cancel Help Apply		

Numerator coefficient

The row vector of numerator coefficients. A matrix with multiple rows can be specified to generate multiple output. The default is [1].

Denominator coefficient

The row vector of denominator coefficients. The default is [1 1].

Absolute tolerance

Absolute tolerance used to solve the block's states. You can enter auto or a numeric value. If you enter auto, Simulink software

determines the absolute tolerance (see "Specifying Variable-Step Solver Error Tolerances"). If you enter a numeric value, Simulink software uses the specified value to solve the block's states. Note that a numeric value overrides the setting for the absolute tolerance in the Configuration Parameters dialog box.

State Name

Use this to assign a unique name to each state. The state names apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes, for example, 'velocity'.

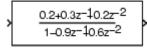
To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, { 'a', 'b', 'c'}. Each name must be unique.

The number of states must be evenly divided by the number of state names. There can be fewer names than the number of states, but there cannot be more names than states.

For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.

To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Characteristics	Direct Feedthrough	Only if the lengths of the Numerator and Denominator parameters are equal
	Sample Time	Continuous
	Scalar Expansion	No


С

States	Length of Denominator -1
Dimensionalized	Yes, in the sense that the block expands scalar input into vector output when the transfer function numerator is a matrix. See the preceding block description.
Zero Crossing	No

Purpose	Implement Direct Form II realization of transfer function
---------	---

Library Additional Math & Discrete / Additional Discrete

Description

The Transfer Fcn Direct Form II block implements a Direct Form II realization of the transfer function specified by the **Numerator coefficients** and the **Denominator coefficients excluding lead** parameters. The block only supports single input-single output transfer functions.

The block automatically selects the data types and scalings of the output, the coefficients, and any temporary variables.

Data TypeThe Transfer Fcn Direct Form II block accepts signals of any numeric
data type supported by Simulink software, including fixed-point data
types.

and

Dialog Box

Parameters Function Block Parameters: Transfer Fcn Direct Form II Transfer Fcn Direct Form II (mask) (link) A Direct Form II realization of the specified transfer function is used. Only single input multiple output transfer functions are supported. The data types and scalings of the output, the coefficients, and any temporary variables are automatically selected. The automatic choices will be acceptable in many situations. In situations where the automatic choices give unacceptable results, manual layout of the filter is necessary. For manual layout, it is suggested that the blocks under this mask be used as a starting point. Note 1: The full denominator should have a leading coefficient of +1.0, but this leading coefficient should be excluded when entering the parameter. For example, if the denominator is den = 1 -1.7 0.72 just enter den(2:end) =-1.7 0.72 Note 2: The numerator must be the same size as the full denominator. Parameters-Numerator coefficients: [0.2 0.3 0.2] Denominator coefficients excluding lead (which must be 1.0): [-0.9 0.6] Initial condition: 0.0 Integer rounding mode: Floor Saturate to max or min when overflows occur Help OK Cancel Apply

X

•

	Numerator coefficients Specify the numerator coefficients.	
	Denominator coefficients excluding lead Specify the denominator coefficients, excluding the leading coefficient, which must be 1.0.	
	Initial condition Set the initial condition.	
	Integer rounding mode Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the <i>Simulink Fixed Point User's</i> <i>Guide</i> .	
	Saturate to max or min when overflows occur If selected, fixed-point overflows saturate.	
Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes, of initial conditions
See Also	Transfer Fcn Direct Form II Time Varying	

Transfer Fcn Direct Form II Time Varying

Purpose Implement time varying Direct Form II realization of transfer function

Library Additional Math & Discrete / Additional Discrete

Description

Num Direct Num Form II Den No Lead

> The Transfer Fcn Direct Form II Time Varying block implements a Direct Form II realization of the specified transfer function. The block supports only single input-single output (SISO) transfer functions.

The input signal labeled Den No Lead contains the denominator coefficients of the transfer function. The full denominator has a leading coefficient of one, but it is excluded from the input signal. For example, a denominator of $[1 - 1.7 \ 0.72]$ is represented by a signal with the value $[-1.7 \ 0.72]$. The input signal labeled Num contains the numerator coefficients. The data types of the numerator and denominator vector and the full denominator vector must be the same. Pad the numerator vector with zeros, if needed.

The block automatically selects the data types and scalings of the output, the coefficients, and any temporary variables.

Data TypeThe Transfer Fcn Direct Form II Time Varying block accepts signalsSupportof any numeric data type supported by Simulink software, including
fixed-point data types.

B .		
Parameters	🙀 Function Block Parameters: Transfer Fcn Direct Form II Time Varying 🗙	
and Dialog	Transfer Fcn Direct Form II Time Varying (mask) (link)	
Box	A Direct Form II realization of the specified transfer function is used. Only single input single output transfer functions are supported.	
	The data types and scalings of the output, the coefficients, and any temporary variables are automatically selected. The automatic choices will be acceptable in many situations. In situations where the automatic choices give unacceptable results, manual layout of the filter is necessary. For manual layout, it is suggested that the blocks under this mask be used as a starting point.	
	Note 1: The full denominator should have a leading coefficient of +1.0, but this leading coefficient should be excluded when entering the parameter. For example, if the denominator is den =	
	1 -1.7 0.72 just enter den(2:end) = -1.7 0.72	
	Note 2: The numerator must be the same size as the full denominator.	
	Parameters	
	Initial condition:	
	0.0	
	Integer rounding mode: Floor	
	Saturate to max or min when overflows occur	
	OK Cancel Help Apply	

Transfer Fcn Direct Form II Time Varying

Initial condition

Set the initial condition.

Integer rounding mode

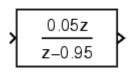
Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes, of initial conditions

See Also Transfer Fcn Direct Form II


Transfer Fcn First Order

Purpose Implement discrete-time first order transfer function

Library

Discrete

Description

The Transfer Fcn First Order block implements a discrete-time first order transfer function of the input. The transfer function has a unity DC gain.

Data Type Support

The Transfer Fcn First Order block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

Function Block Parameters: Transfer Fcn First Order		
First Order Transfer Fcn (mask) (link)		
Discrete-time first order transfer function. The transfer function has a unity DC gain.		
Parameters		
Pole (in Z plane):		
0.95		
Initial condition for previous output:		
0.0		
Integer rounding mode: Floor		
Saturate to max or min when overflows occur		
OK Cancel Help Apply		

Pole (in Z plane) Set the pole.

Initial condition for previous output

Set the initial condition for the previous output.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes, of initial conditions

Purpose Implement discrete-time lead or lag compensator

Library Discrete

Description

\int	z –0.75
1	z –0.95

The Transfer Fcn Lead or Lag block implements a discrete-time lead or lag compensator of the input. The instantaneous gain of the compensator is one, and the DC gain is equal to (1-z)/(1-p), where z is the zero and p is the pole of the compensator.

The block implements a lead compensator when 0 < z < p < 1, and implements a lag compensator when 0 .

Data Type Support

The Transfer Fcn Lead or Lag block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

Function Block Parameters: Transfer Fcn Lead or Lag			
Lead or Lag Compensator (mask) (link)			
Discrete-time lead or lag compensator. The compensator has a unity instantaneous gain, the DC gain equals (1-Zero)/(1-Pole).			
Lead compensation is obtained when 0 < Pole < Zero < 1. Lag compensation is obtained when 0 < Zero < Pole < 1.			
Parameters			
Pole of compensator (in Z plane):			
0.95			
Zero of compensator (in Z plane):			
0.75			
Initial condition for previous output:			
0.0			
Initial condition for previous input:			
0.0			
Integer rounding mode: Floor			
Saturate to max or min when overflows occur			
OK Cancel Help Apply			

Pole of compensator (in Z plane) Set the pole.

Zero of compensator (in Z plane) Set the zero.

Initial condition for previous output

Set the initial condition for the previous output.

Initial condition for previous input

Set the initial condition for the previous input.

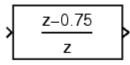
Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	Yes
Scalar Expansion		Yes, of initial conditions


Transfer Fcn Real Zero

Purpose	Implement discrete-time transfer function that has real zero and no pole

Library Discrete

Description

The Transfer Fcn Real Zero block implements a discrete-time transfer function that has a real zero and effectively has no pole.

The Transfer Fcn Real Zero block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

Data Type

Support

Function Block Parameters: Transfer Fcn Real Zero		
Transfer Fcn Real Zero (mask) (link)		
Discrete-time transfer function that has a real zero and (effectively) has no pole.		
Parameters		
Zero (in Z plane):		
0.75		
Initial condition for previous input:		
0.0		
Integer rounding mode: Floor		
Saturate to max or min when overflows occur		
OK Cancel Help Apply		

Zero (in Z plane)

Set the zero.

Initial condition for previous input

Set the initial condition for the previous input.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	Yes
Scalar Expansion		Yes, of initial conditions

Transport Delay

Purpose	Delay input by given amount of time	
Library	Continuous	
Description	The Transport Delay block delays the input by a specified amount of time. It can be used to simulate a time delay.	
	At the start of the simulation, the block outputs the Initial output parameter until the simulation time exceeds the Time delay parameter, when the block begins generating the delayed input. The	

Time delay parameter must be nonnegative.

The block stores input points and simulation times during a simulation in a buffer whose initial size is defined by the **Initial buffer size** parameter. If the number of points exceeds the buffer size, the block allocates additional memory and Simulink software displays a message after the simulation that indicates the total buffer size needed. Because allocating memory slows down the simulation, define this parameter value carefully if simulation speed is an issue. For long time delays, this block might use a large amount of memory, particularly for dimensionalized input.

When output is required at a time that does not correspond to the times of the stored input values, the block interpolates linearly between points. When the delay is smaller than the step size, the block extrapolates from the last output point, which can produce inaccurate results. Because the block does not have direct feedthrough, it cannot use the current input to calculate its output value. To illustrate this point, consider a fixed-step simulation with a step size of 1 and the current time at t = 5. If the delay is 0.5, the block needs to generate a point at t = 4.5. Because the most recent stored time value is at t = 4, the block performs forward extrapolation.

The Transport Delay block does not interpolate discrete signals. Instead, it returns the discrete value at the required time.

This block differs from the Unit Delay block, which delays and holds the output on sample hits only.

Using linmod to linearize a model that contains a Transport Delay block can be troublesome. For more information about ways to avoid the problem, see "Linearizing Models" in the "Analyzing Simulation Results" chapter of the Simulink documentation.

The Transport Delay block accepts and outputs real signals of type double.

Parameters and Dialog Box

Data Type

Support

Transport Delay					
Apply specified dela larger than the simu		. Best accuracy	is achieved w	vhen the del	ay is
Parameters					
Time delay:					
1					
Initial output:					
0					
Initial buffer size:					
1024					
🔲 Use fixed buffer	size				
Direct feedthrout	igh of input during lir	nearization			
Pade order (for line	arization):				
0					
	ок 📘	Cancel	Help	App	

Time delay

The amount of simulation time that the input signal is delayed before being propagated to the output. The value must be nonnegative.

Initial output

Specifies the output of the block at simulation time 0.

Initial buffer size

The initial memory allocation for the number of points to store.

Use fixed buffer size

Specifies use of a fixed-size buffer to save input data from previous time steps. The **Initial buffer size** parameter specifies the buffer's size. If the buffer is full, new data replaces data already in the buffer. Simulink software uses linear extrapolation to estimate the output value if it is not in the buffer. This option can save memory if the input data is linear. If the input is not linear, this option may yield inaccurate results.

Note ERT or GRT code generation uses a fixed-size buffer even if you do not select this check box.

Direct feedthrough of input during linearization

Causes the block to output its input during linearization and trim. This sets the block's mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of states in the model when using the functions linmod, dlinmod, or trim. To extract this new state ordering, use the following commands.

First compile the model using the following command, where model is the name of the Simulink model.

```
[sizes, x0, x_str] = model([],[],[],'lincompile');
```

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states in the Simulink model, contains the new state ordering. When passing a vector of states as input to the linmod, dlinmod, or trim functions, the state vector must use this new state ordering.

Pade order (for linearization)

The order of the Pade approximation for linearization routines. The default value is 0, which results in a unity gain with no dynamic states. Setting the order to a positive integer n adds n states to your model, but results in a more accurate linear model of the transport delay.

Characteristics

Direct Feedthrough	No
Sample Time	Continuous
Scalar Expansion	Yes, of input and all parameters except Initial buffer size
Dimensionalized	Yes
Zero Crossing	No

Trigger

Purpose Add trigger port to subsystem or function-call model

Ports & Subsystems

Description

Library

 $\overline{\mathbf{A}}$

Adding a Trigger block to a subsystem or a model allows its execution to be triggered by an external signal. You can configure the Trigger block to enable a change in the value of the external signal (described below) to trigger execution of a subsystem once on each integration step when the value of the signal that passes through the trigger port changes in a specifiable way (see "Triggered Subsystems"). You can also configure the Trigger block to accept a function-call trigger. This action allows a Function-Call Generator block or S-function to trigger execution of a subsystem or model multiple times during a time step. A subsystem or model can contain only one Trigger block. For more information, see "Defining Function-Call Models" and "Function-Call Subsystems".

The **Trigger type** parameter allows you to choose the type of event that triggers execution of the subsystem:

- rising triggers execution of the subsystem when the control signal rises from a negative or zero value to a positive value (or zero if the initial value is negative).
- falling triggers execution of the subsystem when the control signal falls from a positive or a zero value to a negative value (or zero if the initial value is positive).
- either triggers execution of the subsystem when the signal is either rising or falling.
- function-call allows a Function-Call Generator or S-function to control execution of the subsystem or model.

Note The **Trigger type** must be function-call for Trigger ports at the root-level of a model. Only function-call signals can trigger execution of a model.

You can output the trigger signal by selecting the **Show output port** check box. This action allows the system to determine what caused the trigger. The width of the signal is the width of the triggering signal. The signal value is:

- 1 for a signal that causes a rising trigger
- -1 for a signal that causes a falling trigger
- 2 for a function-call trigger
- 0 otherwise

Data Type Support

The Trigger block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Trigger

Parameters and Dialog Box

🙀 Block Parameters: Trigger	
- Trigger Port	
Place this block in a subsystem to create a triggered subsystem	n.
Parameters	
Trigger type: rising	.
States when enabling: held	
Show output port	
Output data type: auto	<u>~</u>
Sample time type: triggered	v
Sample time:	
1	
Enable zero-crossing detection	
OK Cancel Help	Apply
	Alddw

Trigger type

The type of event that triggers execution of the subsystem.

States when enabling

This parameter is enabled only if you select function-call as the block's trigger type and the setting applies only if the function-call subsystem is explicitly enabled and disabled. For example:

• The function-call subsystem resides in an enabled subsystem. In this case, the function-call subsystem is enabled and disabled along with the parent subsystem.

- The function-call initiator that controls the function-call subsystem resides in an enabled subsystem. In this case, the function-call subsystem is enabled and disabled along with the enabled subsystem containing the function-call initiator.
- The function-call initiator is a Stateflow event that is bound to a particular state. See "Using Bind Actions to Control Function-Call Subsystems" in the Stateflow documentation.
- The function-call initiator is an S-function that explicitly enables and disables the function-call subsystem. See ssEnableSystemWithTid for an example.

Selecting held (the default) causes Simulink software to leave the states at their current values.

Selecting reset for this option causes Simulink software to reset the states.

Selecting inherit causes the trigger's held/reset setting to be the same as that of the function-call initiator's parent subsystem, for example, an enabled subsystem, or the model's root system if the function-call initiator is at the model's root level. If the parent of the initiator is the model root, the inherited setting is held. If the trigger has multiple initiators and its **States when enabling** setting is inherit, the parents of all initiators must have the same held or reset setting, i.e., either all held or all reset.

Show output port

If selected and this block is in a subsystem, Simulink software displays the Trigger block output port and outputs the trigger signal.

Note This parameter is disabled for function-call Trigger blocks residing at the root-level of a model.

Output data type

Specifies the data type (double or int8) of the trigger output. If you select auto, Simulink software sets the data type to be the same as that of the port to which the output is connected. If the port's data type is not double or int8, Simulink software displays an error.

Note The Trigger block ignores the **Data type override** setting of the Fixed-Point Tool.

Enable zero-crossing detection

Select to enable zero-crossing detection. For more information, see "How Blocks Work with Zero-Crossing Detection" in the "How Simulink Works" chapter of the Simulink documentation.

Sample time type

This parameter is active only when **Trigger type** is set to function-call. The value can be triggered or periodic. Select periodic if the caller of the parent function-call subsystem, for example, a Stateflow chart, calls the subsystem once per time step when the subsystem is active (enabled). Otherwise, select triggered. For more information, see "Function-Call Subsystems" in the Simulink documentation and "Using Bind Actions to Control Function-Call Subsystems" in the Stateflow documentation.

Sample time

This parameter is active only when the **Trigger type** is function-call and the **Sample time type** is periodic. Set this parameter to the sample time at which you expect the function-call subsystem that contains this block to be called. See "How to Specify the Sample Time" in the Simulink documentation for information on how to set the value of this parameter. Simulink software displays an error if the actual rate at which the subsystem is called differs from the rate that this parameter specifies.

Characteristics	Sample Time	Determined by the sample time parameter if the trigger type is function-call and the sample time type is periodic; otherwise, by the signal at the trigger port.
	Dimensionalized	Yes
	Zero-Crossing Detection	Yes, if enabled

Trigger-Based Linearization

Purpose Generate linear models in base workspace when triggered

Library Model-Wide Utilities

Description

When triggered, this block calls linmod or dlinmod to create a linear model for the system at the current operating point. No trimming is performed. The linear model is stored in the base workspace as a structure, along with information about the operating point at which the snapshot was taken. Multiple snapshots are appended to form an array of structures.

The block sets the following model parameters to the indicated values:

- BufferReuse = 'off'
- RTWInlineParameters = 'on'
- BlockReductionOpt = 'off'

The name of the structure used to save the snapshots is the name of the model appended by _Trigger_Based_Linearization, for example, vdp_Trigger_Based_Linearization. The structure has the follow fields:

Field	Description	
а	The A matrix of the linearization	
b	The B matrix of the linearization	
С	The C matrix of the linearization	
d	The D matrix of the linearization	
StateName	Names of the model's states	
OutputName	Names of the model's output ports	
InputName	Names of the model's input ports	

Field	Description
OperPoint	A structure that specifies the operating point of the linearization. The structure specifies the value of the model's states (OperPoint.x) and inputs (OperPoint.u) at the operating point time (OperPoint.t).
Ts	The sample time of the linearization for a discrete linearization

Use the Time-Based Linearization block to generate linear models at predetermined times.

You can use state and simulation time logging to extract the model states at operating points. For example, suppose that you want to get the states of the vdp demo model when the signal x1 triggers the Trigger-Based Linearization block on a rising edge.

- Open the model and drag an instance of this block from the Model-Wide Utilities library and drop the instance into the model.
- **2** Connect the block's trigger port to the signal labeled x1.
- **3** Open the model's **Configuration Parameters** dialog box.
- 4 Select the Data Import/Export pane.
- 5 Check States and Time on the Save to Workspace control panel
- **6** Select OK to confirm the selections and close the dialog box.
- **7** Simulate the model.

At the end of the simulation, the following variables appear in the MATLAB workspace: $vdp_Trigger_Based_Linearization, tout$, and xout.

8 Get the index to the first operating point time by entering the following at the MATLAB command line:

ind1 = find(vdp_Trigger_Based_Linearization(1).OperPoint.t==tout);

9 Get the state vector at this operating point.

x1 = xout(ind1,:);

Data Type Support

The trigger port accepts signals of any numeric data type supported by Simulink software.

Parameters and Dialog Box

Sink Block Parameters: Trigger-Based Linearization	x
Triggered Linearization (mask) (link)	٦
Generates linear models in the base workspace when triggered.	
Parameters	
Trigger type: rising	
Sample time (of linearized model):	
0	
OK Cancel Help Apply	

Trigger type

Type of event on the trigger input signal that triggers generation of a linear model. See the **Trigger type** parameter of the Trigger block for an explanation of the various trigger types that you can select.

Sample time (of linearized model)

Specify a sample time to create a discrete-time linearization of the model (see "Discrete-Time System Linearization" on page 4-122).

Characteristics	Sample Time	Specified in the Sample time parameter
	Dimensionalized	No

See Also Time-Based Linearization

Triggered Subsystem

Purpose	Represent subsystem whose execution is triggered by external input
Library	Ports & Subsystems
Description	This block is a Subsystem block that is preconfigured to serve as the starting point for creating a triggered subsystem (see "Triggered Subsystems").

Purpose	Perform trigonometric function
Library	Math Operations
Description	The Trigonometric Function block performs numerous common trigonometric functions.
	You can select one of these functions from the Function list: sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, tanh, asinh, acosh, atanh, and sincos. The name of the function appears on the block. Each block output is the result of the function operating on one or more inputs.
	If you select the atan2 function, the block displays two inputs. The first input is the <i>y</i> -axis or complex part of the function argument. The second input is the <i>x</i> -axis or real part of the function argument. (See "How to Rotate a Block" in the Simulink User's Guide for a description of the port order for various block orientations.)
	If you select the sincos function, the block displays two outputs. The first output is the sine of the function argument, and the second output is the cosine of the function argument.
	Use the Trigonometric Function block instead of the Fcn block when you want dimensionalized output, because the Fcn block can produce only scalar output.
	Note If you use a compiler that does not support the asinh, acosh, and atanh functions, the Real-Time Workshop software issues a warning for the Trigonometric Function block and the generated code fails to link. For more information, see "Simulink Block Support" in the Real-Time Workshop Reference documentation.
Data Type Support	The Trigonometric Function block accepts and outputs real or complex signals of type single or double.

Parameters and Dialog Box

🙀 Function Block Parameters: Trigonometric Function	×			
Trigonometric Function				
Trigonometric and hyperbolic functions. When the function has more than one argument, the first argument corresponds to the top (or left) input port.				
Parameters				
Function: sin	-			
Output signal type: auto	-			
Sample time (-1 for inherited):				
-1				
OK Cancel Help Apply	,			

Function

The trigonometric function.

Output signal type

Type of signal (complex or real) to output.

Note The Trigonometric Function block cannot output complex signals in Real-Time Workshop generated code. The imaginary part of a complex signal is always set to zero in the generated code.

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink User's Guide for more information.

Characteristics	Direct Feedthrough	Yes
	Sample Time	Inherited from driving block
	Scalar Expansion	Yes, of the input when the function requires two inputs
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Unary Minus

Library Math Operations

Description

The Unary Minus block negates the input. The block accepts only signed data types.

For signed data types, you cannot accurately negate the most negative value since the result is not representable by the data type. In this case, the behavior of the block is controlled by the **Saturate to max or min when overflows occur** check box. If selected, the most negative value of the data type wraps to the most positive value. If not selected, the operation has no effect. If an overflow occurs, then a warning is returned to the MATLAB command line.

For example, suppose the block input is an 8-bit signed integer. The range of this data type is from -128 to 127, and the negation of -128 is not representable. If you select the **Saturate to max or min when overflows occur** check box, then the negation of -128 is 127. If it is not selected, then the negation of -128 remains at -128.

Data Type Support

The Unary Minus block accepts signals of any numeric data type supported by Simulink software except unsigned integers, including fixed-point data types.

🙀 Function Block Parameters: Unary Minus	×
Unary Minus (mask) (link)	7
Unary Minus of a Signal.	
Parameters	
OK Cancel Help Apply	

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

Characteristics	Direct Feedthrough	No
	Scalar Expansion	Yes, of input or initial conditions
	Multidimensionalized	Yes

Uniform Random Number

Purpose	Generate uniformly distributed random numbers
Library	Sources
Description	The Uniform Random Number block generates uniformly distributed random numbers over a specifiable interval with a specifiable starting seed. The seed is reset each time a simulation starts. The generated sequence is repeatable and can be produced by any Uniform Random Number block with the same seed and parameters. To generate normally distributed random numbers, use the Random Number block.
	Avoid integrating a random signal, because solvers are meant to integrate relatively smooth signals. Instead, use the Band-Limited White Noise block.
after scalar ex 1-D option is o and dimension parameters a or column vect	The block's numeric parameters must be of the same dimensions after scalar expansion. If the Interpret vector parameters as 1-D option is off, the block outputs a signal of the same dimensions and dimensionality as the parameters. If the Interpret vector parameters as 1-D option is on and the numeric parameters are row or column vectors (i.e., single row or column 2-D arrays), the block outputs a vector (1-D array) signal.
Data Type Support	The Uniform Random Number block outputs a real signal of type double.

🙀 Source Block Parameters: Uniform Random Number 🛛 🔀
Uniform Random Number
Output a uniformly distributed random signal. Output is repeatable for a given seed.
Parameters
Minimum:
-1
Maximum:
1
Seed:
0
Sample time:
0
Interpret vector parameters as 1-D
OK Cancel Help

Opening this dialog box causes a running simulation to pause. See "Changing Source Block Parameters During Simulation" in the online Simulink documentation for details.

Minimum

The minimum of the interval. The default is -1.

Maximum

The maximum of the interval. The default is 1.

Seed

The starting seed for the random number generator. The default is ${\tt 0}.$

Sample time

The sample period. The default is **0**. See "How to Specify the Sample Time" in the online documentation for more information.

Interpret vector parameters as 1-D

If selected, column or row matrix values for the Uniform Random Number block's numeric parameters result in a vector output signal; otherwise, the block outputs a signal of the same dimensionality as the parameters. If this option is not selected, the block always outputs a signal of the same dimensionality as the block's numeric parameters. See "Determining the Output Dimensions of Source Blocks" in the "Working with Signals" chapter of the Simulink documentation.

Characteristics	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	No
	Dimensionalized	Yes
	Multidimensionalized	Yes
	Zero Crossing	No

Purpose Delay signal one sample period

Library

Discrete

Description

The Unit Delay block delays its input by the specified sample period. This block is equivalent to the z^{-1} discrete-time operator. The block accepts one input and generates one output, which can be either both scalar or both vector. If the input is a vector, all elements of the vector are delayed by the same sample period.

You specify the block output for the first sampling period with the **Initial conditions** parameter. Careful selection of this parameter can minimize unwanted output behavior. The time between samples is specified with the **Sample time** parameter. A setting of -1 means the sample time is inherited.

Note The Unit Delay block accepts continuous signals. When it has a continuous sample time, the block is equivalent to the Simulink Memory block.

The Unit Delay block provides a mechanism for discretizing one or more signals in time.

Note Do not use the Unit Delay block to create a slow-to-fast transition between blocks operating at different sample rates. Instead, use the Rate Transition block.

Data Type Support

The Unit Delay block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types. If the data type of the input signal is user-defined, the initial condition must be zero. For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

🙀 Function Block Parameters: Unit Delay 🛛 🛛 🔀
Unit Delay
Sample and hold with one sample period delay.
Main State Attributes
· · · · · · · · · · · · · · · · · · ·
Initial conditions:
0
Sample time (-1 for inherited):
-1
OK Cancel Help Apply

During simulation, the block uses the following values:

- The initial value of the signal object to which the state name is resolved
- Min and Max values of the signal object

See "Block State Storage and Interfacing" in the Real-Time Workshop documentation for more information.

Initial conditions

Specify the output of the simulation for the first sampling period, during which the output of the Unit Delay block is otherwise undefined.

Settings

Default: 0

The **Initial conditions** parameter is converted from a double to the input data type offline using round-to-nearest and saturation.

Command-Line Information

Sample time (-1 for inherited)

Enter the discrete interval between sample time hits or specify another appropriate sample time such as continuous or inherited.

Settings

Default: -1

By default, the block inherits its sample time based upon the context of the block within the model. To set a different sample time, enter a valid sample time based upon the table in "Types of Sample Time".

See also "How to Specify the Sample Time" in the online documentation for more information.

Command-Line Information

State name

Use this to assign a unique name to each state.

Settings

Default: ' '

• If left blank, no name is assigned.

Tips

- To assign a name to a single state, enter the name between quotes, for example, 'velocity'.
- The state names apply only to the selected block.
- To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.
- The number of states must be evenly divided by the number of state names. There can be fewer names than states, but there cannot be more names than states.
- For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.
- To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Dependencies

This parameter enables **State name must resolve to Simulink signal object** when you click the **Apply** button.

Command-Line Information

State name must resolve to Simulink signal object

Require that state name resolve to Simulink signal object.

Settings

Default: Off

🔽 On

Require that state name resolve to Simulink signal object.

C Off

Do not require that state name resolve to Simulink signal object.

Dependencies

This parameter is enabled by **State name**.

Selecting this check box enables **Real-Time Workshop storage class**.

Command-Line Information

Real-Time Workshop storage class

Select state storage class.

Settings

Default: Auto

Auto

Auto is the appropriate storage class for states that you do not need to interface to external code.

ExportedGlobal

State is stored in a global variable

ImportedExtern

model_private.h declares the state as an extern variable.

ImportedExternPointer

model_private.h declares the state as an extern pointer.

Dependencies

This parameter is enabled by **State name**.

Setting this parameter to ExportedGlobal, ImportedExtern, or ImportedExternPointer enables **Real-Time Workshop storage type qualifier**.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

See Also

"Block State Storage Classes" in the Real-Time Workshop User's Guide.

Real-Time Workshop storage type qualifier

Specify Real-Time storage type qualifier.

Settings

Default: ' '

If left blank, no qualifier is assigned.

Dependencies

This parameter is enabled by setting **Real-Time Workshop storage class** to ExportedGlobal, ImportedExtern, or ImportedExternPointer.

Command-Line Information

See "Block-Specific Parameters" on page 8-96 for the command-line information.

BusThe Unit Delay block is a bus-capable block. The input can be a virtualSupportor nonvirtual bus signal subject to the following restrictions:

- Initial conditions must be zero or a non-zero scalar.
- If **Initial conditions** is zero and a **State name** is specified, the input cannot be a virtual bus.
- If **Initial conditions** is a non-zero scalar, no **State name** can be specified.

All signals in a nonvirtual bus input to a Unit Delay block must have the same sample time, even if the elements of the associated bus object specify inherited sample times. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus. See Using Buses and Bus-Capable Blocks for more information.

Characteristics	Bus-capable	Yes, with restrictions as noted above
	Direct Feedthrough	No

Sample Time	Specified in the Sample time parameter
Scalar Expansion	Yes, of input or initial conditions
States	Yes-inherited from driving block for nonfixed-point data types.
Dimensionalized	Yes
Multidimensionalized	Yes
Zero Crossing	No

See Also

Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable, Unit

Unit Delay Enabled

Purpose	Delay signal one sample period, if external enable signal is on
Library	Additional Math & Discrete / Additional Discrete
Description	The Unit Delay Enabled block delays a signal by one sample period when the external enable signal E is on. While the enable is off, the block is disabled. It holds the current state at the same value and outputs that value. The enable signal is on when E is not 0, and off when E is 0.
> ⊔ <u>1</u> > E Z	You specify the block output for the first sampling period with the value of the Initial condition parameter.
	The output data type is the same as the input u data type. The data type of the input u and the enable E can be any data type.
	You input the sample time with the Sample time parameter. A setting of -1 means the Sample time is inherited.
Data Type Support	The Unit Delay Enabled block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

🙀 Block Parameters: Unit Delay Enabled	? ×		
Unit Delay Enabled (mask) (link)			
Normally, the output is the signal u delayed by one sample period. When the enable signal is false, the block is disabled, and the state and output values do not change except for resets. The enable action is vectorized and supports scalar expansion.			
Parameters			
Initial condition:			
Sample time:	_		
-1			
<u> </u>	y.		

Initial condition

Initial condition.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV **Purpose** Delay signal one sample period, if external enable signal is on, with external initial condition

Additional Math & Discrete / Additional Discrete

Description

Library

The Unit Delay Enabled External IC block delays a signal by one sample period when the enable signal E is on. While the enable is off, the block holds the current state at the same value and outputs that value. The enable E is on when E is not 0, and off when E is 0.

The initial condition of this block is given by the signal IC.

The input u and IC data types must be the same, and are any data type. The output data type is the same as u and IC. The enable E is any data type.

You specify the time between samples with the **Sample time** parameter. A setting of -1 means the **Sample time** is inherited.

Data Type Support

The Unit Delay Enabled External IC block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

🙀 Block Parameters: Unit Delay Enabled External IC	? ×	
Unit Delay Enabled External Initial Condition (mask) (link)		
Normally, the output is the signal u delayed by one sample period. The initial condition is given by the signal IC. When the enable signal is false, the block is disabled, and the state and output values do not change except for resets. The enable action is vectorized and supports scalar expansion.		
Parameters		
Sample time:		
<u>OK</u> <u>C</u> ancel <u>H</u> elp <u>App</u>	dy	

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes, of the reset input port
		No, of the enable input port
		Yes, of the external IC port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit

Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV

Unit Delay Enabled Resettable

Purpose	Delay signal one sample period, if external enable signal is on, with external Boolean reset
Library	Additional Math & Discrete / Additional Discrete
Description	The Unit Delay Enabled Resettable block combines the features of the Unit Delay Enabled and Unit Delay Resettable blocks.
> u 1 > E - > R z	The block can reset its state based on an external reset signal R. When the enable signal E is on and the reset signal R is false, the block outputs the input signal delayed by one sample period.
	When the enable signal E is on and the reset signal R is true, the block resets the current state to the initial condition, specified by the Initial condition parameter, and outputs that state delayed by one sample period.
	When the enable signal is off, the block is disabled, and the state and output do not change except for resets. The enable signal is on when E is not 0, and off when E is 0.
	You specify the time between samples with the Sample time parameter. A setting of -1 means the Sample time is inherited.
Data Type Support	The Unit Delay Enabled Resettable block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

Parameters
and
Dialog
Box

🙀 Block Parameters: Unit Delay Enabled Resettable 🛛 🤗 🗙		
Unit Delay Enabled Resettable (mask) (link)		
Normally, the output is the signal u delayed by one sample period. When the reset signal R is true, the state and the output are always set equal to the initial condition parameter. This reset action is vectorized and supports scalar expansion. When the enable signal is false, the block is disabled, and the state and output values do not change except for resets. The enable action is vectorized and supports scalar expansion.		
Parameters		
Initial condition:		
0.0		
Sample time:		
·1		
<u>OK</u> <u>C</u> ancel <u>H</u> elp <u>A</u> pply		

Initial condition

The initial output of the simulation.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No, of the input port
		No, of the enable port
		Yes, of the reset port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV

Purpose Delay signal one sample period, if external enable signal is on, with external Boolean reset and initial condition

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Enabled Resettable External IC block combines the features of the Unit Delay Enabled, Unit Delay External IC, and Unit Delay Resettable blocks.

The block can reset its state based on an external reset signal R. When the enable signal E is on and the reset signal R is false, the block outputs the input signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets the current state to the initial condition given by the signal IC, and outputs that state delayed by one sample period.

When the enable signal is off, the block is disabled, and the state and output do not change except for resets. The enable signal is on when E is not 0, and off when E is 0.

The output data type is the same as the input u and the initial condition IC data type, which can be any data type, but must be the same. The enable E and reset R can be any data type.

You specify the time between samples with the **Sample time** parameter. A setting of -1 means the **Sample time** is inherited.

Data Type Support

The Unit Delay Enabled Resettable External IC block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

🙀 Block Parameters: Unit Delay Enabled Resettable External IC 💦 🔗 🗙		
Unit Delay Enabled Resettable External Initial Condition (mask) (link)		
Normally, the output is the signal u delayed by one sample period. When the reset signal R is true, the state and the output are always set equal to the initial condition signal IC. This reset action is vectorized and supports scalar expansion. When the enable signal is false, the block is disabled, and the state and output		
values do not change except for resets. The enable action is vectorized and supports scalar expansion.		
Parameters Sample time:		
<u>O</u> K <u>Cancel H</u> elp <u>Apply</u>		

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No, of the input port
		No, of the enable port
		Yes, of the enable port
		Yes, of the external IC port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay External IC, Unit Delay

Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV

Unit Delay External IC

Purpose	Delay signal one sample period, with external initial condition	
Library	Additional Math & Discrete / Additional Discrete	
Description $\begin{array}{c} u & 1 \\ \hline & 1 \\ 1 \\ 1 \\ C \\ z \end{array}$	The Unit Delay External IC block delays its input by one sample period. This block is equivalent to the z^{-1} discrete-time operator. The block accepts one input and generates one output, both of which can be scalar or vector. If the input is a vector, all elements of the vector are delayed by the same sample period.	
	The block's output for the first sample period is equal to the signal IC.	
	The input u and initial condition IC data types must be the same, and are any data type.	
	You specify the time between samples with the Sample time parameter. A setting of -1 means the Sample time is inherited.	
Data Type Support	The Unit Delay External IC block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.	
Parameters and Dialog Box	Block Parameters: Unit Delay External IC ? × Unit Delay External Initial Condition (mask) (link) . Normally, the output is the signal u delayed by one sample period. . The initial condition is given by the signal IC. . Parameters . Sample time: . Image: DK Cancel Help	

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No, of the input port
		Yes, of the external IC port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV, Unit Delay Resettable, Unit Delay With Preview Resettable External RV, Unit Delay

Unit Delay Resettable

Purpose	Delay signal one sample period, with external Boolean reset
Library	Additional Math & Discrete / Additional Discrete
Description	The Unit Delay Resettable block delays a signal one sample period.
> u <u>1</u> > R z	The block can reset both its state and output based on an external reset signal R. The block has two input ports, one for the input signal u and the other for the external reset signal R.
	At the start of simulation, the block's Initial condition parameter determines its initial output. During simulation, when the reset signal is false, the block outputs the input signal delayed by one time step. When the reset signal is true, the block resets the current state and its output to the Initial condition .
	You specify the time between samples with the Sample time parameter. A setting of -1 means the Sample time is inherited.
Data Type Support	The Unit Delay Resettable block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

🙀 Block Parameters: Unit Delay Resettable 🛛 😤 🗙			
Unit Delay Resettable (mask) (link)			
Normally, the output is the signal u delayed by one sample period. When the reset signal R is true, the state and the output are always set equal to the initial condition parameter. This reset action is vectorized and supports scalar expansion.			
Parameters			
Initial condition:			
0.0			
Sample time:			
-1			
<u>O</u> K <u>Cancel H</u> elp <u>Apply</u>			

Initial condition

Specify the initial output of the simulation.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No, of the input port
		Yes, of the reset port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC,

Unit Delay External IC, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV

Purpose	Delay signal one sample period, with external Boolean reset and initial
	condition

Library Additional Math & Discrete / Additional Discrete

Description

The Unit Delay Resettable External IC block delays a signal one sample period.

>u 1 >R - > >IC Z

The block can reset its state based on an external reset signal R. The block has two input ports, one for the input signal u and the other for the reset signal R. When the reset signal is false, the block outputs the input signal delayed by one time step. When the reset signal is true, the block resets the current state to the initial condition given by the signal IC and outputs that state delayed by one time step.

The input u and initial condition IC must be the same data type, but can be any data type. The output is the same data type as the inputs uand IC. The reset R can be any data type.

You specify the time between samples with the **Sample time** parameter. A setting of -1 means the **Sample time** is inherited.

Data Type Support

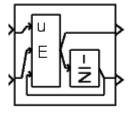
The Unit Delay Resettable External IC block accepts signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

🙀 Block Parameters: Unit Delay Resettable External IC 🛛 🔗 🗙				
Unit Delay Resettable External Initial Condition (mask) (link)				
Normally, the output is the signal u delayed by one sample period. When the reset signal R is true, the state and the output are always set equal to the initial condition signal IC. This reset action is vectorized and supports scalar expansion.				
Parameters				
Sample time:				
1				
<u>O</u> K <u>Cancel</u> Help Apply				

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	No, of the input port
		Yes, of the reset port
		Yes, of the external IC port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes


See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Resettable, Unit Delay

Purpose Output signal and signal delayed by one sample period, if external enable signal is on

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Enabled block supports calculations that have feedback and depend on the current input.

The block has two input ports: one for the input signal \boldsymbol{u} and one for the external enable signal $\boldsymbol{E}.$

When the enable signal E is on, the first port outputs the signal and the second port outputs the signal delayed by one sample period. When the enable signal E is off, the block is disabled, and the state and output values do not change, except during resets.

The enable signal is on when E is not 0, and off when E is 0. This enable action is vectorized and supports scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result includes the most recent inputs. The second output can feed back into calculations of the block's inputs without causing an algebraic loop. Meanwhile, the first output shows the most up-to-date calculations.

The **Initial condition** parameter specifies the block output for the first sampling period. The **Sample time** parameter specifies the time between samples. To inherit the sample time, set this parameter to -1.

Data Type Support The Unit Delay With Preview Enabled block accepts input signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The outputs are the same data type as the input u.

🙀 Function Block Parameters: Unit Delay With Preview Enabled 🛛 🛛 🔀			
Unit Delay With Preview Enabled (mask) (link)			
The Unit Delay With Preview Enabled normally has one output equal to the signal u, and a second output which is a unit-delayed version of the first output.			
When the enable signal is false, the block is disabled, and the state and output values do not change except during resets.			
Parameters			
Initial condition:			
0.0			
Sample time:			
-1			
OK Cancel Help Apply			

Initial condition

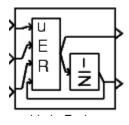
Specify the initial condition.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes, to first output port
		No, to second output port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV


Unit Delay With Preview Enabled Resettable

Purpose Output signal and signal delayed by one sample period, if external enable signal is on, with external reset

Additional Math & Discrete / Additional Discrete

Description

Library

The Unit Delay With Preview Enabled Resettable block supports calculations that have feedback and depend on the current input. The block can reset its state based on a reset signal R.

The block has three input ports: one for the input signal u, one for the external enable signal E, and one for the external reset signal R.

When the enable signal E is on and the reset signal R is false, the first port outputs the signal and the second port outputs the signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the block resets the current state to the initial condition given by the **Initial** condition parameter. The first output signal is forced to equal the initial condition. The second output signal is not affected until one time step later.

When the enable signal is off, the block is disabled, and the state and output values do not change, except during resets.

The enable signal is on when E is not 0, and off when E is 0. The enable and reset actions are vectorized and support scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result includes the most recent inputs. The second output can feed back into calculations of the block's inputs without causing an algebraic loop. Meanwhile, the first output shows the most up-to-date calculations.

The **Sample time** parameter specifies the time between samples. To inherit the sample time, set this parameter to -1.

Data Type Support	The Unit Delay With Preview Enabled Resettable block accepts input signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The outputs are the same data type as the input u.
Parameters and Dialog Box	Function Block Parameters: Unit Delay With Preview Enabled Resettable Image: Comparison of the Comparison of Compari

Initial condition

Specify the initial condition.

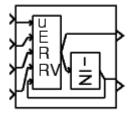
Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes, to first output port
		No, to second output port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable, Unit Delay With Preview Resettabl

Unit Delay With Preview Enabled Resettable External RV


Purpose

Output signal and signal delayed by one sample period, if external enable signal is on, with external RV reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Enabled Resettable External RV block supports calculations that have feedback and depend on the current input. The block can reset its state based on a reset signal R.

The block has four input ports: one for the input signal u, one for the external enable signal E, one for the external reset signal R, and one for the external reset value RV.

When the enable signal E is on and the reset signal R is false, the first port outputs the signal and the second port outputs the signal delayed by one sample period.

When the enable signal E is on and the reset signal R is true, the first output signal is forced to equal the reset value RV. The second output signal is not affected until one time step later, at which time it is equal to the reset value RV at the previous time step. The internal **Initial condition** has a direct effect on the second output only when the model starts or when a parent enabled subsystem is reset.

When the enable signal is off, the block is disabled, and the state and output values do not change, except during resets.

The enable signal is on when E is not 0, and off when E is 0. The enable and reset actions are vectorized and support scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result includes the most recent inputs. The second output can feed back into calculations of the block's inputs without causing an algebraic loop. Meanwhile, the first output shows the most up-to-date calculations.

The **Sample time** parameter specifies the time between samples. To inherit the sample time, set this parameter to -1.

Unit Delay With Preview Enabled Resettable External RV

Data Type Support	The Unit Delay With Preview Enabled Resettable External RV block accepts input signals of any data type supported by Simulink software, including fixed-point and enumerated data types. The outputs are the same data type as the input u.
Parameters and Dialog Box	Function Block Parameters: Unit Delay With Preview Enabled Reset Image: Content of the second output and the second output and the second output and the second output with the second output and the second output only when the reset signal R is true, the first output signal is forced to equal RV. The second output signal is not affected until one time step later. The internal initial condition has a direct effect on the second output only when the model starts or when a parent enabled subsystem is reset. When the enable signal is false, the block is disabled, and the state and output values do not change except during resets. Parameters Initial condition: Initial condition:

Initial condition

Specify the initial condition.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Direct Feedthrough	Yes, to first output port
		No, to second output port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes

See Also Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable, Unit Delay With Preview Resettable External RV

Unit Delay With Preview Resettable

Purpose Output signal and signal delayed by one sample period, with external reset

Library Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Resettable block supports calculations that have feedback and depend on the current input. The block can reset its state based on a reset signal R.

The block has two input ports: one for the input signal u and one for the external reset signal $\mathsf{R}.$

When the reset signal R is false, the first port outputs the signal and the second port outputs the signal delayed by one sample period.

When the reset signal R is true, the block resets the current state to the initial condition given by the **Initial condition** parameter. The first output signal is forced to equal the initial condition. The second output signal is not affected until one time step later.

This reset action is vectorized and supports scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result includes the most recent inputs. The second output can feed back into calculations of the block's inputs without causing an algebraic loop. Meanwhile, the first output shows the most up-to-date calculations.

The **Sample time** parameter specifies the time between samples. To inherit the sample time, set this parameter to -1.

Data TypeThe Unit Delay With Preview Resettable block accepts input signals of
any data type supported by Simulink software, including fixed-point
and enumerated data types. The outputs are the same data type as
the input u.

Parameters and Dialog Box

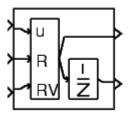
Function Block Parameters: Unit Delay With Preview Resettable		
Unit Delay With Preview Resettable (mask) (link)		
The Unit Delay With Preview Resettable normally has one output equal to the signal u, and a second output which is a unit-delayed version of the first output.		
When the reset signal R is true, the first output signal is forced to equal the initial condition. The second output signal is not affected until one time step later. The internal initial condition is also used to initialize the state when the model starts or when a parent enabled subsystem is reset.		
-Parameters		
Initial condition:		
0.0		
Sample time:		
-1		
OK Cancel Help Apply		

Initial condition

Specify the initial condition.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.


Characteristics	Direct Feedthrough	Yes, to first output port
		No, to second output port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes
	Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable External RV	

Purpose Output signal and signal delayed by one sample period, with external RV reset

Library

Additional Math & Discrete / Additional Discrete

Description

The Unit Delay With Preview Resettable External RV block supports calculations that have feedback and depend on the current input. The block can reset its state based on a reset signal R.

The block has three input ports: one for the input signal u, one for the external reset signal R, and one for the external reset value RV.

When the reset signal R is false, the first port outputs the signal and the second port outputs the signal delayed by one sample period.

When the reset signal R is true, the first output signal is forced to equal the reset value RV. The second output signal is not affected until one time step later, at which time it is equal to the reset value RV at the previous time step. The internal **Initial condition** has a direct effect on the second output only when the model starts or when a parent enabled subsystem is reset.

This reset action is vectorized and supports scalar expansion.

Having two outputs is useful for implementing recursive calculations where the result includes the most recent inputs. The second output can feed back into calculations of the block's inputs without causing an algebraic loop. Meanwhile, the first output shows the most up-to-date calculations.

The **Sample time** parameter specifies the time between samples. To inherit the sample time, set this parameter to -1.

Data TypeThe Unit Delay With Preview Resettable External RV block acceptsSupportinput signals of any data type supported by Simulink software,
including fixed-point data types. The outputs are the same data type
as the input u.

Unit Delay With Preview Resettable External RV

Parameters and Dialog Box

🙀 Function Block Parameters: Unit Delay With Preview Resettable Ext 🗙			
Unit Delay With Preview Resettable External RV (mask) (link)			
The Unit Delay With Preview Resettable External RV has both an external reset value RV and an internal initial condition. This block normally has one output equal to the signal u, and a second output which is a unit-delayed version of the first output.			
When the reset signal R is true, the first output signal is forced to equal RV. The second output signal is not affected until one time step later. The internal initial condition has a direct effect on the second output only when the model starts or when a parent enabled subsystem is reset.			
Parameters			
Initial condition:			
0.0			
Sample time:			
-1			
OK Cancel Help Apply			

Initial condition

Specify the initial condition.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Characteristics	Divest Esselthweersch	Veg. to first sutmet rout
	Direct Feedthrough	Yes, to first output port
		No, to second output port
	Sample Time	Specified in the Sample time parameter
	Scalar Expansion	Yes
	Unit Delay, Unit Delay Enabled, Unit Delay Enabled External IC, Unit Delay Enabled Resettable, Unit Delay Enabled Resettable External IC, Unit Delay External IC, Unit Delay Resettable, Unit Delay Resettable External IC, Unit Delay With Preview Enabled, Unit Delay With Preview Enabled Resettable, Unit Delay With Preview Enabled Resettable External RV, Unit Delay With Preview Resettable	

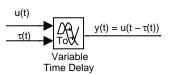
Variable Time Delay, Variable Transport Delay

Purpose	Delay input by variable amount of time
---------	--

Library

Continuous

Description



The Variable Transport Delay and Variable Time Delay appear as two blocks in the Simulink block library. However, they are actually the same built-in Simulink block with different settings of a **Select delay type** parameter. This parameter allows you to specify that the block operate in either of the following modes.

Variable Time Delay

In this mode, the block has a data input a time delay input, and a data output. (See "How to Rotate a Block" in the Simulink documentation for a description of the port order for various block orientations.) The block's output at the current time step equals the value of its data input at a previous time equal to the current simulation time minus a delay time specified by the block's time delay input.

 $y(t) = u(t - t_0) = u(t - \tau(t))$

The block's **Maximum delay** parameter defines the largest value the time delay input can have. The block clips values of the delay that exceed this value. The **Maximum delay** must be greater than or equal to zero. If the time delay becomes negative, the block clips it to zero and issues a warning message.

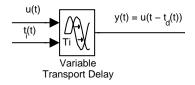
During the simulation, the block stores time and input value pairs in an internal buffer. At the start of the simulation, the block outputs the value of the **Initial output** parameter until the simulation time exceeds the time delay input. Then, at each simulation step, the block outputs the signal at the time that corresponds to the current simulation time minus the delay time.

When output is required at a time that does not correspond to the times of the stored input values and the solver is a continuous solver, the block interpolates linearly between points. If the time delay is smaller than the step size, the block extrapolates an output point from a previous point. For example, consider a fixed-step simulation with a step size of 1 and the current time at t = 5. If the delay is 0.5, the block needs to generate a point at t = 4.5. Because the most recent stored time value is at t = 4, the block extrapolates the input at 4.5 from the input at 4 and uses the extrapolated value as its output at t = 5.

Extrapolating forward from the previous time step can produce a less accurate result than extrapolating back from the current time step. However, the block cannot use the current input to calculate its output value because the input port does not have direct feedthrough.

If the model specifies a discrete solver, the block does not interpolate between time steps. Instead, it returns the nearest stored value that precedes the required value.

Variable Transport Delay


In this mode, the block's output at the current time step is equal to the value of its data (top, or left) input at an earlier time equal to the current time minus a transportation delay

$$y(t) = u(t - t_d(t))$$

Simulink software finds the transportation delay, $t_d(t)\,,$ by solving the following equation

$$\int_{t-t_d(t)}^t \frac{1}{t_i(\tau)} d\tau = 1$$

This equation involves an instantaneous time delay, $t_i(t)$, given by the block's time delay (bottom, or right) input.

For example, suppose you want to use this block to model the flow of a fluid through a pipe where the speed of the flow varies with time. In this case, the time delay input to the block would be

$$t_i(t) = \frac{L}{v_i(t)}$$

where L is the length of the pipe and $v_i(t)$ is the speed of the fluid.

Data TypeThe Variable Time Delay and Variable Transport Delay blocks acceptSupportand output real signals of type double.

ParametersThe block's parameters and dialog box differ, depending on whether it
is operating in variable time or variable transport delay mode. Most
parameters exist in both modes. The following sections note parameters
that exist only in one mode.Dialog
BoxImage: Comparison of the parameters of the par

Variable Time Delay Parameters and Dialog Box

The dialog box for the Variable Time Delay block appears as follows.

Function Block Parameters: Variable Time Delay	×	
Variable Time/Transport Delay	7	
Apply a delay to the first input signal. If the delay type is variable time delay, the second input specifies the delay time To. The block implements the function y=u(t-To(t)). If the delay type is variable transport delay, the second input specifies the instantaneous delay time Ti at the input. The block can be used to simulate the variable transport delay phenomenon such as incompressible liquid flow in a pipe. Best accuracy is achieved when the delay is larger than the simulation step size.		
Parameters	٦	
Select delay type: Variable time delay		
Maximum delay:		
10		
Initial output:		
0		
Initial buffer size:		
1024		
🔲 Use fixed buffer size		
🥅 Handle zero delay		
Direct feedthrough of input during linearization		
Pade order (for linearization):		
0		
OK Cancel Help Apply		

Select delay type

The delay type of the block. The Variable Time Delay block in the Simulink library has a preset value of Variable time delay. The Variable Transport Delay block has a preset value of Variable transport delay.

Maximum delay

The maximum value of the time delay input. The value cannot be negative. The default is 10.

Initial output

The output generated by the block until the simulation time first exceeds the time delay input. The default is 0. Simulink software does not allow the initial output of this block to be inf or NaN.

Initial buffer size

Initial size of the buffer used to store previous input values. The default is 1024.

Use fixed buffer size

Specifies use of a fixed-size buffer to save input data from previous time steps. The **Initial buffer size** parameter specifies the buffer's size. If the buffer is full, new data replaces data already in the buffer. Simulink software uses linear extrapolation to estimate the output value if it is not in the buffer. This option can save memory if the input data is linear. If the input is not linear, this option may yield inaccurate results.

Note ERT or GRT code generation uses a fixed-size buffer even if you do not select this check box.

Handle zero delay

For Variable time delay mode. Turns this block into a direct feedthrough block.

Direct feedthrough of input during linearization

Causes the block to output its input during linearization and trim. This sets the block's mode to direct feedthrough.

Enabling this check box can cause a change in the ordering of states in the model when using the functions linmod, dlinmod, or trim. To extract this new state ordering, use the following commands.

First compile the model using the following command, where model is the name of the Simulink model.

```
[sizes, x0, x_str] = model([],[],[],'lincompile');
```

Next, terminate the compilation with the following command.

model([],[],[],'term');

The output argument, x_str, which is a cell array of the states in the Simulink model, contains the new state ordering. When passing a vector of states as input to the linmod, dlinmod, or trim functions, the state vector must use this new state ordering.

Pade order (for linearization)

The order of the Pade approximation for linearization routines. The default value is 0, which results in a unity gain with no dynamic states. Setting the order to a positive integer n adds n states to your model, but results in a more accurate linear model of the transport delay.

Variable Transport Delay Parameters and Dialog Box

The block's dialog box in Variable Transport Delay mode appears as follows.

Variable Time Delay, Variable Transport Delay

🙀 Function Block Parameters: Variable Transport Delay 🛛 🛛 🔀
Variable Time/Transport Delay
Apply a delay to the first input signal. If the delay type is variable time delay, the second input specifies the delay time To. The block implements the function y=u(t-To(t)). If the delay type is variable transport delay, the second input specifies the instantaneous delay time Ti at the input. The block can be used to simulate the variable transport delay phenomenon such as incompressible liquid flow in a pipe. Best accuracy is achieved when the delay is larger than the simulation step size.
Parameters
Select delay type: Variable transport delay
Maximum delay:
10
Initial output:
0
Initial buffer size:
1024
Use fixed buffer size
Direct feedthrough of input during linearization
Pade order (for linearization):
0
Absolute tolerance:
Jauto
State Name: (e.g., 'position')
j"
OK Cancel Help Apply

This mode adds the following parameter.

Absolute tolerance

Absolute tolerance used to solve the block's states. You can enter auto or a numeric value. If you enter auto, Simulink software determines the absolute tolerance (see "Absolute tolerance"). If you enter a numeric value, Simulink software uses the specified value to solve the block's states. Note that a numeric value overrides the setting for the absolute tolerance in the **Configuration Parameters** dialog box.

State Name

Use this to assign a unique name to each state. The state names apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes, for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.

The number of states must be evenly divided by the number of state names. There can be fewer names than the number of states, but there cannot be more names than states.

For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.

To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Characteristics	Direct Feedthrough	Yes, of the time delay (second) input
	Sample Time	Continuous

Variable Time Delay, Variable Transport Delay

Scalar Expansion	Yes, of input and all parameters except Initial buffer size
Dimensionalized	Yes
Zero Crossing	No

Library

Discrete

Description

مىنىللللللىنى

Note The Weighted Moving Average block is obsolete. The MathWorks plans to remove this block in a future release. Use the Discrete FIR Filter block in new models. Consider replacing Weighted Moving Average with Discrete FIR Filter in existing models.

The Weighted Moving Average block samples and holds the N most recent inputs, multiplies each input by a specified value (given by the **Weights** parameter), and stacks them in a vector. This block supports both single-input/single-output (SISO) and single-input/multi-output (SIMO) modes.

For the SISO mode, the **Weights** parameter is specified as a row vector. For the SIMO mode, the weights are specified as a matrix where each row corresponds to a separate output. You can choose whether or not to specify the data type and scaling of the weights in the dialog with the **Gain data type** parameter.

The **Initial condition** parameter provides the initial values for all times preceding the start time. You specify the time interval between samples with the **Sample time** parameter.

The Weighted Moving Average block first multiplies its inputs by the **Weights** parameter, converts those results to the output data type using the specified rounding and overflow modes, and then carries out the summation.

Data Type Support

The Weighted Moving Average block supports all numeric data types supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box The **Main** pane of the Weighted Moving Average block dialog box appears as follows:

🙀 Functi	on Block Parameters: Weighted Moving Average			
_	Weighted Moving Average (mask) (link)			
Output t	he weighted moving average of the input.			
Main	Signal Attributes Parameter Attributes			
Weights:				
[0.1:0.1:	1 0.9:-0.1:0.1]			
Initial cor	dition:			
0.0				
Sample ti	me:			
-1				
	OK Cancel Help Apply			

Weights

Specify the weights of the moving average; one row per output. The **Weights** parameter is converted from doubles to the specified data type offline using round-to-nearest and saturation.

Initial condition

Specify the initial values for all times preceding the start time. The **Initial condition** parameter is converted from doubles to the input data type offline using round-to-nearest and saturation.

Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

The **Signal Attributes** pane of the Weighted Moving Average block dialog box appears as follows:

🐱 Functi	on Block Paramet	ers: Weig	jhted Movi	ng Average	2		×
Weighted Moving Average (mask) (link)							
Output t	he weighted moving	average of	the input.				
Main	Signal Attributes	Paramet	er Attributes	1			
Output d	ata type: Inherit: Inhe	erit via inter	mal rule		•	>>	
Round toward: Floor							
🔲 Satur	ate to max or min whe	en overflow	is occur				
		ОК	Cancel	Hel	p	Apply	

Output data type

Specify the output data type. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via back propagation
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, float('single')

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Output data type** parameter.

See "Specifying Block Output Data Types" in *Simulink User's Guide* for more information.

Lock output scaling against changes by the autoscaling tool Select to lock scaling of outputs. This parameter is visible only if you enter an expression for the **Output data type** parameter.

Round toward

Rounding mode for the fixed-point output. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate.

The **Parameter Attributes** pane of the Weighted Moving Average block dialog appears as follows:

Function Block Paramet Weighted Moving Average (r Output the weighted moving	nask) (link)	ng Average	×
Main Signal Attributes	Parameter Attributes		
Gain data type: Inherit: Inheri	t via internal rule	_	>>
	OK Cancel	Help	Apply

Gain data type

Specify the data type of the Weights parameter. You can set it to:

- A rule that inherits a data type, for example, Inherit: Inherit via internal rule
- The name of a data type object, for example, a Simulink.NumericType object
- An expression that evaluates to a data type, for example, fixdt(1,16,0)

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Gain data type** parameter. (See "Using the Data Type Assistant" in *Simulink User's Guide*.)

Examples Suppose you want to configure this block for two outputs (SIMO mode) where the first output is given by

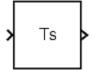
 $y_1(k) = a_1 \cdot u(k) + b_1 \cdot u(k-1) + c_1 \cdot u(k-2)$

the second output is given by

 $y_2(k) = \alpha_2 \cdot u(k) + b_2 \cdot u(k-1)$

and the initial values of u(k - 1) and u(k - 2) are given by ic1 and ic2, respectively. To configure the Weighted Moving Average block for this situation, you must specify the **Weights** parameter as [a1 b1 c1; a2 b2 c2] where c2 = 0, and the **Initial condition** parameter as [ic1 ic2].

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes, of initial conditions


Weighted Sample Time

Purpose	Support calculations involving sample time
Purpose	Support calculations involving sample tin

Library Signal Attributes

Description

The Weighted Sample Time block is an implementation of the Weighted Sample Time Math block. See Weighted Sample Time Math for more information.

Purpose	Support calculations involving sample time		
Library	Math Operations		
Description	The Weighted Sample Time Math block adds, subtracts, multiplies, or divides its input signal, u, by a weighted sample time Ts. If the input signal is continuous, Ts is the sample time of the Simulink model. Otherwise, Ts is the sample time of the discrete input signal.		
	You specify the math operation with the Operation parameter. Additionally, you can specify to use only the weight with either the sample time or its inverse.		
	Enter the weighting factor in the Weight value parameter. If the weight, w, is 1, Simulink software refrains from displaying it in the equation on the block icon.		
	The block computes its output using the precedence rules for MATLAB operators (see "Operator Precedence" in the MATLAB documentation). For example, if the Operation parameter specifies +, the block calculates its output using the equation		
	u + (Ts * w)		
	In contrast, if the ${\bf Operation}$ parameter specifies /, the block calculates its output using the equation		
	(u / Ts) / w		
Data Type Support	The Weighted Sample Time Math block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.		

Parameters and Dialog Box The **Main** pane of the Weighted Sample Time Math block dialog box appears as follows:

🙀 Function Block Parameters: Weighted Sample Time Math 🛛 🛛 🗙			
Sample Time Math (mask) (link)			
Add, subtract, multiply, or divide the input signal by weighted sample time, or just output weighted sample time or weighted sample rate.			
Main Signal Attributes			
Operation: *			
Weight value:			
1.0			
Implement using: Online Calculations			
OK Cancel Help Apply			

Operation

Specify operation to use: +, -, *, /, Ts Only, or 1/Ts Only.

Weight value

Enter weight of sample time.

Implement using

Specify online calculations or offline scaling adjustment. This parameter is visible only if you specify * or / as the **Operation** parameter.

Note When the **Implement using** parameter is not visible, operations default to online calculations.

The **Signal Attributes** pane of the Weighted Sample Time Math block dialog box appears as follows:

Function Block Parameters: Weighted Sample Time Math			
Sample Time Math (mask) (link)			
Add, subtract, multiply, or divide the input signal by weighted sample time, or just output weighted sample time or weighted sample rate.			
Main Signal Attributes			
Output data type mode: Inherit via internal rule			
Integer rounding mode: Floor			
Saturate to max or min when overflows occur			
OK Cancel Help Apply			

Output data type mode

Specify whether the output data type mode is inherited by an internal rule or back propagation.

Integer rounding mode

Select the rounding mode for fixed-point operations. For more information, see "Rounding" in the *Simulink Fixed Point User's Guide*.

Saturate to max or min when overflows occur

If selected, fixed-point overflows saturate. This parameter is visible only if:

- The **Operation** parameter specifies + or -.
- The **Operation** parameter specifies * or / and the **Implement** using parameter specifies Online Calculations.

Characteristics	Direct Feedthrough	For all math operations options except Ts and 1/Ts
	Scalar Expansion	No, the weight is always a scalar

Purpose

Repeatedly execute contents of subsystem at current time step while condition is satisfied

Library

Description

Ports & Subsystems / While Iterator Subsystem

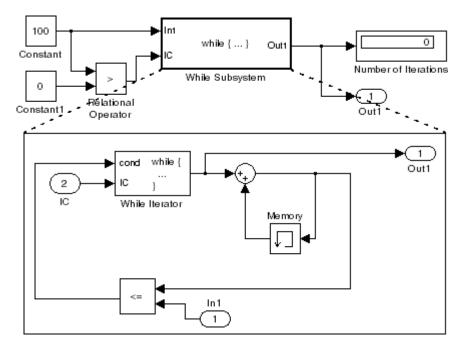
The While Iterator block, when placed in a subsystem, repeatedly executes the contents of the subsystem at the current time step while a specified condition is true.

Note Placing a While Iterator block in a subsystem makes it an atomic subsystem if it is not already an atomic subsystem.

The output of a While Iterator subsystem can not be a function-call signal. Simulink software will display an error message if the simulation is run or the diagram updated.

You can use this block to implement the block-diagram equivalent of a C program while or do-while loop. In particular, the block's **While loop style** parameter allows you to choose either of the following while loop modes:

• do-while


In this mode, the While Iterator block has one input, the while condition input, whose source must reside in the subsystem. At each time step, the block runs all the blocks in the subsystem once and then checks whether the while condition input is true. If the input is true, the iterator block runs the blocks in the subsystem again. This process continues as long as the while condition input is true and the number of iterations is less than or equal to the iterator block's **Maximum number of iterations** parameter.

• while

In this mode, the iterator block has two inputs: a while condition input and an initial condition (IC) input. The source of the initial condition signal must be external to the while subsystem. At the beginning of the time step, if the IC input is true, the iterator block executes the contents of the subsystem and then checks the while condition input. If the while condition input is true, the iterator executes the subsystem again. This process continues as long as the while condition input is true and the number of iterations is less than or equal to the iterator block's **Maximum number of iterations** parameter. If the IC input is false at the beginning of a time step, the iterator does not execute the contents of the subsystem during the time step.

Note Unless you are certain that the while condition will become false at some point in the simulation, you should specify a maximum number of iterations to avoid endless loops, which can be broken only by terminating MATLAB.

The While Iterator block can optionally output the current iteration number, starting at 1. The following example uses this capability to compute N, where N is the first N integers whose sum is less than 100.

This example is the diagrammatic equivalent to the following pseudocode.

```
max_sum = 100;
sum = 0;
iteration_number = 0;
cond = (max_sum > 0);
while (cond != 0) {
  iteration_number = iteration_number + 1;
  sum = sum + iteration_number;
  if (sum > max_sum OR iteration_number > max_iterations)
     cond = 0;
}
```

While Iterator

Data Type Support	Acceptable data inputs for the condition ports are any numeric dat type supported by Simulink software, as well as any fixed-point ty that include a 0 value. For a discussion on the data types supporte Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.		
	The While Iterator block's optional output port can output any of the following data types: double, int32, int16, or int8.		
Parameters and	Sink Block Parameters: While Iterator		
Dialog Box	Run the blocks in this subsystem until the while-iterator condition is false or the maximum number of iterations is reached. If the block is in do-while mode, all the blocks in the subsystem will be run once before checking the while-iterator condition, otherwise an external signal must be fed into the IC port to check if the block should be run on the first iteration. If the output port is shown, it will output the current iteration number starting at one. Parameters Maximum number of iterations (-1 for unlimited): While loop type: while States when starting: held		
	Show iteration number port Output data type: int32		
	OK Cancel Help Apply		

Maximum number of iterations

The maximum number of iterations allowed. A value of -1 allows any number of iterations as long as the while condition input is true. Note that if you specify -1 and the while condition never becomes false, the simulation will run forever. In this case, the only way to stop the simulation is to terminate the MATLAB process. Therefore, you should not specify -1 as the value of this parameter unless you are certain that the while condition will become false at some point in the simulation.

While loop style

Specifies the type of while loop implemented by this block. See the preceding block description for more information.

States when starting

Set this field to reset if you want the iterator block to reset the states of the blocks in the while subsystem to their initial values at the beginning of each time step (i.e., before executing the first loop iteration in the current time step). To cause the states of blocks in the subsystem to persist across time steps, set this field to held (the default).

Show iteration number port

If you select this check box, the While Iterator block outputs its iteration value. This value starts at 1 and is incremented by 1 for each succeeding iteration. By default, this check box is not selected.

Output data type

If you select the **Show iteration number port** check box (the default), this field is enabled. Use it to set the data type of the iteration number output to int32, int16, int8, or double.

Characteristics

Direct Feedthrough	No
Sample Time	Inherited from driving block
Scalar Expansion	No
Dimensionalized	No
Zero Crossing	No

While Iterator Subsystem

Purpose Represent subsystem that executes repeatedly while condition is satisfied during simulation time step

Library Ports & Subsystems

Description

The While Iterator Subsystem block is a Subsystem block that is preconfigured to serve as a starting point for creating a subsystem that executes repeatedly while a condition is satisfied during a simulation time step.

See the While Iterator block and "Modeling Control Flow Logic" for more information.

When using simplified initialization mode, you cannot place any block needing elapsed time within an Iterator Subsystem. In simplified initialization mode, Iterator subsystems do not maintain elapsed time, so Simulink will report an error if any such block (such as the Discrete-Time Integrator block) is placed within the subsystem. For more information on simplified initialization modes, see "Underspecified initialization detection".

- **Purpose** Output width of input vector
- Library Signal Attributes

Description The Width block generates as output the width of its input vector.

Data TypeThe Width block accepts real or complex signals of any data typeSupportsupported by Simulink software, including fixed-point and enumerated
data types. The Width block supports mixed-type signal vectors.

Parameters and Dialog Box

🙀 Function Block Parameters: Width	×		
_ Width			
Output the width of the input signal, using the specified output data type.			
Parameters			
Output data type mode: Choose intrinsic data type			
Output data type: double	-		
OK Cancel Help	Apply		

Note The Width block ignores the **Data type override** setting of the Fixed-Point Tool.

Output data type mode

Specify the output data type to be the same as the input, or inherit the data type by back propagation. You can also choose to specify a built-in data type from the drop-down list in the **Output data type** parameter.

Output data type

This parameter is visible when Choose intrinsic data type is selected from the **Output data type mode** parameter. Choose a built in data type from the drop down list.

Characteristics	Sample Time	Constant
	Dimensionalized	Yes
	Multidimensionalized	Yes

Wrap To Zero

Purpose Set output to zero if input is above threshold

Library

Discontinuities

Description

The Wrap To Zero block sets the output to zero if the input is above the value set by the **Threshold** parameter, and outputs the input if the input is less than or equal to the **Threshold**.

Data Type Support

The Wrap To Zero block accepts signals of any numeric data type supported by Simulink software, including fixed-point data types.

Parameters and Dialog Box

🙀 Function Block	Parameters: \	Wrap To Zero		X
🕞 Wrap To Zero (ma	sk) (link)			
If the input is abov the input.	e the threshold, t	he output is zero,	, otherwise the (output equals
- Parameters				
Threshold:				
255				
	ОК	Cancel	Help	Apply

Threshold

When the input exceeds the threshold, the output is set to zero.

Characteristics	Direct Feedthrough	Yes
	Scalar Expansion	Yes
	Multidimensionalized	Yes

XY Graph

Purpose	Display X-Y plot of signals using MATLAB figure window		
Library	Sinks		
Description	The XY Graph block displays an X-Y plot of its inputs in a MATLAB figure window.		
	The block has two scalar inputs. The block plots data in the first input (the x direction) against data in the second input (the y direction). (See "How to Rotate a Block" in <i>Simulink User's Guide</i> for a description of the port order for various block orientations.) This block is useful for examining limit cycles and other two-state data. Data outside the specified range is not displayed.		
	Simulink software opens a figure window for each XY Graph block in the model at the start of the simulation.		
Data Type Support	The XY Graph block accepts real signals of type double.		

Parameters and Dialog Box

🙀 Sink Block Parameters: XY Graph 🛛 🔀
┌────────────────────────────────────
Plots second input (Y) against first input (X) at each time step to create an X-Y plot. Ignores data outside the ranges specified by x-min, x-max, y-min, y-max.
Parameters
x-min:
-1
x-max:
1
y-min:
J-1
y-max:
L Courde Vines
Sample time:
OK Cancel Help Apply

x-min

The minimum *x*-axis value. The default is -1.

x-max

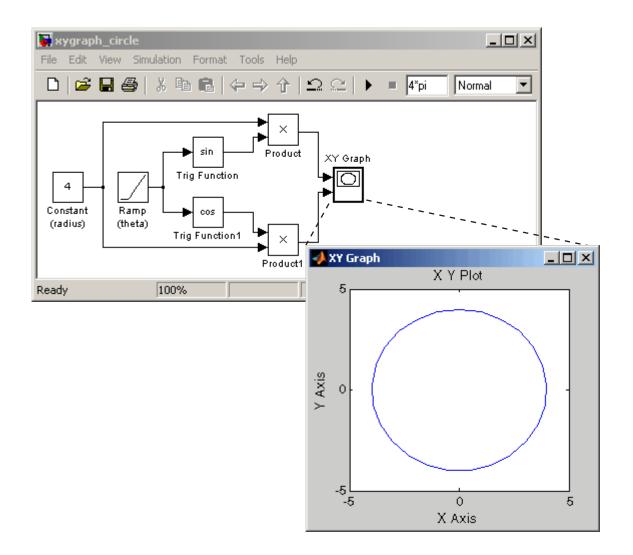
The maximum *x*-axis value. The default is 1.

y-min

The minimum *y*-axis value. The default is -1.

y-max

The maximum *y*-axis value. The default is 1.


Sample time

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the Simulink documentation for more information.

Examples

The following model computes the points that define a circle of radius 4, centered at the origin of the x-y plane. The XY Graph block displays the circle.

XY Graph

Characteristics	Sample Time	Specified in the Sample time parameter
	States	0

Zero-Order Hold

Purpose	Implement zero-order hold of one sample period
---------	--

Library

Discrete

Description

The Zero-Order Hold block samples and holds its input for the specified sample period. The block accepts one input and generates one output, both of which can be scalar or vector. If the input is a vector, all elements of the vector are held for the same sample period.

You specify the time between samples with the **Sample time** parameter. A setting of -1 means the **Sample time** is inherited.

This block provides a mechanism for discretizing one or more signals in time.

Note Do not use the Zero-Order Hold block to create a fast-to-slow transition between blocks operating at different sample rates. Instead, use the Rate Transition block.

Data Type Support

The Zero-Order Hold block accepts real or complex signals of any data type supported by Simulink software, including fixed-point and enumerated data types.

For a discussion on the data types supported by Simulink software, see "Data Types Supported by Simulink" in the Simulink documentation.

Parameters and Dialog Box

🙀 Function Block Parameters: Zero-Order Hold	×
Zero-Order Hold	
Zero-order hold.	
Parameters	
Sample time (-1 for inherited):	
1	
OK Cancel Help Ap	ply

Sample time (-1 for inherited)

Specify the time interval between samples. To inherit the sample time, set this parameter to -1. See "How to Specify the Sample Time" in the online documentation for more information.

Bus SupportThe Zero-Order Hold block is a bus-capable block. The input can be a virtual or nonvirtual bus signal. No block-specific restrictions exist. All signals in a nonvirtual bus input to a Zero-Order Hold block must have the same sample time, even if the elements of the associated bus object specify inherited sample times. You can use a Rate Transition block to change the sample time of an individual signal, or of all signals in a bus. See Using Buses and Bus-Capable Blocks for more information.

Characteristics

Bus-capable	Yes
Direct Feedthrough	Yes
Sample Time	Specified in the Sample time parameter
Scalar Expansion	No
Dimensionalized	Yes
Zero Crossing	No

Zero-Pole

Purpose Model system by zero-pole-gain transfer function

Continuous

Library

Description

	(s-1)	ļ
1	s(s+1)	ľ

The Zero-Pole block models a system specified by the zeros, poles, and gain of a Laplace-domain transfer function that defines the relationship between the system's input and its outputs. You can use this block to model either a single-input-single output (SISO) or a single-input-multiple-output (SIMO) system.

Use the **Zeros**, **Poles**, and **Gain** parameters on the block's parameter dialog box to enter the values of the transfer function's zeros, poles, and gain, respectively. The dialog box assumes the following form for the transfer function that models the system

$$H(s) = K \frac{Z(s)}{P(x)} = K \frac{(s - Z(1))(s - Z(2)) \dots (s - Z(m))}{(s - P(1))(s - P(2)) \dots (s - P(n))}$$

where Z represents the zeros, P the poles, and K the gain of the transfer function. The number of poles must be greater than or equal to the number of zeros. If the poles and zeros are complex, they must be complex conjugate pairs.

For a single-output system, Z and P are vectors and K is a scalar. The input and the output of the block are time-domain scalar signals. For a multiple output system, Z is a matrix each of whose columns represents the zeros of a transfer function relating the system's input to one of its outputs. All of the system's transfer functions are assumed to have the same poles represented by the vector P. K is a vector each of whose elements represents a gain of the corresponding transfer function defined by Z. In this case, the output of the block is a vector each of whose elements represents the output of the transfer function defined by the corresponding column of Z, i.e., the block's output is a vector whose width is equal to the number of columns in Z

Note You cannot use a single Zero-Pole block to model multiple-output systems whose transfer functions have a differing number of zeros or a single zero each. Use multiple Zero-Pole blocks to model such systems.

Transfer Function Display on Block


The Zero-Pole block displays the transfer function depending on how the parameters are specified:

• If each is specified as an expression or a vector, the icon shows the transfer function with the specified zeros, poles, and gain. If you specify a variable in parentheses, the variable is evaluated.

For example, if you specify **Zeros** as [3,2,1], **Poles** as (poles), where poles is defined in the workspace as [7,5,3,1], and **Gain** as gain, the icon looks like this:

,	gain(s-3)(s-2)(s-1)	
1	(\$7)(\$5)(\$3)(\$1)	ľ

• If each is specified as a variable, the icon shows the variable name followed by (s) if appropriate. For example, if you specify Zeros as zeros, Poles as poles, and Gain as gain, the icon looks like this.

Specifying the Absolute Tolerance for the Block's States

By default, Simulink software uses the absolute tolerance value specified in the **Configuration Parameters** dialog box (see "Specifying Variable-Step Solver Error Tolerances") to solve the states of the Zero-Pole block. If this value does not provide sufficient error control, specify a more appropriate value in the **Absolute tolerance** field of

Zero-Pole

the Zero-Pole block's dialog box. The value that you specify is used to solve all the block's states.

The Zero-Pole block accepts real signals of type double.

Data Type Support

Parameters and Dialog Box

🙀 Function Block Parameters: Zero-Pole	×
-Zero-Pole	
Matrix expression for zeros. Vector expression for poles and gain. Output width equals the number of columns in zeros matrix, or one if zeros is a vector.	
Parameters	5
Zeros:	
[1]	
Poles:	
[0 -1]	
Gain:	
[1]	
Absolute tolerance:	
auto	
State Name: (e.g., 'position')	
n	
OK Cancel Help Apply	

Zeros

The matrix of zeros. The default is [1].

Poles

The vector of poles. The default is [0 -1].

Gain

The vector of gains. The default is [1].

Absolute tolerance

Absolute tolerance used to solve the block's states. You can enter auto or a numeric value. If you enter auto, Simulink software determines the absolute tolerance (see "Specifying Variable-Step Solver Error Tolerances"). If you enter a numeric value, Simulink software uses the specified value to solve the block's states. Note that a numeric value overrides the setting for the absolute tolerance in the **Configuration Parameters** dialog box.

State Name

Use this to assign a unique name to each state. The state names apply only to the selected block. If left blank, no name is assigned.

To assign a name to a single state, enter the name between quotes, for example, 'velocity'.

To assign names to multiple states, enter a comma-delimited list surrounded by braces. For example, {'a', 'b', 'c'}. Each name must be unique.

The number of states must be evenly divided by the number of state names. There can be fewer names than the number of states, but there cannot be more names than states.

For example, you can specify two names in a system with four states. Simulink software will assign the first name to the first two states and the second name to the last two.

To assign state names with a variable that has been defined in the MATLAB workspace, enter the variable without quotes. A variable can be a string, cell, or structure.

Characteristics

5	Direct Feedthrough	Only if the lengths of the Poles and Zeros parameters are equal
	Sample Time	Continuous
	Scalar Expansion	No
	States	Length of Poles vector
	Dimensionalized	No
	Zero Crossing	No

Function Reference

Model Construction (p. 3-2)	Model construction functions
Simulation (p. 3-6)	Simulation functions
Linearization and Trimming (p. 3-8)	Linearization and trimming functions
Data Type (p. 3-9)	Data type functions

Model Construction

addterms	Add terminators to unconnected ports in model
add_block	Add block to Simulink system
add_line	Add line to Simulink system
add_param	Add parameter to Simulink system
attachConfigSet	Associate configuration set or configuration reference with model
attachConfigSetCopy	Copy configuration set or configuration reference and associate it with model
bdclose	Close any or all Simulink system windows unconditionally
bdIsLoaded	Whether block diagram is in memory
bdroot	Return name of top-level Simulink system
closeDialog	Close configuration parameters dialog
close_system	Close Simulink system window or block dialog box
delete_block	Delete block from Simulink system
delete_line	Delete line from Simulink system
delete_param	Delete system parameter added via add_param command
detachConfigSet	Dissociate configuration set or configuration reference from model
disableimplicitsignalresolution	Convert model to use only explicit signal resolution
docblock	Get or set editor invoked by Simulink DocBlock

find_mdlrefs	Find Model blocks in model. Find models that Model blocks reference
find_system	Find systems, blocks, lines, ports, and annotations
gcb	Get pathname of current block
gcbh	Get handle of current block
gcs	Get pathname of current system
getActiveConfigSet	Get model's active configuration set or configuration reference
getCallbackAnnotation	Get information about annotation
getConfigSet	Get one of model's configuration sets or configuration references
getConfigSets	Get names of all of model's configuration sets or configuration references
getfullname	Get pathname of block or line
get_param	Get system and block parameter values
legacy_code	Use Legacy Code Tool
libinfo	Get information about library blocks referenced by model
load_system	Invisibly load Simulink model
modeladvisor	Open Model Advisor
new_system	Create empty Simulink system
openDialog	Open configuration parameters dialog
open_system	Open Simulink system window or block dialog box
replace_block	Replace blocks in Simulink model
save_system	Save Simulink system

setActiveConfigSet	Specify model's active configuration set or configuration reference
set_param	Set Simulink system and block parameters
signalbuilder	Create and access Signal Builder blocks
simulink	Open Simulink block library
Simulink.BlockDiagram.addBus- ToVector	Add Bus to Vector blocks to convert virtual bus signals into vector signals
Simulink.BlockDiagram.copy- ContentsToSubSystem	Copy contents of block diagram to empty subsystem
Simulink.BlockDiagram.createSub	SyGtente a subsystem containing a specified set of blocks
Simulink.BlockDiagram.delete- Contents	Delete contents of block diagram
Simulink.Bus.cellToObject	Convert cell array containing bus information to bus objects
Simulink.Bus.createObject	Create bus objects for blocks
Simulink.Bus.objectToCell	Convert bus objects to cell array containing bus information
Simulink.Bus.save	Save bus objects in M-file
Simulink.SubSystem.convert- ToModelReference	Convert atomic subsystem or function call subsystem to model reference
Simulink.SubSystem.copyContents ToBlockDiagram	- Copy contents of subsystem to empty block diagram
Simulink.SubSystem.deleteConten	S Delete contents of subsystem
slCharacterEncoding	Change MATLAB character set encoding
sldiscmdl	Discretize Simulink model containing continuous blocks

slIsFileChangedOnDisk	Determine whether model has changed since it was loaded
slmdldiscui	Open Model Discretizer GUI
slreplace_mux	Replace Mux blocks used to create buses with Bus Creator blocks
slupdate	Replace blocks from previous releases with latest versions
view_mdlrefs	Display graph of model reference dependencies

Simulation

add_exec_event_listener	Register listener for block method execution event
model	Execute particular phase of simulation of model
sim	Simulate dynamic system
simget	Get settings of model's simulation parameters
simplot	Plot simulation data in figure window
simset	Specify simulation options for simulations run via sim command
Simulink.Block.getSampleTimes	Return sample time information for a block
Simulink.BlockDiagram.get- InitialState	Return initial state structure of block diagram
Simulink.BlockDiagram.get- SampleTimes	Return all sample times associated with a model
Simulink.BlockDiagram.getChecks	unReturn checksum of model
Simulink.SubSystem.getChecksum	Return checksum of subsystem
slbuild	Build standalone and model reference targets
sldebug	Start simulation in debug mode
sldiagnostics	Display diagnostic information about Simulink system
unpack	Extract signal logging objects from signal logs and write them into MATLAB workspace

who	List names of top-level data logging objects in Simulink data log
whos	List names and types of top-level data logging objects in Simulink data log

Linearization and Trimming

linmod, dlinmod,	linmod2,	Extract continuous- or discrete-time
linmodv5		linear state-space model of system
		around operating point

trim

Find trim point of dynamic system

Data Type

fixdt	Create Simulink.NumericType object describing fixed-point or floating-point data type
fixptbestexp	Determine exponent that gives best precision fixed-point representation of value
fixptbestprec	Determine maximum precision available for fixed-point representation of value
fixpt_evenspace_cleanup	Modify lookup table input data to be evenly spaced
fixpt_interp1	Implement 1-D lookup table
fixpt_look1_func_approx	Optimize for fixed-point function, x values, or breakpoints that are generated for lookup table
fixpt_look1_func_plot	Plot function with x values generated by fixpt_look1_func_approx function
fixpt_set_all	Set property for every fixed-point block in subsystem
float	Create MATLAB structure describing floating-point data type
fxptdlg	Invoke Fixed-Point Tool
num2fixpt	Convert number to nearest value representable by specified fixed-point data type
sfix	Create MATLAB structure describing signed generalized fixed-point data type

sfrac	Create MATLAB structure describing signed fractional data type
sint	Create MATLAB structure describing signed integer data type
tunablevars2parameterobjects	Create Simulink parameter objects from tunable parameters
ufix	Create MATLAB structure describing unsigned generalized fixed-point data type
ufrac	Create MATLAB structure describing unsigned fractional data type
uint	Create MATLAB structure describing unsigned integer data type

Functions — Alphabetical List

add_block

Purpose	Add block to Simulink system
Syntax	<pre>add_block('src', 'dest') add_block('src', 'dest', 'param1', value1,) add_block('src', 'dest', 'MakeNameUnique', 'on', 'param1', value1,) add_block('src_inport', 'dest_inport', 'copyoption', 'duplicate', 'param1', value1,)</pre>
Description	<pre>add_block('src', 'dest') copies the block with the full pathname 'src' to a new block with the full pathname 'dest'. The block parameters of the new block are identical to those of the original. You can use 'built-in/blocktype' as a source block path for Simulink built-in blocks (blocks available in Simulink block libraries that are not masked blocks), where blocktype is the built-in block's type, i.e., the value of its BlockType parameter (see "Common Block Parameters" on page 8-83).</pre>
	add_block('src', 'dest', 'param1', value1,) creates a copy as above, in which the named parameters have the specified values. Any additional arguments must occur in parameter/value pairs.
	add_block('src', 'dest', 'MakeNameUnique', 'on', 'parameter1', value1,) creates a copy of src. If a block having the full pathname 'dest' already exists, the command creates a unique name for the new block based on 'dest'.
	add_block('src_inport', 'dest_inport', 'copyoption', 'duplicate', 'param1', value1,) applies only to Inport blocks. It creates a copy with the same port number as the 'src_inport' block.
	Before you add a block, you need to first open the library that contains the block with the load_system (library opens invisibly) or open_system (library opens visibly) command.
Examples	This command copies the Scope block from the Sinks subsystem of the simulink system to a block named Scope1 in the timing subsystem of the engine system.

```
add_block('simulink/Sinks/Scope', 'engine/timing/Scope1')
```

This command creates a new subsystem named controller in the F14 system.

```
add_block('built-in/SubSystem', 'F14/controller')
```

This command copies the built-in Gain block to a block named Volume in the mymodel system and assigns the Gain parameter a value of 4.

```
add_block('built-in/Gain', 'mymodel/Volume', 'Gain', '4')
```

The following command

```
block = add_block('vdp/Mu', 'vdp/Mu', 'MakeNameUnique', 'on')
```

copies the block named Mu in vdp and create a copy. Since Mu already exists, the command names the new block Mu1.

See Also delete_block, replace_block, set_param

add_exec_event_listener

Register listener for block method execution event
<pre>h = add_exec_event_listener(blk, event, listener);</pre>
<pre>h = add_exec_event_listener(blk, event, listener) registers a listener for a block method execution event where the listener is an M-file program that performs some task, such as logging runtime data for a block, when the event occurs (see "Listening for Method Execution Events" in <i>Simulink User's Guide</i> for more information). Simulink software invokes the registered listener whenever the specified event occurs during simulation of the model.</pre>
Note Simulink software can register a listener only while a simulation is running. Invoking this function when no simulation is running results in an error message. To ensure that a listener catches all relevant events triggered by a model's simulation, you should register the listener in the model's StartFcn callback function (see "Model Callback Functions").
 blk Specifies the block whose method execution event the listener is intended to handle. May be one of the following: Full pathname of a block A block handle A block runtime object (see "Accessing Block Data During Simulation" in Simulink User's Guide.) event Specifies the type of event for which the listener listens. It may be any of the following:

Event	Occurs
'PreDerivatives'	Before a block's Derivatives method executes
'PostDerivatives'	After a block's Derivatives method executes
'PreOutputs'	Before a block's Outputs method executes.
'PostOutputs'	After a block's Outputs method executes
'PreUpdate'	Before a block's Update method executes
'PostUpdate'	After a block's Update method executes

listener

Specifies the listener to be registered. It may be either a string specifying a MATLAB expression, e.g., 'disp(''here'')' or a handle to a MATLAB function that accepts two arguments. The first argument is the block runtime object of the block that triggered the event. The second argument is an instance of EventData class that specifies the runtime object and the name of the event that just occurred.

Return Value

add_exec_event_listener returns a handle to the listener that it registered. To stop listening for an event, use the MATLAB clear command to clear the listener handle from the workspace in which the listener was registered.

add_line

Purpose	Add line to Simulink system
Syntax	<pre>h = add_line('sys','oport','iport') h = add_line('sys','oport','iport', 'autorouting','on') h = add_line('sys', points)</pre>
Description	 The add_line command adds a line to the specified system and returns a handle to the new line. You can define the line in two ways: By naming the block ports that are to be connected by the line By specifying the location of the points that define the line segments add_line('sys', 'oport', 'iport') adds a straight line to a system from the specified block output port 'oport' to the specified block input port 'iport'. 'oport' and 'iport' are strings consisting of a block name and a port identifier in the form 'block/port'. Most block ports are identified by numbering the ports from top to bottom or from left to right, such as 'Gain/1' or 'Sum/2'. Enable, Trigger, State, and Action ports are identified by name, such as 'subsystem_name/Enable', 'subsystem_name/Trigger', 'Integrator/State', or if_action_subsystem_name/Ifaction'. add_line('sys','oport','iport', 'autorouting','on') works like add_line('sys','oport','iport') except that it routes the line around intervening blocks. The default value for autorouting is 'off'.
	row of the points array specifies the x and y coordinates of a point on a line segment. The origin is the top-left corner of the window. The signal flows from the point defined in the first row to the point defined in the last row. If the start of the new line is close to the output of an existing block or line, a connection is made. Likewise, if the end of the line is close to an existing input, a connection is made.

Examples	This command adds a line to the mymodel system connecting the output of the Sine Wave block to the first input of the Mux block.
	<pre>add_line('mymodel','Sine Wave/1','Mux/1')</pre>
	This command adds a line to the mymodel system extending from $(20,55)$ to $(40,10)$ to $(60,60)$.
	add_line('mymodel',[20 55; 40 10; 60 60])
See Also	delete_line

add_param

Purpose	Add parameter to Simulink system
Syntax	add_param('sys','parameter1',value1,'parameter2',value2,)
Description	The add_param command adds the specified parameters to the specified system and initializes the parameters to the specified values. Case is ignored for parameter names. Value strings are case sensitive. The value of the parameter must be a string. Once the parameter is added to a system, set_param and get_param can be used on the new parameters as if they were standard Simulink parameters. Simulink software saves these new parameters with the model file.
Examples	This command add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2') adds the parameters DemoName and EquationOrder with string values 'VanDerPolEquation' and '2' to the vdp system. Afterward, you can use the following command to retrieve the value of the DemoName parameter. get_param('vdp','DemoName')
See Also	delete_param, get_param, set_param

Purpose	Add terminators to unconnected ports in model
Syntax	addterms('sys')
Description	addterms('sys') adds Terminator and Ground blocks to the unconnected ports in the Simulink block diagram sys.
See Also	slupdate

attachConfigSet

Purpose	Associate configuration set or configuration reference with model
Syntax	attachConfigSet('model', configObj) attachConfigSet('model', configObj, allowRename)
Arguments	<i>model</i> The name of an open model, or gcs to specify the current model
	<pre>config0bj A configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef)</pre>
	allowRename Boolean that determines how Simulink software handles a name conflict
Description	attachConfigSet associates the configuration set or configuration reference (configuration object) specified by <i>configObj</i> with <i>model</i> .
	You cannot attach a configuration object to a model if the configuration object is already attached to another model, or has the same name as another configuration object attached to the same model. The optional Boolean argument <i>allowRename</i> determines how Simulink software handles a name conflict between configuration objects. If <i>allowRename</i> is false and the configuration object specified by <i>configObj</i> has the same name as a configuration object already attached to <i>model</i> , Simulink software generates an error. If <i>allowRename</i> is true and a name conflict occurs, Simulink software provides a unique name for <i>configObj</i> before associating <i>configObj</i> with <i>model</i> .
Example	The following example creates a copy of the current model's active configuration object and attaches it to the model, changing its name if necessary to be unique. The code is the same whether the object is a configuration set or configuration reference.
	<pre>myConfigObj = getActiveConfigSet(gcs); copiedConfig = myConfigObj.copy; copiedConfig.Name = 'DevConfig';</pre>

attachConfigSet(gcs, copiedConfig, true);

See Also "Configuration Sets", "Referencing Configuration Sets" attachConfigSetCopy, closeDialog, detachConfigSet, getActiveConfigSet, getConfigSet, getConfigSets, openDialog, setActiveConfigSet

Purpose	Copy configuration set or configuration reference and associate it with model
Syntax	<pre>myConfigObj = attachConfigSetCopy('model', configObj) myConfigObj = attachConfigSetCopy('model', configObj, allowRename)</pre>
Arguments	<pre>model The name of an open model, or gcs to specify the current model configObj A configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef) allowRename Boolean that specifies how Simulink software handles a name conflict</pre>
Description	<pre>attachConfigSetCopy copies the configuration set or configuration reference (configuration object) specified by configObj and associates the copy with model. Simulink software returns the copied configuration object as newConfigObj.</pre> You cannot attach a configuration object to a model if the configuration object has the same name as another configuration object attached to the same model. The optional Boolean argument allowRename determines how Simulink software handles a name conflict between configuration objects. If allowRename is false and the configuration object already attached to model, Simulink software generates an error. If allowRename is true and a name conflict occurs, Simulink software provides a unique name for the copy of configObj before associating it with model.
Example	The following example creates a copy of ModelA's active configuration object and attaches it to ModelB, changing the name if necessary to be unique. The code is the same whether the object is a configuration set or configuration reference.

myConfigObj = getActiveConfigSet('ModelA'); newConfigObj = attachConfigSetCopy('ModelB', myConfigObj, true); See Also "Configuration Sets", "Referencing Configuration Sets" attachConfigSet, closeDialog, detachConfigSet, getActiveConfigSet, getConfigSet, getConfigSets, openDialog, setActiveConfigSet

bdclose

Purpose	Close any or all Simulink system windows unconditionally
Syntax	bdclose bdclose('sys') bdclose('all')
Description	<pre>bdclose with no arguments closes the current system window unconditionally and without confirmation. Any changes made to the system since it was last saved are lost. bdclose('sys') closes the specified system window. bdclose('all') closes all system windows.</pre>
Examples	This command closes the vdp system. bdclose('vdp')
See Also	close_system, new_system, open_system, save_system

Purpose	Whether block diagram is in memory
Syntax	<pre>isLoaded = bdIsLoaded(bdnames)</pre>
Description	isLoaded = bdIsLoaded(bdnames) returns whether or not a block diagram is in memory. bdnames can be a string or a cell array of strings. All strings must be valid block diagram names (which are the same as valid MATLAB variable names). It is an error to supply a path to a block or subsystem.
	isLoaded is a logical array with one entry for each block diagram name. Examples:
Examples	bdIsLoaded('sf_car')
	returns a logical scalar.
	bdIsLoaded({'sf_car','vdp'})
	returns a 1*2 logical array.
See Also	find_system

bdroot

Purpose	Return name of top-level Simulink system
Syntax	bdroot bdroot('obj')
Description	bdroot with no arguments returns the top-level system name. bdroot('obj'), where 'obj' is a system or block pathname, returns the name of the top-level system containing the specified object name.
Examples	This command returns the name of the top-level system that contains the current block. bdroot(gcb)
See Also	find_system, gcb

Purpose	Close Simulink system window or block dialog box
Syntax	close_system close_system('sys') close_system('sys', saveflag) close_system('sys', 'newname') close_system('sys', 'newname','ErrorIfShadowed', true)
Description	<pre>close_system with no arguments closes the current system or subsystem window. If the current system is the top-level system and it has been modified, close_system returns an error. The current system is defined in the description of the gcs command.</pre>
	<pre>close_system('sys') closes the specified system, subsystem, or block window.</pre>
	'sys' can be a string (which can be a system, a subsystem, or a full block pathname), a cell array of strings, a numeric handle, or an array of numeric handles. This command displays an error if 'sys' is a MATLAB keyword, 'simulink', or more than 63 characters long.
	<pre>close_system('sys', saveflag), if saveflag is 1, saves the specified top-level system to a file with its current name, then closes the specified top-level system window and removes it from memory. If saveflag is 0, the system is closed without saving. A single saveflag can be supplied, in which case it is applied to all block diagrams. Alternatively, separate saveflags can be supplied for each block diagram, as a numeric array.</pre>
	<pre>close_system('sys', 'newname') saves the specified top-level system to a file with the specified new name, then closes the system.</pre>
	Additional arguments can be supplied when saving a block diagram. These are exactly the same as for save_system :
	• ErrorIfShadowed: true or false (default: false)
	• BreakAllLinks: true or false (default: false)
	• SaveAsVersion: MATLAB version name (default: current)

	• OverwriteIfChangedOnDisk: true or false (default: false)
	• SaveModelWorkspace: true or false (default: false)
	If you try to specify additional options when you are doing something other than saving a block diagram, they are ignored. You see a warning if you try to save when closing something other than a block diagram (e.g., a subsystem or a Block Properties dialog).
Examples	This command closes the current system.
	close_system
	This command closes the vdp system, unless it has been modified, in which case it returns an error.
	<pre>close_system('vdp')</pre>
	This command saves the engine system with its current name, then closes it.
	<pre>close_system('engine', 1)</pre>
	This command saves the mymdl12 system under the new name testsys, then closes it.
	<pre>close_system('mymdl12', 'testsys')</pre>
	This command tries to save the vdp system to a file with the name 'max', but returns an error because 'max' is the name of an existing MATLAB function.
	close_system('vdp','max','ErrorIfShadowed', true)
	All three of the following commands save and close mymodel (saved with the same name), and replace links to library blocks with copies of

close_system('mymodel',1,'BreakAllLinks',true)

the library blocks in the saved file:

```
close_system('mymodel','mymodel','BreakAllLinks',true)
close_system('mymodel',[],'BreakAllLinks',true)
```

This command closes the dialog box of the Unit Delay block in the Combustion subsystem of the engine system.

close_system('engine/Combustion/Unit Delay')

Note The close_system command cannot be used in a block or menu callback to close the root-level model. Attempting to close the root-level model in a block or menu callback results in an error and discontinues the callback's execution.

See Also bdclose, gcs, new_system, open_system, save_system

closeDialog

Purpose	Close configuration parameters dialog
Syntax	<pre>closeDialog(config0bj)</pre>
Arguments	<pre>configObj A configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef)</pre>
Description	closeDialog closes an open configuration parameters dialog box. If <i>configObj</i> is a configuration set, the function closes the dialog box that displays the configuration set. If <i>configObj</i> is a configuration reference, the function closes the dialog box that displays the referenced configuration set, or generates an error if the reference does not specify a valid configuration set. If the dialog box is already closed, the function does nothing.
Example	The following example closes a configuration parameters dialog box that shows the current parameters for the current model. The parameter values derive from the active configuration set or configuration reference (configuration object). The code is the same in either case; the only difference is which type of configuration object is currently active. myConfigObj = getActiveConfigSet(gcs);
	<pre>closeDialog(myConfigObj);</pre>
See Also	"Configuration Sets", "Referencing Configuration Sets"
	attachConfigSet, attachConfigSetCopy, detachConfigSet, getActiveConfigSet, getConfigSet, getConfigSets, openDialog, setActiveConfigSet

Purpose	Delete block from Simulink system
Syntax	<pre>delete_block('blk')</pre>
Description	delete_block('blk'), where 'blk' is a full block pathname, deletes the specified block from a system.
Examples	This command removes the Out1 block from the vdp system.
	<pre>delete_block('vdp/Out1')</pre>
See Also	add_block, replace_block

delete_line

Purpose	Delete line from Simulink system
Syntax	<pre>delete_line('sys', 'oport', 'iport') delete_line('system', [x y]) delete_line('handle')</pre>
Description	<pre>delete_line('sys', 'oport', 'iport') deletes the line extending from the specified block output port 'oport' to the specified block input port 'iport'. 'oport' and 'iport' are strings consisting of a block name and a port identifier in the form 'block/port'. Most block ports are identified by numbering the ports from top to bottom or from left to right, such as 'Gain/1' or 'Sum/2'. Enable, Trigger, and State ports are identified by name, such as 'subsystem_name/Enable', 'subsystem_name/Trigger', 'Integrator/State', or if_action_subsystem_name/Ifaction'.</pre>
	delete_line('sys', $[x y]$) deletes one of the lines in the system that contains the specified point (x,y) , if any such line exists.
	<pre>delete_line('system', [x y]) deletes all of the lines in the system that contain the specified point, including any branches.</pre>
	<pre>delete_line('handle') deletes the line specified by the handle, 'handle'.</pre>
Examples	This command removes the line from the mymodel system connecting the Sum block to the second input of the Mux block.
	<pre>delete_line('mymodel','Sum/1','Mux/2')</pre>
See Also	add_line

Purpose	Delete system parameter added via add_param command
Syntax	<pre>delete_param('sys','parameter1','parameter2',)</pre>
Description	This command deletes parameters that were added to the system using the add_param command. The command displays an error message if a specified parameter was not added with the add_param command.
Examples	The following example
	add_param('vdp','DemoName','VanDerPolEquation','EquationOrder','2') delete_param('vdp','DemoName')
	adds the parameters DemoName and EquationOrder to the vdp system, then deletes DemoName from the system.
See Also	add_param

detachConfigSet

Purpose	Dissociate configuration set or configuration reference from model
Syntax	<pre>detachConfigSet('model', 'configObjName')</pre>
Arguments	<pre>model The name of an open model, or gcs to specify the current model configObjName The name of a configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef)</pre>
Description	detachConfigSet detaches the configuration set or configuration reference (configuration object) specified by 'configObjName' from model. If no such configuration object is attached to the model, an error occurs.
Examples	The following example detaches the configuration object named DevConfig from the current model. The code is the same whether DevConfig is a configuration set or configuration reference. detachConfigSet(gcs, 'DevConfig');
See Also	"Configuration Sets", "Referencing Configuration Sets" attachConfigSet, attachConfigSetCopy, closeDialog, getActiveConfigSet, getConfigSet, getConfigSets, openDialog, setActiveConfigSet

Purpose	Convert model to use only explicit signal resolution
Syntax	<pre>[retVal] = disableimplicitsignalresolution(model) [retVal] = disableimplicitsignalresolution(model, displayOnly)</pre>
Arguments	model Model name or handle.
	<pre>displayOnly Boolean specifying whether to change the model or just generate a report. Default: false; the function changes the model.</pre>
Return	<i>retVal</i> A MATLAB structure containing:
	• Signals: Handles to ports with signal names that resolve to signal objects
	• States: Handles to blocks with states that resolve to signal objects.
Description	disableimplicitsignalresolution inputs a model, reports all signals and states that implicitly resolve to signal objects, and optionally converts the model to resolve only signals and states that explicitly require it. The report and any changes are limited to the model itself; they do not include blocks that are library links. Before executing this function, ensure that all relevant Simulink data objects are defined in the base workspace. The function ignores any data objects that are defined elsewhere.
	If <i>displayOnly</i> is true, the function scans <i>model</i> , returns a structure of handles to signals and states that resolve implicitly to signal objects, and leaves the model unchanged. If <i>displayOnly</i> is false (the default), the function returns the same list and also performs the following operations on <i>model</i> :

- Search the model for all output ports and block states that resolve to Simulink signal objects.
- Modify these ports and blocks to enforce signal object resolution in the future.
- Set the model's SignalResolutionControl parameter to 'UseLocalSettings' (GUI: Explicit Only.
- If any Stateflow output data resolves to a Simulink signal object:
 - Turn off hierarchical scoping of signal objects from within the Stateflow chart.
 - Explicitly label the output signal of the Stateflow chart.
 - Enforce signal object resolution for this signal in the future.

Note The changes made by disableimplicitsignalresolution permanently change the model. Be sure to back up the model before calling the function with *displayOnly* defaulted or specified as false.

See Also "Signal Properties Dialog Box" "Data Validity Diagnostics Overview" Simulink.Signal

Purpose	Get or set editor invoked by Simulink DocBlock
Syntax	<pre>docblock('setEditorHTML', editCmd) docblock('setEditorDOC', editCmd) docblock('setEditorTXT', editCmd) editCmd = docblock('getEditorHTML') editCmd = docblock('getEditorDOC') editCmd = docblock('getEditorTXT')</pre>
Description	docblock('setEditorHTML', <i>editCmd</i>) sets the HTML editor invoked by the DocBlock. The <i>editCmd</i> string specifies a command, executed at the MATLAB prompt, which launches a custom HTML editor. By default, the DocBlock invokes Microsoft Word (if available) as the HTML editor; otherwise, it opens HTML documents using the editor you specified on the Editor/Debugger Preferences pane of the Preferences dialog box.
	docblock('setEditorDOC', <i>editCmd</i>) sets the Rich Text Format (RTF) editor invoked by the DocBlock. The <i>editCmd</i> string specifies a command, executed at the MATLAB prompt, which launches a custom RTF editor. By default, the DocBlock invokes Microsoft Word (if available) as the RTF editor; otherwise, it opens RTF documents using the editor you specified on the Editor/Debugger Preferences pane of the Preferences dialog box.
	docblock('setEditorTXT', <i>editCmd</i>) sets the text editor invoked by the DocBlock. The <i>editCmd</i> string specifies a command, executed at the MATLAB prompt, which launches a custom text editor. By default, the DocBlock invokes the editor you specified on the Editor/Debugger Preferences pane of the Preferences dialog box.
	<pre>editCmd = docblock('getEditorHTML') returns the value of the current command used to invoke an HTML editor when double-clicking the DocBlock.</pre>
	<pre>editCmd = docblock('getEditorDOC') returns the value of the current command used to invoke a RTF editor when double-clicking the DocBlock.</pre>

editCmd = docblock('getEditorTXT') returns the value of the current command used to invoke a text editor when double-clicking the DocBlock. Note Use the "%<FileName>" token in the editCmd string to represent the full pathname to the document. Use the empty string '' as the editCmd to reset the DocBlock to its default editor for a particular document type. **Examples** This command specifies Microsoft Notepad as the DocBlock editor for RTF documents. docblock('setEditorRTF','system(''notepad "%<FileName>"'');') This command resets the DocBlock to use its default editor for RTF documents. docblock('setEditorRTF','') This command specifies Mozilla Composer as the HTML editor for the DocBlock. docblock('setEditorHTML','system(''/usr/local/bin/mozilla ... -edit "%<FileName>" &'');')

Purpose	Find Model blocks in model. Find models that Model blocks reference
Syntax	<pre>[refMdls, mdlBlks] = find_mdlrefs('modelName') [refMdls, mdlBlks] = find_mdlrefs('modelName', true) [refMdls, mdlBlks] = find_mdlrefs('modelName', false)</pre>
Description	<pre>[refMdls, mdlBlks] = find_mdlrefs('modelName') or find_mdlrefs('modelName', true) finds all Model blocks contained by and models referenced by 'modelName' directly or indirectly (i.e., via models referenced by 'modelName'. The commands output arguments are</pre>
	• refMdls
	List of models. The last element in the list is 'modelName'. The other elements are the names of models referenced by 'modelName'.
	• mdlBlks
	Names of Model blocks contained by 'modelName' and the models that it references directly or indirectly.
	<pre>[refMdls, mdlBlks] = find_mdlrefs(modelName, false) finds only the Model blocks and models directly referenced by 'modelName'.</pre>
Examples	Open the sldemo_mdlref_basic demo. Then execute
	<pre>>> [r, b] = find_mdlrefs('sldemo_mdlref_basic')</pre>
	<pre>r = 'sldemo_mdlref_counter' 'sldemo_mdlref_basic'</pre>
	<pre>b = 'sldemo_mdlref_basic/CounterA' 'sldemo_mdlref_basic/CounterB' 'sldemo_mdlref_basic/CounterC'</pre>

See Also view_mdlrefs

Purpose	Find systems, blocks, lines, ports, and annotations
Syntax	find_system(sys, 'c1', cv1, 'c2', cv2,'p1', v1, 'p2', v2,)
Description	find_system(sys, 'c1', cv1, 'c2', cv2,'p1', v1, 'p2', v2,) searches the systems or subsystems specified by sys , using the constraints specified by $c1$, $c2$, etc., and returns handles or paths to the objects whose parameters, $p1$, $p2$, etc., have the values, $v1$, $v2$, etc. sys can be a pathname (or cell array of pathnames), a handle (or vector of handles), or omitted. If you specify 'BlockDialogParams' as the parameter name, find_system searches for all blocks that have a parameter that has the specified value and appears in the block's dialog box.
	Note All the search constraints must precede all the property-value pairs in the argument list.
	If sys is a pathname or cell array of pathnames, find_system returns a cell array of pathnames of the objects it finds. If sys is a handle or a vector of handles, find_system returns a vector of handles to the objects that it finds. If sys is omitted, find_system searches all open systems and returns a cell array of pathnames.
	Case is ignored for parameter names. Value strings are case sensitive by default (see the 'CaseSensitive' search constraint for more information). Any parameters that correspond to dialog box entries have string values. See Chapter 8, "Model and Block Parameters" for a list of model and block parameters.

You can specify any of the following search constraints.

Name	Value Type	Description
'SearchDepth'	scalar	Restricts the search depth to the specified level (0 for open systems only, 1 for blocks and subsystems of the top-level system, 2 for the top-level system and its children, etc.). The default is all levels.
'LookUnderMasks'	'none'	Search skips masked blocks.
	{'graphical'}	Search includes masked blocks that have no workspaces and no dialogs. This is the default.
	'functional'	Search includes masked blocks that do not have dialogs.
	'all'	Search includes all masked blocks.
'FollowLinks'	'on' {'off'}	If 'on', search follows links into library blocks. The default is 'off'.
'FindAll'	'on' {'off'}	If 'on', search extends to lines, ports, and annotations within systems. The default is 'off'. Note that find_system returns a vector of handles when this option is 'on', regardless of the array type of sys.
'CaseSensitive'	{'on'} 'off'	If 'on', search considers case when matching search strings. The default is 'on'.
'RegExp'	'on' {'off'}	If 'on', search treats search expressions as regular expressions. The default is 'off'.

	The table encloses default constraint values in brackets. If a 'constraint' is omitted, find_system uses the default constraint value.
	By default, find_system attempts to load any partially loaded models. When a PreLoadFcn callback invokes find_system, find_system tries to load the calling model, causing recursive load warnings. To prevent this warning, disable the model loading property of find_system. Turn off the LoadFullyIfNeeded property, as follows:
	find_system(gcs,'LoadFullyIfNeeded','off','PropertyName','PropertyValue')
Examples	This command returns a cell array containing the names of all open systems and blocks.
	find_system
	This command returns the names of all open block diagrams.
	open_bd = find_system('type', 'block_diagram')
	This command returns the names of all Goto blocks that are children of the Unlocked subsystem in the clutch system.
	find_system('clutch/ Unlocked','SearchDepth',1,'BlockType','Goto')
	These commands return the names of all Gain blocks in the vdp system having a Gain parameter value of 1.
	gb = find_system('vdp', 'BlockType', 'Gain') find_system(gb, 'Gain', '1')
	The preceding commands are equivalent to this command:
	find_system('vdp', 'BlockType', 'Gain', 'Gain', '1')

These commands obtain the handles of all lines and annotations in the vdp system.

```
sys = get_param('vdp', 'Handle');
l = find_system(sys, 'FindAll', 'on', 'type', 'line');
a = find_system(sys, 'FindAll', 'on', 'type',
'annotation');
```

Searching	If you specify the 'RegExp' constraint as 'on', find_system treats
with	search value strings as regular expressions. A regular expression
Regular Expressions	is a string of characters in which some characters have special pattern-matching significance. For example, a period (.) in a regular expression matches not only itself but any other character.

Regular expressions greatly expand the types of searches you can perform with find_system. For example, regular expressions allow you to do partial-word searches. You can search for all objects that have a specified parameter that contains or begins or ends with a specified string of characters.

To use regular expressions effectively, you need to learn the meanings of the special characters that regular expressions can contain. The following table lists the special characters supported by find_subystem and explains their usage.

Expression	Usage
•	Matches any character. For example, the string 'a.' matches 'aa', 'ab', 'ac', etc.
*	Matches zero or more of preceding character. For example, 'ab*' matches 'a', 'ab', 'abb', etc. The expression '.*' matches any string, including the empty string.
+	Matches one or more of preceding character. For example, 'ab+' matches 'ab', 'abb', etc.
^	Matches start of string. For example, '^a.*' matches any string that starts with 'a'.

Expression	Usage
\$	Matches end of string. For example, '.*a\$' matches any string that ends with 'a'.
١	Causes the next character to be treated as an ordinary character. This escape character lets regular expressions match expressions that contain special characters. For example, the search string '\\' matches any string containing a \ character.
[]	Matches any one of a specified set of characters. For example, 'f[oa]r' matches 'for' and 'far'. Some characters have special meaning within brackets. A hyphen (-) indicates a range of characters to match. For example, '[a-zA-Z1-9]' matches any alphanumeric character. A circumflex (^) indicates characters that should not produce a match. For example, 'f[^i]r' matches 'far' and 'for' but not 'fir'.
\w	Matches a word character. (This is a shorthand expression for [a-z_A-Z0-9].) For example, '^\w' matches 'mu' but not 'μ'.
\ d	Matches any digit (shorthand for [0-9]). For example, '\d+' matches any integer.
\ D	Matches any nondigit (shorthand for [^0-9]).
\s	Matches a white space (shorthand for [\t\r\n\f]).
\S	Matches a non white-space (shorthand for [^ \t\r\n\f]).
\ <word\></word\>	Matches WORD exactly, where WORD is a string of characters separated by white space from other words. For example, '\ <to\>' matches 'to' but not 'today'.</to\>

To use regular expressions to search Simulink systems, specify the 'regexp' search constraint as 'on' in a find_system command and use a regular expression anywhere you would use an ordinary search value string.

For example, the following command finds all the inport and outport blocks in the clutch model demo provided with Simulink software.

find_system('clutch', 'regexp', 'on', 'blocktype', 'port')

See Also get_param, set_param

Purpose	Create Simulink.NumericType object describing fixed-point or floating-point data type
Syntax	<pre>a = fixdt(Signed, WordLength) a = fixdt(Signed, WordLength, FractionLength) a = fixdt(Signed, WordLength, TotalSlope, Bias) a = fixdt(Signed, WordLength, SlopeAdjustmentFactor, FixedExponent, Bias) a = fixdt(DataTypeNameString) [DataType,IsScaledDouble] = fixdt(DataTypeNameString)</pre>
Description	<pre>fixdt(Signed, WordLength) returns a Simulink.NumericType object describing a fixed-point data type with unspecified scaling. The scaling would typically be determined by another block parameter. Signed can be 0 (false) for unsigned or 1 (true) for signed. fixdt(Signed, WordLength, FractionLength) returns a Simulink.NumericType object describing a fixed-point data type with binary point scaling. fixdt(Signed, WordLength, TotalSlope, Bias) or fixdt(Signed, WordLength, SlopeAdjustmentFactor, FixedExponent, Bias) returns a Simulink.NumericType object describing a fixed-point data type with slope and bias scaling. fixdt(DataTypeNameString) returns a Simulink.NumericType object describing an integer, fixed-point, or floating-point data type specified by a data type name. The data type name can be either the name of a built-in Simulink data type or the name of a fixed-point data type that conforms to the naming convention for fixed-point names established by the Simulink Fixed Point product. [DataType,IsScaledDouble] = fixdt(DataTypeNameString) returns a Simulink.NumericType object describing an integer, fixed-point, or floating-point data type specified by a data type name and a flag</pre>
	that indicates whether the specified data type name was the name of a scaled double data type.

See Also float, sfix, sfrac, sint, ufix, ufrac, uint

Purpose	Modify lookup table input data to be evenly spaced
Syntax	<pre>xdata_adjusted = fixpt_evenspace_cleanup(xdata_original, xdt,</pre>
Description	<pre>xdata_adjusted = fixpt_evenspace_cleanup(xdata_original, xdt, xscale) modifies lookup table input data to be evenly spaced if it is not quite evenly spaced after quantization. For example, 0:0.005:1 appears evenly spaced, but if it is quantized with scaling 2^-12, it is not evenly spaced. Loss of even spacing can make a significant impact on the efficiency of your implementation. Code generated by Real-Time Workshop software to implement an uneven lookup table is more complicated. In addition, unevenly spaced input data is stored in data memory. If you modify the input data to remain evenly spaced after quantization, Real-Time Workshop software generates simpler code and excludes the input data from memory, thereby saving significant amounts of data memory.</pre>
	The modifications to the lookup table input data are likely to change the numerical behavior of the table. The numerical changes may or may not be trivial, so you should test the model using simulation, rapid prototyping, or other appropriate methods. This function is intended for use with nontunable data. Tunable data is always treated as if it were unevenly spaced. Even if tunable data starts out evenly spaced, it may later be tuned to values that are unevenly spaced.
	It is important to note that the data is judged to be "almost" evenly spaced relative to the scaling slope. Consider the data vector [0 2 5], which has spacing value 2 and 3. A natural first impression is that the data has significantly uneven spacing. However, the difference between the maximum spacing 3 and the minimum spacing 2 equals 1. If the scaling slope is 1 or greater, then a spacing variation of 1 represents a one bit change or less. A spacing variation of one bit or less is judged to be "almost" evenly spaced, and this function will adjust the data to force it to be evenly spaced.
	The required input parameters of this function are as follows.

Input	Value	Example
xdata_original	Input lookup data	0:0.005:1
xdt	Input data type	sfix(16)
xscale	Input scaling	2^-12

See Also fixdt, fixpt_interp1, fixpt_look1_func_approx, sfix, ufix

Purpose	Implement 1-D lookup table
Syntax	<pre>y = fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth)</pre>
Description	fixpt_interp1(xdata,ydata,x,xdt,xscale,ydt,yscale,rndmeth) implements a lookup table to find output(s) y for input(s) x. If x falls between two xdata values, then y is found by interpolating between the corresponding ydata pair. If x falls above the range given by xdata, y is given as the maximum ydata value. If x falls below the range given by xdata, y is given as the minimum ydata value.
	If either the input data type, xdt, or the output data type, ydt, is floating point, then floating-point calculation is used to perform the interpolation. Otherwise, integer-only calculation is used. This calculation handles the input scaling, xscale, and the output scaling, yscale, appropriately, and obeys the designated rounding method, rndmeth.
Examples	<pre>Define xdata as a vector of 33 evenly spaced points between 0 and 8, and ydata as the sinc of xdata. xdata = linspace(0,8,33).'; ydata = sinc(xdata);</pre>
	Now define your input x as a vector of 201 evenly spaced points between -1 and 9.
	x = linspace(-1,9,201).';
	Notice that x includes some values that are both lower and higher than the range of xdata.
	You can now use fixpt_interp1 to interpolate outputs for x.
	<pre>y = fixpt_interp1(xdata,ydata,x,sfix(8),2^-3,sfix(16), 2^-14,'Floor')</pre>

See Also fixpt_look1_func_approx, fixpt_look1_func_plot

Purpose	Optimize for fixed-point function, x values, or breakpoints that are generated for lookup table		
Syntax	<pre>[xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr', xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,nptsmax) [xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr', xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])</pre>		
		,errworst]=fixpt_look1_func_approx('funcstr', t,xscale,ydt,yscale,rndmeth,[],nptsmax)	
		,errworst]=fixpt_look1_func_approx('funcstr', t,xscale,ydt,yscale,rndmeth,errmax,nptsmax,spacing)	
Description	<pre>fixpt_look1_func_approx('funcstr',xmin,xmax,xdt,xscale,ydt, yscale,rndmeth,errmax,nptsmax) optimizes the breakpoints of a lookup table over a specified range. The lookup table satisfies the maximum acceptable error, maximum number of points, and spacing requirements given by the optional parameters. The breakpoints refer to the x values of the lookup table. The command [xdata,ydata,errworst]=fixpt_look1_func_approx('funcstr', xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[])</pre>		
	and ydata, respectively. It also returns the maximum absolute error of the lookup table as a variable errworst.		
	The fixed-point approximation is found by interpolating between the lookup table data points. The required input parameters are as follows.		
	Input	Value	
	'funcstr'	Function of x funcstr is the function for which breakpoints are approximated.	

Input	Value	
xmin	Minimum value of x	
xmax	Maximum value of x	
xdt	Data type of x	
xscale	Scaling for the x values	
ydt	Data type of y	
yscale	Scaling for the y values	
rndmeth	Rounding mode supported by fixed-point Simulink blocks: 'Toward Zero', 'Nearest', 'Floor' (default value), 'Ceiling'	

- xmin and xmax specify the range over which the breakpoints are approximated.
- xdt, xscale, ydt, yscale, and rndmeth follow conventions used by fixed-point Simulink blocks.
- rndmeth has a default value listed in the input table.

In addition to the required parameters, there are three optional inputs, as follows.

Input	Value
errmax	Maximum acceptable error
nptsmax	Maximum number of points
spacing	Spacing: 'even', 'pow2' (even power of 2), 'unrestricted' (default value)

Of these, you must use at least one of the parameters errmax and nptsmax. If you omit one of these, you must use brackets, [], in place of the omitted parameter. The function will then ignore that requirement for the lookup table.

The outputs of the function are as follows.

Output	Value
xdata	The breakpoints for the lookup table
ydata	The ideal function applied to the breakpoints
errworst	The worst case error, which is the maximum absolute error between the ideal function and the approximation given by the lookup table

Criteria For Optimizing the Breakpoints: errmax, nptsmax, and spacing

The approximation produced from the lookup table must satisfy the requirements for the maximum acceptable error, errmax, the maximum number of points, nptsmax, and the spacing, spacing. The requirements are

- The maximum absolute error is less than errmax.
- The number of points required is less than nptsmax.
- The spacing is specified as unrestricted, even or even power of 2.

Modes for errmax and nptsmax

• If both errmax and nptsmax are specified

The returned breakpoints will meet both criteria if possible. The errmax parameter is given priority, and nptsmax is ignored, if both criteria cannot be met with the specified spacing.

• If only errmax is specified

The breakpoints that meet the error criteria, and have the least number of points are returned

• If only nptsmax is specified

The breakpoints that require ${\tt nptsmax}$ or fewer, and give the smallest worst case error are returned

Modes for Spacing

If no spacing is specified, and more than one spacing method meets the requirements given by errmax and nptsmax, power of 2 spacing is chosen over even spacing, which in turn is chosen over uneven spacing. This case occurs when the errmax and nptsmax are both specified, but typically does not occur when only one is specified:

- If unrestricted is entered, the function chooses the spacing that provides the best optimization.
- If even is entered, the function chooses an evenly spaced set of points, including the pow2 spacing.
- If pow2 spacing is entered, the function chooses an even power of 2 spaced set of points.

Note The global optimum may not be found. The worst case error can depend on fixed-point calculations, which are highly nonlinear. Furthermore, the optimization approach is heuristic.

The spacing you choose depends on the parameters you want to optimize: execution speed, function approximation error, ROM usage, and RAM usage:

- The execution speed depends on the bisection search, and the interpolation method.
- The error depends on how accurately the method approximates the nonuniform curvature of the function.
- The ROM usage depends on the amount of data and command ROM used.
- The RAM usage depends on how much global and stack RAM is used.

When the lookup table has even power of two spacing, division is replaced by a bit shift. As a result, the execution speed is faster than for evenly spaced data.

Using the Approximation Function

- Choose a function and use the eval('funcstr'); command to view the function before creating the lookup table.
- **2** Define the remaining inputs.
- **3** Run the fixpt_look1_func_approx function.
- **4** Use the fixpt_look1_func_plot function to plot the function from the selected breakpoints, and to calculate the error and the number of points used.
- **5** Vary the inputs to produce sets of breakpoints that generate functions with varying number of points required and worst case error.
- **6** Compare the number of points required and worst case error from various runs to choose the best set of breakpoints.

Calculating the Output Function

To calculate the function, use the returned breakpoints with

- The eval function
- A function lookup table. The x values are the breakpoints from the fixpt_look1_func_approx function, and the y values can be supplied using the eval function.

See "Tutorial: Producing Lookup Table Data" in *Simulink Fixed Point* User's Guide for a tutorial on using fixpt_look1_func_approx.

The following table summarizes the effect of spacing on the execution speed, error, and memory used.

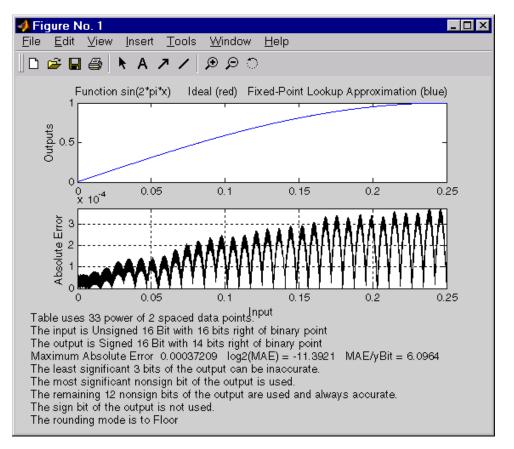
Parameter	Even Power of 2 Spaced Data	Evenly Spaced Data	Unevenly Spaced Data
Execution Speed	The execution speed is the fastest. The position search and interpolation are the same as for evenly spaced data. However, to increase the speed more, the position search is replaced by a bit shift, and the interpolation is replaced with a bit mask.	The execution speed is faster than that for unevenly spaced data because the position search is faster and the interpolation requires a simple division.	The execution speed is the slowest of the different spacings because the position search is slower, and the interpolation requires more operations.
Error	The error can be larger than that for unevenly spaced data because approximating a function with nonuniform curvature requires more points to achieve the same accuracy.	The error can be larger than that for unevenly spaced data because approximating a function with nonuniform curvature requires more points to achieve the same accuracy.	The error can be smaller because approximating a function with nonuniform curvature requires fewer points to achieve the same accuracy.
ROM Usage	Uses less command ROM, but more data ROM.	Uses less command ROM, but more data ROM.	Uses more command ROM, and less data ROM.
RAM Usage	Not significant.	Not significant.	Not significant.

Examples This example produces a lookup table for a sine function. The inputs for the example are as follows:

```
funcstr = 'sin(2*pi*x)';
xmin = 0;
xmax = 0.25;
xdt = ufix(16);
xscale = 2^-16;
ydt = sfix(16);
yscale = 2^-14;
rndmeth = 'Floor';
errmax = 2^-10;
spacing = 'pow2';
```

To create the lookup table, type

```
[xdata, ydata, errWorst]=fixpt_look1_func_approx(funcstr,...
xmin,xmax,xdt,xscale,ydt,yscale,rndmeth,errmax,[],spacing);
```


The brackets [] are a place holder for the nptsmax parameter, which is not used in this example.

You can then plot the ideal function, the approximation, and the errors by typing

```
fixpt_look1_func_plot(xdata,ydata,funcstr,xmin,xmax,xdt,...
xscale,ydt,yscale,rndmeth);
```

The fixpt_look1_func_plot function produces a plot of the fixed-point sine function, using these breakpoints, and a plot of the error between the ideal function and the fixed-point function. The maximum absolute error and the number of points required are listed with the plot. The error drops to zero at a breakpoint, and increases between breakpoints due to the difference in curvature of the ideal function and the line drawn between breakpoints.

The resulting plots are shown.

The lookup table requires 33 points to achieve a maximum absolute error of 2^{-11.3922}.

See Also fixpt_look1_func_plot

Purpose	Plot function with x values generated by fixpt_look1_func_approx function
Syntax	errworst = fixpt_look1_func_plot(xdata,ydata,'funcstr', xmin,xmax,xdt,xscale,ydt,yscale,rndmeth)

Description fixpt_look1_func_plot(xdata,ydata,'funcstr',xmin,xmax,xdt,xscale, ydt,yscale,rndmeth) plots a lookup table approximation function and its error from the ideal function. You can use the fixpt_look1_func_approx function to generate xdata and ydata, the x and y data points for the lookup table. The function returns the maximum absolute error as a variable errworst. The inputs are as follows.

Input	Value
xdata	x values for the lookup table
ydata	y values for the lookup table
'funcstr'	Function of x
xmin	Minimum input of interest
xmax	Maximum input of interest
xdt	Data type of x
xscale	Scaling for the x values
ydt	Data type of y
yscale	Scaling for the y values
rndmeth	Rounding mode supported by the blockset: 'Toward Zero', 'Nearest', 'Floor', 'Ceiling'

The fixpt_look1_func_approx function applies the ideal function to the points in xdata to produce ydata. While this is the easiest way to generate ydata, you are not required to use these values for ydata as input for the fixpt_look1_func_approx function. Choosing different values for ydata can, in some cases, produce a lookup table with a smaller maximum absolute error.

See "Tutorial: Producing Lookup Table Data" in *Simulink Fixed Point User's Guide* for a tutorial on using fixpt_look1_func_plot. For an example of the function, see fixpt_look1_func_approx function.

See Also fixpt_look1_func_approx

fixpt_set_all

Purpose	Set property for every fixed-point block in subsystem
Syntax	<pre>fixpt_set_all(SystemName,fixptPropertyName,fixptPropertyValue)</pre>
Description	fixpt_set_all sets the property fixptPropertyName of every applicable block in the model or subsystem SystemName to the value fixptPropertyValue.
Examples	To set every fixed-point block in a model called Filter_1 to round toward the floor and to saturate upon overflow, type
	fixpt_set_all('Filter_1','RndMeth','Floor') fixpt_set_all('Filter_1','DoSatur','on')

fixptbestexp

Purpose	Determine exponent that gives best precision fixed-point representation of value
Syntax	out = fixptbestexp(RealWorldValue,TotalBits,IsSigned) out = fixptbestexp(RealWorldValue,FixPtDataType)
Description	<pre>out = fixptbestexp(RealWorldValue,TotalBits,IsSigned) determines the exponent that gives the best precision for the fixed-point representation of the real-world value specified by RealWorldValue. You specify the number of bits for the fixed-point number with TotalBits, and you specify whether the fixed-point number is signed with IsSigned. If IsSigned is 1, the number is signed. If IsSigned is 0, the number is not signed. The exponent is returned to out. out = fixptbestexp(RealWorldValue,FixPtDataType) determines</pre>
	the exponent that gives the best precision based on the data type specified by FixPtDataType.
Examples	The following command returns the exponent that gives the best precision for the real-world value 4/3 using a signed, 16-bit number:
	<pre>out = fixptbestexp(4/3,16,1)</pre>
	out = -14
	Alternatively, you can specify the fixed-point data type:
	<pre>out = fixptbestexp(4/3,sfix(16))</pre>
	out = -14
	This value means that the maximum precision representation of 4/3 is obtained by placing 14 bits to the right of the binary point:
	01 010101010101

01.0101010101010101

You would specify the precision of this representation in fixed-point blocks by setting the scaling to 2^{-14} or $2^{fixptbestexp(4/3,16,1)}$.

See Also fixptbestprec

fixptbestprec

Purpose	Determine maximum precision available for fixed-point representation of value
Syntax	<pre>out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) out = fixptbestprec(RealWorldValue,FixPtDataType)</pre>
Description	<pre>out = fixptbestprec(RealWorldValue,TotalBits,IsSigned) determines the maximum precision for the fixed-point representation of the real-world value specified by RealWorldValue. You specify the number of bits for the fixed- point number with TotalBits, and you specify whether the fixed-point number is signed with IsSigned. If IsSigned is 1, the number is signed. If IsSigned is 0, the number is not signed. The maximum precision is returned to out.</pre>
	out = fixptbestprec(RealWorldValue,FixPtDataType) determines the maximum precision based on the data type specified by FixPtDataType.
Examples	Example 1
	The following command returns the maximum precision available for the real-world value 4/3 using a signed, 8-bit number:
	out = fixptbestprec(4/3,8,1) out = 0.015625
	Alternatively, you can specify the fixed-point data type:
	<pre>out = fixptbestprec(4/3,sfix(8)) out = 0.015625</pre>

This value means that the maximum precision available for 4/3 is obtained by placing six bits to the right of the binary point since 2^{-6} equals 0.015625:

01.010101

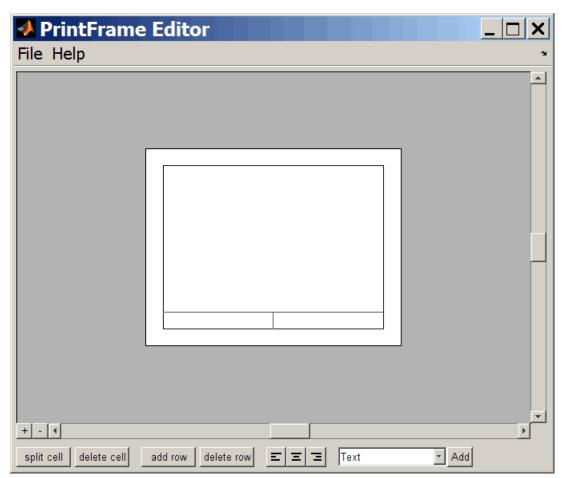
Example 2

You can use the maximum precision as the scaling in fixed-point blocks. This enables you to use fixptbestprec to perform a type of autoscaling if you would like to designate a known range of your simulation. For example, if your known range is -13 to 22, and you are using a safety margin of 30%:

```
knownMax = 22;
knownMin = -13;
localSafetyMargin = 30;
slope = max( fixptbestprec( (1+localSafetyMargin/100)* ...
[knownMax,knownMin], sfix(16) ) );
```

The variable slope can then be used in the expression that you specify for the **Output data type** parameter in a block mask. Be sure to select the **Lock output scaling against changes by the autoscaling tool** parameter in the same block to prevent the scaling from being overridden by the Fixed-Point Tool. If you know the range, you can use this technique in place of relying on a model simulation to provide the range to the autoscaling tool, as described in autofixexp in the Simulink Fixed Point documentation.

See Also fixptbestexp


float

Purpose	Create MATLAB structure describing floating-point data type
Syntax	a = float('single') a = float('double') a = float(TotalBits, ExpBits)
Description	float('single') returns a MATLAB structure that describes the data type of an IEEE single (32 total bits, 8 exponent bits).
	float('double') returns a MATLAB structure that describes the data type of an IEEE double (64 total bits, 11 exponent bits).
	float(TotalBits, ExpBits) returns a MATLAB structure that describes a nonstandard floating-point data type that mimics the IEEE style. That is, the numbers are normalized with a hidden leading one for all exponents except the smallest possible exponent. However, the largest possible exponent might not be treated as a flag for Infs and NaNs.
	float is automatically called when a floating-point number is specified in a block dialog box.
Examples	<pre>Define a nonstandard, IEEE style, floating-point data type with 31 total bits (excluding the hidden leading one) and 9 exponent bits: a = float(31,9) a = Class: 'FLOAT' MantBits: 21</pre>
	ExpBits: 9
See Also	fixdt, sfix, sfrac, sint, ufix, ufrac, uint

Purpose	Edit print frames for Simulink and Stateflow block diagrams
Syntax	frameedit frameedit filename
Description	frameedit starts the PrintFrame Editor, a graphical user interface you use to create borders for Simulink and Stateflow block diagrams. With no argument, frameedit opens the PrintFrame Editor window with a new file.
	frameedit filename opens the PrintFrame Editor window with the specified filename, where filename is a figure file (.fig) previously created and saved using frameedit.

frameedit

Remarks This illustrates the main features of the PrintFrame Editor.

Closing the PrintFrame Editor

To close the **PrintFrame Editor** window, click the close box in the upper right corner, or select **Close** from the **File** menu.

Printing Simulink Block Diagrams with Print Frames

Select **Print** from the Simulink **File** menu. Check the **Frame** box and supply the filename for the print frame you want to use. Click **OK** in the **Print** dialog box.

Getting Help for the PrintFrame Editor

For further instructions on using the PrintFrame Editor, select **PrintFrame Editor Help** from the **Help** menu in the PrintFrame Editor.

fxptdlg

Purpose In	woke Fixed-Point Tool
------------	-----------------------

Syntax fxptdlg('modelname')

Description fxptdlg('modelname') launches the Fixed-Point Tool for the Simulink model specified by modelname. You can also access this tool by the following methods:

- From the Simulink Tools menu, select Fixed-Point > Fixed-Point Tool.
- From a subsystem context (right-click) menu, select **Fixed-Point > Fixed-Point Tool**.

In conjunction with Simulink Fixed Point software, the Fixed-Point Tool provides convenient access to:

- Model and subsystem parameters that control the signal logging, logging mode, and data type override, namely, MinMaxOverflowArchiveMode, MinMaxOverflowLogging, and DataTypeOverride (see "Model Parameters" on page 8-2)
- Plotting capabilities that enable you to plot data that resides in the MATLAB workspace, namely, simulation results associated with Scope, To Workspace, and root-level Outport blocks, in addition to logged signal data (see "Logging Signals" in the *Simulink User's Guide*)
- An interactive autoscaling feature that proposes fixed-point scaling for appropriately configured objects in your model, and then allows you to selectively accept and apply the scaling proposals

You can launch the Fixed-Point Tool for any system or subsystem, and the tool controls the object selected in its **Model Hierarchy** pane. If Simulink Fixed Point software is installed, the Fixed-Point Tool **Contents** pane displays the name, data type, design minimum and maximum values, minimum and maximum simulation values, and scaling of each model object that logs fixed-point data. Additionally, if a signal saturates or overflows, the tool displays the number of times saturation or overflow occurred. You can display an object's dialog box by right-clicking the appropriate entry in the **Contents** pane and selecting **Properties**.

Note The Fixed-Point Tool works only for models that simulate in Normal mode. The tool does not work when you simulate your model in Accelerator or Rapid Accelerator mode (see "Accelerating Models" in *Simulink User's Guide*).

Most of the functionality in the Fixed-Point Tool is for use with the Simulink Fixed Point software. However, even if you do not have Simulink Fixed Point software, you can use data type override to simulate a model that specifies fixed-point data types. In this mode, the Simulink software replaces fixed-point data types with floating-point data types when simulating the model. Data type override mode allows you to share fixed-point models with people in your company who do not have Simulink Fixed Point software.

To simulate a model without using Simulink Fixed Point:

1 From the Simulink Tools menu, select Fixed-Point > Fixed-Point Tool.

The Fixed-Point Tool appears.

- 2 Set the Logging mode parameter to Force off.
- **3** Set the **Data type override** parameter to True doubles or True singles.

Note If a parameter in your model specifies a fi object, you can prevent the checkout of a Fixed-Point Toolbox license by setting the fipref DataTypeOverride property to TrueDoubles. See the Fixed-Point Toolbox documentation for more information.

Parameters and Dialog Box

Fixed-Point Tool			
File Autoscaling Results Simulat	tion View Tools Help		
🛛 z ^{FL} z ^{FL} 🚺 🔀 🕒 🗉 🖲) 🔤 🔝 💌 🗍 Show : All results	3	v
Model Hierarchy	Contents of: fxpdemo_feedback (mmo)	Current System: fxpdemo_feedback
🖃 💕 fxpdemo_feedback (mmo)	Na 🛆 Run SimDT	SpecifiedDT	- Autoscaling
····· 한국Controller		fixdt(1.8.4)	
	Anal Active	IIXUU(1,0,7)	2 ^{fL} Propose fraction lengths
	Con Active fixdt(1,32,12)	Inherit: Inherit v	2 Apply accepted fraction lengths
	[1] Con Active fixdt(1,32,12)	fixdt(1,32,12)	
	Con Active fixdt(1,32,12)		Proposal options
	Con Active fixdt(1,32,12)		✓ Use simulation min/max if design min/max is not available
	Con Active fixdt(1,32,12)		Percent safety margin for simulation min/max: 0
	Con Active fixdt(1,16,5)		
		Inherit: auto	Percent safety margin for design min/max: 0
	Con Active fixdt(1,32,12)		
	Con Active fixdt(1,32,12)		Results
	Con Active fixdt(1,32,12)	fixdt(1,32,12)	
	Con Active fixdt(1,16,14)	fudt(1_16_14)	Show autoscale information for selected result
		double	Exchange Active and Reference results
Customize Contents	II Ref., Active	GOODIE	
Current Properties		Inherit: Inherit v	-Simulation settings
+- Selection Properties	-	Inherit: Same as	omencion secondo
			Run simulation and store Active results
			Logging mode:
			Minimums, maximums and overflows
			Data type override:
			Use local settings
			Overwrite or merge results:
			Overwrite
			Revert Help Apply
		Þ	

The Fixed-Point Tool includes the following components:

- Model Hierarchy pane (see "Model Hierarchy Pane" on page 4-66)
- **Contents** pane (see "Contents Pane" on page 4-67)

- **Dialog** pane (see "Dialog Pane" on page 4-74)
- Main toolbar (see "Main Toolbar" on page 4-88)

Model Hierarchy Pane

The **Model Hierarchy** pane displays a tree-structured view of the Simulink model hierarchy. The first node in the pane represents a Simulink model. Expanding the root node displays subnodes that represent the model's subsystems, Embedded MATLAB Function blocks, Stateflow charts, and referenced models.

File Autoscaling Results Simula
🛛 2 ^{FL} 25 🕕 🔀 🕪 🕕 🤅
Model Hierarchy
🗄 🐺 fxpdemo_feedback (mmo)
Controller

The Fixed-Point Tool's **Contents** pane displays elements that comprise the object selected in the **Model Hierarchy** pane. The **Dialog** pane provides parameters for specifying the selected object's data type override and logging mode. Objects that control the **Logging mode** parameter display a red flag on their icons, while those that control the **Data type override** parameter display a green flag. The **Model Hierarchy** pane indicates the value of these parameters by displaying the following abbreviations next to the object name:

Abbreviation	Parameter Value		
Logging mode			
mmo	Minimums, maximums and overflows		
0	Overflows only		
fo	Force off		
Data type override			
scl	Scaled doubles		
dbl	True doubles		
sgl	True singles		
fo	Force off		

See "Dialog Pane" on page 4-74 for more information about these parameters.

Contents Pane

The **Contents** pane displays a tabular view of objects that log fixed-point data in the system or subsystem selected in the **Model Hierarchy** pane. The table rows correspond to model objects, such as blocks, block parameters, and Stateflow data. The table columns correspond to attributes of those objects, such as the data type, design minimum and maximum values, and simulation minimum and maximum values.

Name 🛆	Run	SimDT	SpecifiedDT F
🔁 A2D	Active	fixdt(1,8,4)	fixdt(1,8,4)
📲 Analog Plant	Active		
🛐 Controller/Combine Terms	Active		fixdt(1,32,12)
🔄 Controller/Combine Terms : Accu	Active	fixdt(1,32,12)	Inherit: Inherit via internal rule
🔄 Controller/Combine Terms : Output	Active	fixdt(1,32,12)	fixdt(1,32,12)
🔁 Controller/Denominator Terms : A	Active	fixdt(1,32,12)	fixdt(1,32,12)
🔁 Controller/Denominator Terms : 0	Active	fixdt(1,32,12)	fixdt(1,32,12)
🔁 Controller/Denominator Terms : P	Active	fixdt(1,32,12)	fixdt(1,32,12)
🛐 Controller/Down Cast	Active	fixdt(1,16,5)	fixdt(1,16,5)
🔁 Controller/In1	Active		Inherit: auto
🔁 Controller/Numerator Terms : Acc	Active	fixdt(1,32,12)	fixdt(1,32,12)
	Active	fixdt(1,32,12)	fixdt(1,32,12)
			fixdt(1,32,12)

Note The **Contents** pane displays information only after you simulate a system or propose fraction lengths.

The **Contents** pane displays columns that correspond to the following properties and controls:

Column Label	Description
Name	Identifies path and name of block.
Run	Indicates whether the Fixed-Point Tool stores results as an active or a reference run.
SimDT	Data type the block uses during simulation.
SpecifiedDT	Data type the block specifies in its parameter dialog box, for example, the value of its Output data type parameter.

Column Label	Description
ProposedDT	Data type that the Fixed-Point Tool proposes.
Accept	Check box that enables you to selectively accept the Fixed-Point Tool's scaling proposal.
DesignMin	Minimum value the block specifies in its parameter dialog box, for example, the value of its Output minimum parameter.
SimMin	Minimum value that occurs during simulation.
ProposedMin	Minimum value that results from the data type the Fixed-Point Tool proposes.
DesignMax	Maximum value the block specifies in its parameter dialog box, for example, the value of its Output maximum parameter.
SimMax	Maximum value that occurs during simulation.
ProposedMax	Maximum value that results from the data type the Fixed-Point Tool proposes.
OverflowWraps	Number of overflows that wrap during simulation.
Saturations	Number of overflows that saturate during simulation.
DTGroup	Identification tag associated with objects that share data types.
DivByZero	Number of divide-by-zero instances that occur during simulation.
LogSignal	Check box that allows you to enable or disable signal logging for an object.

fxptdlg

Column Label	Description
InitValueMin	Minimum initial value for a signal or parameter. Some model objects provide parameters that allow you to specify the initial values of their signals. For example, the Constant block includes a Constant value that initializes the block output signal.
	Note The Fixed-Point Tool uses this parameter when it proposes scaling.
InitValueMax	Maximum initial value for a signal or parameter. Some model objects provide parameters that allow you to specify the initial values of their signals. For example, the Constant block includes a Constant value that initializes the block output signal.
	Note The Fixed-Point Tool uses this parameter when it proposes scaling.
ModelRequiredMin	Minimum value of a parameter used during simulation. For example, the Lookup Table (n-D) uses the Breakpoints and Table data parameters to perform its lookup operation and generate output. In this example, the block uses more than one parameter so the Fixed-Point Tool sets ModelRequiredMin to the minimum of the minimum values of all these parameters.

Column Label	Description
	Note The Fixed-Point Tool uses this parameter when it proposes scaling.
ModelRequiredMax	Maximum value of a parameter used during simulation. For example, the Lookup Table (n-D) uses the Breakpoints and Table data parameters to perform its lookup operation and generate output. In this example, the block uses more than one parameter so the Fixed-Point Tool sets ModelRequiredMax to the maximum of the maximum values of all these parameters. Note The Fixed-Point Tool uses this parameter when it proposes scaling.

The following topics describe ways in which you can customize the **Contents** pane:

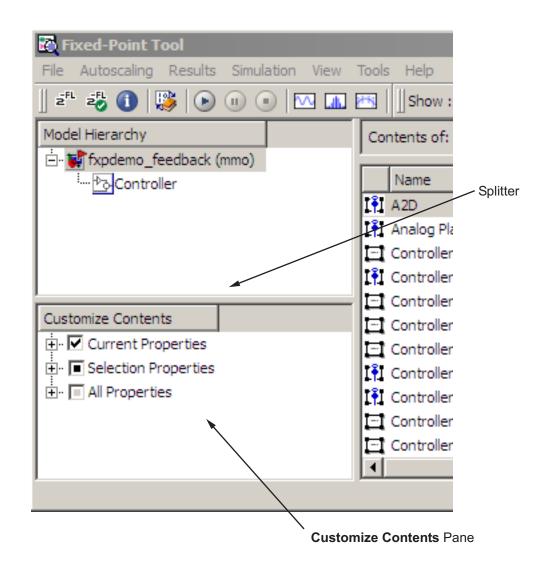
- "Changing Column Order and Width"
- "Sorting Rows by Column"
- "Hiding Columns"

Changing Column Order and Width

You can alter the order and width of columns that appear in the **Contents** pane as follows:

• To move a column, click and drag the head of a column to a new location among the column headers.

• To make a column wider or narrower, click and drag the right edge of a column header. If you double-click the right edge of a column header, the column width changes to fit its contents.


Sorting Rows by Column

By default, the **Contents** pane displays its contents in ascending order of the **Name** column. You can alter the order in which the **Contents** pane displays its rows as follows:

- To sort all the rows in ascending order of another column, click the head of that column.
- To change the order from ascending to descending, simply click again on the head of that column.

Hiding Columns

You can select the properties that the **Contents** pane displays or hides by using the **Customize Contents** pane. When visible, the pane appears in the lower-left corner of the Fixed-Point Tool window.

• To access the **Customize Contents** pane, from the Fixed-Point Tool **View** menu, select **Customize Contents**. A splitter divides the **Customize Contents** pane from the **Model Hierarchy** pane

fxptdlg

above it. Drag the splitter up or down to adjust the relative size of the two panes.

- To hide properties from the **Contents** pane, in the **Customize Contents** pane, expand the Current Properties node and uncheck the properties that you do not want to appear.
- To display additional properties in the **Contents** pane, in the **Customize Contents** pane, expand the All Properties node and select the desired properties.

Dialog Pane

Use the **Dialog** pane to view and change properties associated with the object selected in the **Model Hierarchy** pane.

Current System: fxpdemo_feedback
Autoscaling
z ^{FL} Propose fraction lengths
20 Apply accepted fraction lengths
Proposal options
☑ Use simulation min/max if design min/max is not available
Percent safety margin for simulation min/max: 0
Percent safety margin for design min/max: 0
Results
Show autoscale information for selected result
Exchange Active and Reference results
Simulation settings
Run simulation and store Active results
Logging mode:
Minimums, maximums and overflows
Data type override:
Use local settings
Overwrite or merge results:
Overwrite

Tips

From the Fixed-Point Tool **View** menu, you can select **Dialog View** to hide the **Dialog** pane, making more room for displaying results.

Propose fraction lengths

Collect range data and proposes fraction lengths for model objects.

Action

Use this button to perform the first phase of the autoscaling procedure, in which the Fixed-Point Tool collects range data for model objects—either from design minimum and maximum values the objects specify explicitly, or from logged minimum and maximum values that occur during simulation. Based on these values, the tool proposes fraction lengths for blocks whose:

- Lock output scaling against changes by the autoscaling tool parameter is cleared.
- Data type specifies a generalized fixed-point number.

The Fixed-Point Tool lists its scaling proposals in the **Contents** pane. The tool alerts you to potential scaling issues for each object in the list by displaying a green, yellow, or red icon, as shown here:

- The proposed scaling poses no issues for this object.
- The proposed scaling poses potential issues for this object. Open the Autoscale Information dialog box to review these issues.
- The proposed scaling will introduce data type errors if applied to this object. Open the Autoscale Information dialog box for details about how to resolve these issues.

Command-Line Alternative

Apply accepted fraction lengths

Apply scaling proposals.

Action

Use this button to perform the second phase of the autoscaling procedure, in which the Fixed-Point Tool applies the scaling proposals to the objects whose **Accept** check box in the **Contents** pane is selected.

Command-Line Alternative

Use simulation min/max if design min/max are not available

Propose fraction lengths based on simulation minimum and maximum values if no design minimum and maximum values are available.

Settings

Default: On

🔽 On

Proposes fraction lengths based on simulation minimum and maximum values, but only for blocks that do not specify design minimum or maximum values using, for example, **Output minimum** and **Output maximum** parameters.

C Off

Ignores simulation minimum and maximum values when proposing fraction lengths.

Dependency

This parameter enables **Percent safety margin for simulation min/max**.

Command-Line Alternative

Percent safety margin for simulation min/max

Specify multiplication safety factor for simulation minimum and maximum values.

Settings

Default: 0

The simulation minimum and maximum values are multiplied by the factor designated by this parameter, allowing you to specify a range different from that obtained from the simulation run. For example, a value of 55 specifies that a range *at least* 55 percent larger is desired. A value of -15 specifies that a range *up to* 15 percent smaller is acceptable.

Dependencies

This parameter is enabled by Use simulation min/max if design min/max are not available.

Before performing autoscaling, you must either specify design minimum and maximum values or run a simulation to collect simulation minimum and maximum data. To learn how to do this, see "Tutorial: Feedback Controller" in the Simulink Fixed Point documentation.

Command-Line Alternative

Percent safety margin for design min/max

Specify multiplication safety factor for design minimum and maximum values.

Settings

Default: 0

The design minimum and maximum values are multiplied by the factor designated by this parameter. For example, a value of 55 specifies that a range *at least* 55 percent larger is desired. A value of -15 specifies that a range *up to* 15 percent smaller is acceptable.

Dependency

Before performing autoscaling, you must either specify design minimum and maximum values or run a simulation to collect simulation minimum and maximum data. To learn how to do this, see "Tutorial: Feedback Controller" in the Simulink Fixed Point documentation.

Command-Line Alternative

Show autoscale information for selected result

Display the Autoscale Information dialog box for object selected in the **Contents** pane.

Action

Use this option to:

- Determine why a fraction length cannot be proposed, for example, fraction lengths cannot be proposed for Library Links or Mask Subsystems.
- Provide access to showing blocks with shared data types.
- Obtain more information on the proposal for the selected result.

Command-Line Alternative

Exchange Active and Reference results

Swap results between active and reference run.

Action

Use this button to swap the results that the Fixed-Point Tool stores as an active run with those that it stores as a reference run.

Command-Line Alternative

Run simulation and store Active results

Simulate model and store results.

Action

Simulates the model and stores the results as active run, denoted by the Active label in the **Run** column of the **Contents** pane.

Tips

Using the **Run simulation and store Active results** button is the same as simulating the model using the **Start simulation** button in the Model Editor.

Command-Line Alternative

Command: sim

Logging mode

Control which objects log data during simulation.

Settings

Default: Use local settings

Use local settings

Logs data according to the value of this parameter set for each subsystem. Otherwise, settings for parent systems always override those of child systems.

Minimums, maximums and overflows

Logs minimum value, maximum value, and overflow data for all blocks in the current system or subsystem during simulation.

Overflows only

Logs only overflow data for all blocks in the current system or subsystem.

Force off

Does not log data for any block in the current system or subsystem. Use this selection to work with models containing fixed-point enabled blocks if you do not have a Simulink Fixed Point license.

Dependencies

The value of this parameter for parent systems controls logging for all child subsystems, unless Use local settings is selected.

Command-Line Alternative

```
Parameter: 'MinMaxOverflowLogging'
Type: string
Value: 'UseLocalSettings' | 'MinMaxAndOverflow' |
'OverflowOnly' | 'ForceOff'
Default: 'UseLocalSettings'
```

Data type override

Control data type override of objects that allow you to specify data types in their dialog boxes.

Settings

Default: Use local settings

The value of this parameter for parent systems controls data type override for all child subsystems, unless Use local settings is selected.

Use local settings

Overrides data types according to the setting of this parameter for each subsystem. Otherwise, settings for parent systems override those of child systems.

Scaled doubles

Overrides the output data type of all blocks in the current system or subsystem with doubles; however, the scaling and bias specified in the mask of each block is maintained.

True doubles

Overrides the output data type of all blocks in the current system or subsystem with double-precision. The overridden values have no scaling or bias.

True singles

Overrides the output data type of all blocks in the current system or subsystem with single-precision. The overridden values have no scaling or bias.

Force off

No data type override is performed on any block in the current system or subsystem.

Tips

Set this parameter to True doubles or True singles to work with models containing fixed-point enabled blocks if you do not have a Simulink Fixed Point license.

Dependencies

- The following Simulink blocks allow you to set data types in their block masks, but ignore the **Data type override** setting:
 - Probe
 - Trigger
 - Width
- The Embedded MATLAB Function block ignores the **Data type override** parameter if it specifies **Scaled** doubles.

Command-Line Alternative

```
Parameter: 'DataTypeOverride'
Type: string
Value: 'UseLocalSettings' | 'ScaledDoubles' | 'TrueDoubles'
| 'TrueSingles' | 'ForceOff'
Default: 'UseLocalSettings'
```

Overwrite or merge results

Control how simulation results are stored.

Settings

Default: Overwrite

Overwrite

Clears all existing simulation results from the **Contents** pane before displaying new simulation results.

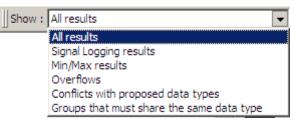
Merge

Merges new simulation results with existing simulation results in the **Contents** pane.

Command-Line Alternative

Parameter: 'MinMaxOverflowArchiveMode' Type: string Value: 'Overwrite' | 'Merge' Default: 'Overwrite'

Main Toolbar


The Fixed-Point Tool's main toolbar appears near the top of the Fixed-Point Tool window under the Fixed-Point Tool's menu.

Tixed-Point Tool	
File Autoscaling Results Simulation View Tools Help	
📗 z ^{FL} z 🖏 🕦 🛞 🕡 💿 🔤 🏧 🔝 🔛 Show : All results	•
Model Hierarchy Contents of: fxpdemo_feedback (mmo)	Current Syste
in the second se	Autoscal

The toolbar contains the following buttons that execute commonly used Fixed-Point Tool commands:

Button	Usage
zFL	Propose fraction lengths.
2 S	Apply accepted fraction lengths.
	Display autoscale information.
	Exchange active results with reference results.
	Simulate a model and store results as active run.
	Pause a simulation.
	Stop a simulation.
\sim	Create a time series plot.
	Create a histogram plot.
<u>k</u>	Create a time series difference (A-R) plot.

The toolbar also contains the results filter:

The results filter specifies the type of results to display in the **Contents** pane. The **Contents** pane displays information only after you simulate a system or propose fraction lengths. If there are no results that satisfy a particular filter option, the list will be blank.

Options include:

• All results

Displays all results for the selected tree node.

Controller	, Name	Run	SimDT	SpecifiedDT	ProposedDT Accept	t DesignMin SimMin	ProposedMin DesignMax SimMax	ProposedMax Overflo
3	Controller/Combine Terms : Output	Active	double	fixdt(1,32,12)		-2.4135	4.327	
	Controller/Up Cast	Active	double	fixdt(1,16,14)		-2	4	
	Controller/Combine Terms : Accumulator	Active	double	Inherit: Inh		-6.4754	4.327	
	Controller/Denominator Terms : Accumulator	Active	double	fixdt(1,32,12)		-8.5166	5.3965	
	Controller/Denominator Terms : Output	Active	double	fixdt(1,32,12)		-6.4754	3.4877	
	Controller/Denominator Terms : Product output	Active	double	fixdt(1,32,12)		-8.5166	5.3965	
	Controller/Numerator Terms : Accumulator	Active	double	fixdt(1,32,12)		-5.6773	5.7005	
	Controller/Numerator Terms : Output	Active	double	fixdt(1,32,12)		-3.3674	3.544	
	Controller/Numerator Terms : Product output	Active	double	fixdt(1,32,12)		-5.6773	5.7005	
	D2A	Active	double	double		-2.4135	4.327	
	Sum1: Accumulator	Active	double	Inherit: Inh		-2.171	4	
	A2D	Active	double	fixdt(1,8,4)		-2	4	
	Controller/In1	Active		Inherit: auto				
	Controller/Down Cast	Active	double	fixdt(1,16,5)		-2.4135	4.327	
	Controller/Prev Out	Active						
	Analog Plant	Active						
	Reference	Active						
e Contents	E Sum1: Output	Active	double	Inherit: Sam		-2	4	

• Signal Logging results

For the selected tree node, displays blocks whose output ports have logged signal data. The Fixed-Point tool marks these blocks with the logged signal icon

odel Hierarchy - 💕 fxpdemo_feedback (mmo)	Con	tents of: fxpdemo_feedback (mmo)											
		Name 🛆	Run	SimDT	SpecifiedDT	ProposedDT	Accept	DesignMin SimMin	ProposedMin	DesignMax	SimMax	ProposedMax	OverflowWraps	Saturations
_	I	A2D	Active	fixdt(1,8,4)	fixdt(1,8,4)		Γ	-2			5.375			
	III	Analog Plant	Active											
	IÎI	Controller/Combine Terms : Output	Active	fixdt(1,32,12)	fixdt(1,32,12)		Γ	-2.4392			0.66138			
	IŤI	Controller/Down Cast	Active	fixdt(1,16,5)	fixdt(1,16,5)			-2.4688			0.65625			
	IÎ I	Controller/In1	Active		Inherit: auto									
	IÎ I	Controller/Prev Out	Active											
	IŤI	Controller/Up Cast	Active	fixdt(1,16,14)	fixdt(1,16,14)			-2			1.9999			23
	IÎI	Reference	Active											

Note You can plot simulation results associated with logged signal data. For more information, see "Plot Interface" on page 4-93.

• Min/Max results

For the selected tree node, displays blocks that record design Min/Max, simulation Min/Max, and overflow data.

Prerequisites: Logging mode should not be set to Force Off.

fxpdemo_feedback (mmo)		Name 🛆	Run	SimDT	SpecifiedDT	ProposedDT	Accept	DesignMin SimMin	ProposedMin	DesignMax Si	imMax Pr	onosedMax	OverflowWraps	Satura
	TŶI	A2D			fixdt(1,8,4)		—	-2			375			
		Controller/Combine Terms : Accum					-	-2.4392		3.	5059			
		Controller/Combine Terms : Output					—	-2.4392		0.	66138			
		Controller/Denominator Terms : A	Active	fixdt(1,32,12)	fixdt(1,32,12)			-3.0791		4.	8591			
		Controller/Denominator Terms : O	Active	fixdt(1,32,12)	fixdt(1,32,12)			-0.70093		3.	5059			
		Controller/Denominator Terms : Pr	Active	fixdt(1,32,12)	fixdt(1,32,12)			-3.0791		4.	8591			
	IŤI	Controller/Down Cast	Active	fixdt(1,16,5)	fixdt(1,16,5)			-2.4688		0.	65625			
		Controller/Numerator Terms : Acc	Active	fixdt(1,32,12)	fixdt(1,32,12)			-2.8503		2.	8501			
		Controller/Numerator Terms : Output						-1.772		1.	6936			
		Controller/Numerator Terms : Pro						-2.8503		2.	8501			
		Controller/Up Cast		fixdt(1,16,14)				-2		1.	.9999			23
		D2A			double			-2.4688			65625			
		Sum1 : Accumulator	Active		Inherit: Inheri			-3.8431			.3839			
		Sum1: Output	Active	double	Inherit: Same			-2		5.	.3839			

• Overflows

For the selected tree node, displays blocks that have non-zero overflows recorded. If a block has its **Saturate on integer overflow** option selected, overflow information appears in the **Saturations** column, otherwise it appears in the **OverflowWraps** column.

] z ^{r.} z ^{r.} 🚺 🔀 🕟 🕕 🤅) [🔨 🔝 🖭 🗍 Show : Overfic	ws			•										
Model Hierarchy	Co	ntents of: fxpdemo_feedback (mmo)													
i 🗞 Controller		Name			SimDT	SpecifiedDT	ProposedDT	Accept	DesignMin	SimMin	ProposedMin	DesignMax	SimMax	ProposedMax	OverflowWraps	Saturations
	IţI	Controller/Up Cast		Active	fixdt(1,16,14)	fixdt(1,16,14)				-2			1.9999			23
	-															

• Conflicts with proposed data types

For the selected tree node, displays results that have potential scaling issues.

Prerequisites: This information is available only after you propose fraction lengths.

The Fixed-Point Tool marks these results with a yellow or red icon, as shown here:

- The proposed scaling poses potential issues for this object. Open the Autoscale Information dialog box to review these issues.
- The proposed scaling will introduce data type errors if applied to this object. Open the Autoscale Information dialog box for details about how to resolve these issues.

🛛 z ^{FL} z ^{FL} 🚯 🚺 🔀 🖲		🗠 🚛 😁] Sho	ow : Cor	nflicts with prop	oosed data types		•							
Model Hierarchy	Cor	ntents of: test	_alerts (i	nmo-dbl))										
		Name 🛆	Run	SimDT	SpecifiedDT	ProposedDT	Accept	DesignMin	SimMin	ProposedMin	DesignMax	SimMax	ProposedMax	OverflowWraps	Saturations
	13	Add : Output	Active	double	fixdt(0,16,5)	fixdt(0, 16, 13)	•	-5	-1	0	5	-1	7.9999		
	1	Add1: Output	Active	double	fixdt(1,16,10)	fixdt(1, 16, 12)	~	-5	6	-8	5	6	7,9998		
the second s							-								

• Groups that must share the same data type

For the selected tree node, displays blocks that must share the same data type because of data type propagation rules.

Prerequisites: This information is available only after you propose fraction lengths.

The Fixed-Point Tool allocates an identification tag to blocks that must share the same data type. This identification tag is displayed in the **DTGroup** column as follows:

• If the selected tree node is the model root

All results for the model are listed. The **DTGroup** column is sorted by default so that you can easily view all blocks in a group.

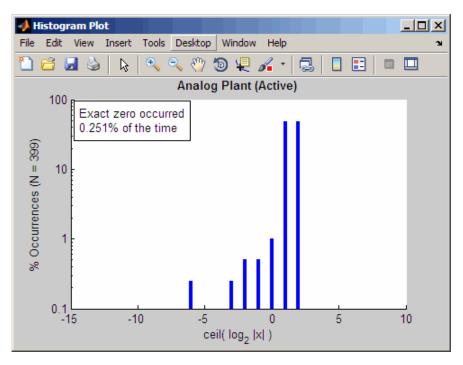
del Hierarchy Cfxpdemo_feedback* (mmo-dbl)	Contents of: fxpdemo_fe	edback* (mmo	o-dbl)											
Controller	Name	DTGroup 🛆	Run	SimDT	SpecifiedDT	ProposedDT	Accept De	esignMin SimMin	ProposedMin	DesignMax	SimMax	ProposedMax	OverflowWraps	Saturation
	18 A2D	G	Active	double	fixdt(1,8,4)	n/a	Г	-2			4			
	18 Controller/In1	G	Active		Inherit: auto	n/a								
	🚺 Controller/Down Cast	G2	Active	double	fixdt(1,16,5)	fixdt(1,16,	V	-2.4135	-8		4.327	7.9998		
	🚯 Controller/Prev Out	G2	Active			n/a								
	🚯 Analog Plant	G3	Active			n/a								
	Reference	G3	Active			n/a								
	Sum1 : Output	G3	Active	double	Inherit: Sam	n/a		-2			4			

• If the selected tree node is a subsystem

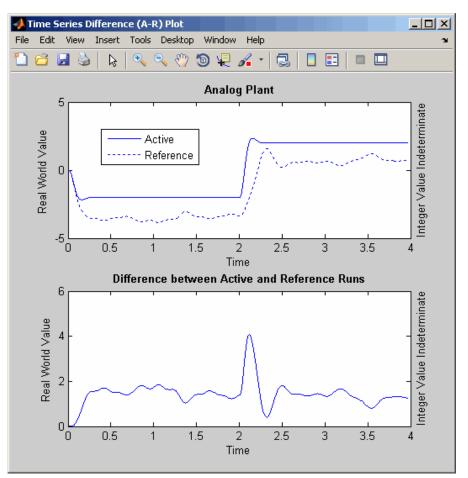
The identification tags have a suffix that indicates the total number of results in each group. For example, G2(2) means group G2 has 2 members. This information enables you to see how many members of a group belong to the selected subsystem and which groups share data types across subsystem boundaries.

Model Hierarchy	Contents of: Contro	ller													
Controler	Name	DTGroup /	Run	SimDT	SpecifiedDT	ProposedDT	Accept	DesignMin	SimMin	ProposedMin	DesignMax	SimMax	ProposedMax	OverflowWraps	Saturation
	🚺 Ini	G (2)	Active		Inherit: auto	n/a									
	🚯 Down Cast	G2 (2)	Active	double	fixdt(1,16,5)	fixdt(1,16,	V		-2.4135	-8		4.327	7.9998		
	Prev Out	G2 (2)	Active			n/a									

PlotThe Fixed-Point Tool provides plotting capabilities that enable you to
plot signals for graphical analysis. The tool can access signal data that
resides in the MATLAB workspace, allowing you to plot simulation
results associated with


- Scope blocks whose Save data to workspace parameter is selected
- To Workspace blocks
- Root-level Outport blocks, when the **Output** check box on the **Data Import/Export** pane of the Configuration Parameters dialog box is selected
- Logged signal data (see "Logging Signals" in the Simulink User's Guide)

Tip The **Contents** pane of the Fixed-Point Tool displays an antenna icon II next to items that you can plot.


You can create the following types of plots using the Fixed-Point Tool's interface:

- 📣 Time Series Plot Edit View Insert Tools Desktop Window Help File э 🔊 🧏 🖌 -🛅 🗃 🛃 🎍 \mathbf{b} 🔍 🔍 🥙 3 Analog Plant (Active) 2 1 Real World Value 0 -1 -2 -3 -4 L 0 1.5 2.5 0.5 2 3 3.5 1 4 Time
- Time series plot Plots data as a function of time.

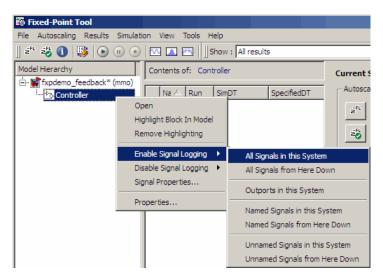
• Histogram plot — Plots the number of data values that occur at each bit.

• Time series difference (A-R) plot — Plots both the active and reference versions of a signal on the upper axes, and plots the difference between the active and reference versions of that signal on the lower axes.

Signal Logging Options

The Fixed-Point Tool provides options that allow you to control signal logging in a model (see "Logging Signals" in the *Simulink User's Guide*). Using these options, you can enable or disable logging for multiple signals simultaneously, based on signal attributes such as:

- The location of signals in a model hierarchy
- Whether or not signals have names


To access the signal logging options in the Fixed-Point Tool:

1 In the **Model Hierarchy** pane, right-click a node that represents either a model or a subsystem.

The Fixed-Point Tool displays a context menu for the selected node.

2 In the context menu, select either Enable Signal Logging or Disable Signal Logging.

The Fixed-Point Tool displays a submenu that lists a variety of signal logging options.

Note You can now control the signal logging of a Simulink subsystem, that is placed inside of a Stateflow Chart, from the subsystem parent node.

Select	To Enable or Disable Signal Logging for
All Signals in this System	All signals in the selected system
All Signals from Here Down	All signals in the selected system and its subsystems
Outports in this System	All Outport blocks in the selected system
Named Signals in this System	All signals in the selected system, whose Signal name parameter specifies a value
Named Signals from Here Down	All signals in the selected system and its subsystems, whose Signal name parameter specifies a value
Unnamed Signals in this System	All signals in the selected system, whose Signal name parameter is empty
Unnamed Signals from Here Down	All signals in the selected system and its subsystems, whose Signal name parameter is empty

Choose from the following signal logging options:

Note The Fixed-Point Tool does not control signal logging for referenced models or subsystems with library links. It ignores these objects when enabling or disabling signal logging in a model hierarchy.

- **Examples** To learn how to use the tool, see "Fixed-Point Tool" in the Simulink Fixed Point documentation.
- See Also autofixexp

Purpose	Get pathname of current block
Syntax	gcb gcb('sys')
Description	gcb returns the full block pathname of the current block in the current system.
	gcb('sys') returns the full block pathname of the current block in the specified system.
	The current block is one of these:
	• During editing, the current block is the block most recently clicked.
	• During simulation of a system that contains S-Function blocks, the current block is the S-Function block currently executing its corresponding MATLAB function.
	• During callbacks, the current block is the block whose callback routine is being executed.
	• During evaluation of the MaskInitialization string, the current block is the block whose mask is being evaluated.
Examples	This command returns the path of the most recently selected block.
	gcb ans = clutch/Locked/Inertia This command gets the value of the Gain parameter of the current block.
	get_param(gcb,'Gain')
	ans = 1/(Iv+Ie)
See Also	gcbh, gcs

Purpose	Get handle of current block
Syntax	gcbh
Description	gcbh returns the handle of the current block in the current system. You can use this command to identify or address blocks that have no parent system. The command should be most useful to blockset authors.
Examples	This command returns the handle of the most recently selected block. gcbh ans = 281.0001
See Also	gcb

Purpose	Get pathname of current system
Syntax	gcs
Description	gcs returns the full pathname of the current system. The current system is one of these:
	• During editing, the current system is the system or subsystem most recently clicked.
	• During simulation of a system that contains S-Function blocks, the current system is the system or subsystem containing the S-Function block that is currently being evaluated.
	• During callbacks, the current system is the system containing any block whose callback routine is being executed.
	• During evaluation of the MaskInitialization string, the current system is the system containing the block whose mask is being evaluated.
	The current system is always the current model or a subsystem of the current model. Use bdroot to get the current model.
Examples	This example returns the path of the system that contains the most recently selected block.
	gcs ans = clutch/Locked
See Also	bdroot, gcb

Purpose	Get system and block parameter values
Syntax	<pre>get_param('obj', 'parameter') get_param({ objects }, 'parameter') get_param(handle, 'parameter') get_param(0, 'parameter') get_param('obj', 'ObjectParameters') get_param('obj', 'DialogParameters')</pre>
Description	get_param('obj', 'parameter'), where 'obj' is a system or block pathname, returns the value of the specified parameter. Some parameters are case-sensitive, and some are not. To prevent problems, treat all parameters as case-sensitive.
	get_param({ objects }, 'parameter') accepts a cell array of full path specifiers, enabling you to get the values of a parameter common to all objects specified in the cell array.
	get_param(handle, 'parameter') returns the specified parameter of the object whose handle is handle.
	get_param(0, 'parameter') returns the current value of a Simulink session parameter or the default value of a model or block parameter.
	<pre>get_param('obj', 'ObjectParameters') returns a structure that describes obj's parameters. Each field of the returned structure corresponds to a particular parameter and has the parameter's name. For example, the Name field corresponds to the object's Name parameter. Each parameter field itself contains three fields, Name, Type, and Attributes, that specify the parameter's name (for example, 'Gain'), data type (for example, string), and attributes (for example, read-only), respectively.</pre>
	get_param('obj', 'DialogParameters') returns a cell array containing the names of the dialog parameters of the specified block.
	Chapter 8, "Model and Block Parameters" contains lists of model and block parameters.

get_param

Examples This command returns the value of the Gain parameter for the Inertia block in the Requisite Friction subsystem of the clutch system.

```
get_param('clutch/Requisite Friction/Inertia','Gain')
ans =
   1/(Iv+Ie)
```

These commands display the block types of all blocks in the mx + b system (the current system), described in in *Simulink User's Guide*.

```
blks = find_system(gcs, 'Type', 'block');
listblks = get_param(blks, 'BlockType')
listblks =
    'SubSystem'
    'Inport'
    'Constant'
    'Gain'
    'Sum'
    'Outport'
```

This command returns the name of the currently selected block.

get_param(gcb, 'Name')

The following commands get the attributes of the currently selected block's Name parameter.

The following command gets the dialog parameters of a Sine Wave block.

```
p = get_param('untitled/Sine Wave', 'DialogParameters')
p =
        SineType: [1x1 struct]
        TimeSource: [1x1 struct]
        Amplitude: [1x1 struct]
        Bias: [1x1 struct]
        Frequency: [1x1 struct]
        Phase: [1x1 struct]
        Samples: [1x1 struct]
        Offset: [1x1 struct]
        SampleTime: [1x1 struct]
        VectorParams1D: [1x1 struct]
```

See Also find_system, set_param

getActiveConfigSet

Purpose	Get model's active configuration set or configuration reference
Syntax	<pre>myConfigObj = getActiveConfigSet('model')</pre>
Arguments	<i>model</i> The name of an open model, or gcs to specify the current model
Description	getActiveConfigSet returns the configuration set or configuration reference (configuration object) that is the active configuration object of 'model'.
Example	The following example returns the active configuration object of the current model. The code is the same whether the object is a configuration set or configuration reference.
	<pre>myConfigObj = getActiveConfigSet(gcs);</pre>
See Also	"Configuration Sets", "Referencing Configuration Sets"
	attachConfigSet, attachConfigSetCopy, closeDialog, detachConfigSet, getConfigSet, getConfigSets, openDialog, setActiveConfigSet

Purpose Get information about annotation

Syntax getCallbackAnnotation

Description getCallbackAnnotation is intended to be invoked by annotation callback functions. If it is invoked from an annotation callback function, it returns an instance of Simulink.Annotation class that represents the annotation associated with the callback function. The callback function can then use the instance to get and set the annotation's properties, such as its text, font and color. If this function is not invoked from an annotation callback function, it returns nothing, i.e., [].

getConfigSet

Purpose	Get one of model's configuration sets or configuration references
Syntax	<pre>myConfigObj = getConfigSet('model', 'configObjName')</pre>
Arguments	<pre>model The name of an open model, or gcs to specify the current model configObjName The name of a configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef)</pre>
Description	getConfigSet returns the configuration set or configuration reference (configuration object) that is attached to <i>model</i> and is named <i>configObjName</i> . If no such object exists, an error occurs.
Example	The following example returns the configuration object that is named DevConfig and attached to the current model. The code is the same whether DevConfig is a configuration set or configuration reference. myConfigObj = getConfigSet(gcs, 'DevConfig');
See Also	"Configuration Sets", "Referencing Configuration Sets" attachConfigSet, attachConfigSetCopy, closeDialog, detachConfigSet, getActiveConfigSet, getConfigSets, openDialog, setActiveConfigSet

Get names of all of model's configuration sets or configuration references
<pre>myConfigObjNames = getConfigSets('model')</pre>
model The name of an open model, or gcs to specify the current model
getConfigSets returns a cell array of strings specifying the names of all configuration sets and configuration references (configuration objects) attached to 'model'.
The following example obtains the names of the configuration objects attached to the current model. myConfigObjNames = getConfigSets(gcs)
"Configuration Sets", "Referencing Configuration Sets" attachConfigSet, attachConfigSetCopy, closeDialog, detachConfigSet, getActiveConfigSet, getConfigSet, openDialog, setActiveConfigSet

getfullname

Purpose	Get pathname of block or line
Syntax	path=getfullname(handle)
Description	<pre>path=getfullname(handle) returns the full pathname of the block or line specified by handle.</pre>
Examples	getfullname(gcb) returns the pathname of the block currently selected in the model editor's window.
	The following code returns the pathname of the line currently selected in the model editor's window.
	<pre>line = find_system(gcs, 'SearchDepth', 1, 'FindAll', 'on', 'Type', 'line', 'Selected', 'on'); path = getfullname(line);</pre>
See Also	gcb, find_system

```
      Purpose
      Use Legacy Code Tool

      Syntax
      legacy_code('help')
specs = legacy_code('initialize')
legacy_code('sfcn_cmex_generate', specs)
legacy_code('compile', specs, compilerOptions)
legacy_code('generate_for_sim', specs, modelname)
legacy_code('slblock_generate', specs, modelname)
legacy_code('sfcn_tlc_generate', specs)
legacy_code('backward_compatibility')
```

Arguments specs

A structure with the following fields:

Name the S-function

SFunctionName (Required) — A string specifying a name for the S-function to be generated by the Legacy Code Tool.

Define Legacy Code Tool Function Specifications

- InitializeConditionsFcnSpec A nonempty string specifying a reentrant function that the S-function calls to initialize and reset states. You must declare this function by using tokens that Simulink software can interpret as explained in "Declaring Legacy Code Tool Function Specifications".
- OutputFcnSpec A nonempty string specifying the function that the S-function calls at each time step. You must declare this function by using tokens that Simulink software can interpret as explained in "Declaring Legacy Code Tool Function Specifications".
- StartFcnSpec A string specifying the function that the S-function calls when it begins execution. This function can access S-function parameter arguments only. You must declare this function by using tokens that Simulink software can

interpret as explained in "Declaring Legacy Code Tool Function Specifications".

• TerminateFcnSpec — A string specifying the function that the S-function calls when it terminates execution. This function can access S-function parameter arguments only. You must declare this function by using tokens that Simulink software can interpret as explained in "Declaring Legacy Code Tool Function Specifications".

Define Compilation Resources

- HeaderFiles A cell array of strings specifying the file names of header files required for compilation.
- SourceFiles A cell array of strings specifying source files required for compilation. You can specify the source files using absolute or relative path names.
- HostLibFiles A cell array of strings specifying library files required for host compilation. You can specify the library files using absolute or relative path names.
- TargetLibFiles A cell array of strings specifying library files required for target (that is, standalone) compilation. You can specify the library files using absolute or relative path names.
- IncPaths A cell array of strings specifying directories containing header files. You can specify the directories using absolute or relative path names.
- SrcPaths A cell array of strings specifying directories containing source files. You can specify the directories using absolute or relative path names.
- LibPaths A cell array of strings specifying directories containing host and target library files. You can specify the directories using absolute or relative path names.

Specify a Sample Time

SampleTime — One of the following:

- 'inherited' (default) Sample time is inherited from the source block.
- 'parameterized' Sample time is represented as a tunable parameter. Generated code can access the parameter by calling MEX API functions, such as mxGetPr or mxGetData.
- Fixed Sample time that you explicitly specify. For information on how to specify sample time, see "How to Specify the Sample Time".

If you specify this field, you must specify it last.

Define S-Function Options

 ${\tt Options}-{\rm A}$ structure that controls S-function options. The structure's fields include:

- isMacro A logical value specifying whether the legacy code is a C macro. By default, the value is false (0).
- isVolatile A logical value specifying the setting of the S-function SS_OPTION_NONVOLATILE option. By default, the value is true (1).
- canBeCalledConditionally A logical value specifying the setting of the S-function SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option. By default, the value is true (1).
- useTlcWithAccel A logical value specifying the setting of the S-function SS_OPTION_USE_TLC_WITH_ACCELERATOR option. By default, the value is true (1).
- language A string specifying either 'C' or 'C++' as the target language of the S-function that Legacy Code Tool will produce. By default, the value is 'C'.

Note The Legacy Code Tool can interface with C++ functions, but not C++ objects. For a work around, see "Legacy Code Tool Limitations" in the Simulink documentation.

- singleCPPMexFile A logical value that, if true (1), specifies that generated code:
 - Requires you to generate and manage an inlined S-function as only one file (.cpp) instead of two (.c and .tlc).
 - Maintains model code style (level of parentheses usage and preservation of operand order in expressions and condition expressions in if statements) as specified by model configuration parameters.

By default, the value is false (0).

Limitations You cannot set the singleCPPMexFile field to true (1) if

- Options.language='C++'
- You use one of the following Simulink objects with the IsAlias property set to true (1):
 - Simulink.Bus
 - Simulink.AliasType
 - Simulink.NumericType
- The Legacy Code Tool function specification includes a void* or void** to represent scalar work data for a state argument
- - HeaderFiles field of the Legacy Code Tool structure specifies multiple header files

```
modelname
```

The name of a Simulink model into which Legacy Code Tool is to insert the masked S-function block generated when you specify legacy_code with the action string 'slblock_generate'. If you omit this argument, the block appears in an empty model editor window.

Description The legacy_code function creates a MATLAB structure for registering the specification for existing C or C++ code and the S-function being generated. In addition, the function can generate, compile and link, and create a masked block for the specified S-function. Other options include generating

- A TLC file for simulation in Accelerator mode or code generation
- An rtwmakecfg.m file that you can customize to specify dependent source and header files that reside in a different directory than that of the generated S-function

legacy_code('help') displays instructions for using Legacy Code Tool.

specs = legacy_code('initialize') initializes the Legacy Code
Tool data structure, specs, which registers characteristics of existing
C or C++ code and properties of the S-function that the Legacy Code
Tool generates.

legacy_code('sfcn_cmex_generate', specs) generates an S-function source file as specified by the Legacy Code Tool data structure, specs.

legacy_code('compile', specs, compilerOptions) compiles and links the S-function generated by the Legacy Code Tool based on the data structure, specs, and any compiler options that you might specify. The following examples show how to specify no options, one option, and multiple options:

```
legacy_code('compile', s);
legacy_code('compile', s, '-DCOMPILE_VALUE1=1');
legacy_code('compile', s,...
```

{'-DCOMPILE_VALUE1=1', '-DCOMPILE_VALUE2=2',...
'-DCOMPILE_VALUE3=3'});

legacy_code('generate_for_sim', specs, modelname) generates, compiles, and links the S-function in a single step. The function also generates a TLC file for accelerated simulations, if the Options.useTlcWithAccel field of the Legacy Code Tool data structure is set to 1.

legacy_code('slblock_generate', specs, modelname) generates a masked S-Function block for the S-function generated by the Legacy Code Tool based on the data structure, specs. The block appears in the Simulink model specified by modelname. If you omit modelname, the block appears in an empty model editor window.

legacy_code('sfcn_tlc_generate', specs) generates a TLC file for the S-function generated by the Legacy Code Tool based on the data structure, specs. This option is relevant if you want to

- Force Accelerator mode in Simulink software to use the TLC inlining code of the generated S-function. See the description of the ssSetOptions SimStruct function and SS_OPTION_USE_TLC_WITH_ACCELERATOR S-function option for more information.
- Use Real-Time Workshop software to generate code from your Simulink model. See "Automating the Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool" for more information.

legacy_code('rtwmakecfg_generate', specs) generates an rtwmakecfg.m file for the S-function generated by the Legacy Code Tool based on the data structure, specs. This option is relevant only if you use Real-Time Workshop software to generate code from your Simulink model. See "Using the rtwmakecfg.m API to Customize Generated Makefiles" and "Automating the Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool" in the Real-Time Workshop documentation for more information. legacy_code('backward_compatibility') automatically updates syntax for using Legacy Code Tool, as made available from MATLAB Central in releases before R2006b, to the supported syntax described in this reference page and in "Integrating Existing C Functions into Simulink Models with the Legacy Code Tool" in Writing S-Functions.

See Also • "Integrating Existing C Functions into Simulink Models with the Legacy Code Tool" in the Writing S-Functions documentation

• "Automating the Generation of Files for Fully Inlined S-Functions Using Legacy Code Tool" in the Real-Time Workshop documentation

libinfo

Purpose	Get information about library blocks referenced by model
---------	--

Syntax libdata = libinfo('sys')

Description libdata = libinfo('sys') returns information about library blocks referenced by sys and all of the systems underneath it. The command returns an array of structures that describes each library block referenced by the model. Each structure has the following fields:

• Block

Path of the link to the library block.

• Library

Name of the library containing the referenced block.

• ReferenceBlock

Path of the library block.

• LinkStatus

Value of the LinkStatus parameter for the link to the library block.

This command also accepts search constraints as additional arguments. For instance:

```
libdata=libinfo(Sys,'FollowLinks','off')
```

See find_system for more information.

Purpose	Extract continuous- or discrete-time linear state-space model of system around operating point
Syntax	<pre>argout = linmod('sys'); argout = linmod('sys',x,u); argout = linmod('sys', x, u, para); argout = linmod('sys', x, u, 'v5'); argout = linmod('sys', x, u, para, 'v5'); argout = linmod('sys', x, u, para, xpert, upert, 'v5'); argout = dlinmod('sys', Ts, x, u, para, 'v5'); argout = dlinmod('sys', Ts, x, u, para, xpert, upert, 'v5');</pre>
	<pre>argout = linmod2('sys', x, u); argout = linmod2('sys', x, u, para); argout = linmodv5('sys'); argout = linmodv5('sys', x, u, para); argout = linmodv5('sys', x, u, para); argout = linmod('sys', x, u, para, xpert, upert);</pre>

Arguments	sys	The name of the Simulink system from which the linear model is to be extracted.
	x and u	The state and the input vectors. If specified, they set the operating point at which the linear model is to be extracted. When a model has model references using the Model block, you must use the Simulink structure format to specify x. To extract the x structure from the model, use the following command:

x = Simulink.BlockDiagram.getInitialState('sys');

You can then change the operating point values within this structure by editing x.signals.values.

- Ts Sample time of the discrete-time linearized model
- 'v5' An optional argument that invokes the perturbation algorithm created prior to MATLAB 5.3. Invoking this optional argument is equivalent to calling linmodv5.

para A three-element vector of optional arguments:

- para(1) Perturbation value of delta, the value used to perform the perturbation of the states and the inputs of the model. This is valid for linearizations using the 'v5' flag. The default value is 1e-05.
- para(2) Linearization time. For blocks that are functions of time, this parameter can be set with a nonnegative value of t giving the time at which Simulink software evaluates the blocks when linearizing a model. The default value is 0.
- para(3) Set para(3)=1 to remove extra states associated with blocks that have no path from input to output. The default value is 0.

```
The perturbation values used to perform the
xpert and
upert
                 perturbation of all the states and inputs of the
                 model. The default values are
                   xpert = para(1) + 1e-3*para(1)*abs(x)
                   upert = para(1) + 1e-3*para(1)*abs(u)
                When a model has model references using the Model
                block, you must use the Simulink structure format
                 to specify xpert. To extract the xpert structure, use
                 the following command:
                   xpert = Simulink.BlockDiagram.getInitialState('sys');
                You can then change the perturbation values within
                 this structure by editing xpert.signals.values.
                The perturbation input arguments are only available
                 when invoking the perturbation algorithm created
                 prior to MATLAB 5.3, either by calling linmodv5 or
                specifying the 'v5' input argument to linmod.
argout
                 linmod, dlinmod, and linmod2 all return
                state-space, transfer function, and MATLAB data
                structure representations of the linearized system,
                 depending on how you specify the output (left-hand)
                 side of the equation. Using linmod as an example:
                 • [A,B,C,D] = linmod('sys', x, u) obtains the
                   linearized model of sys around an operating point
                   with the specified state variables x and the input
                   u. If you omit x and u, the default values are zero.
                 • [num, den] = linmod('sys', x, u) returns
                   the linearized model in transfer function form.
                 • sys_struc = linmod('sys', x, u) returns a
                   structure that contains the linearized model,
```

including state names, input and output names, and information about the operating point.

Description

linmod and dlinmod compute a linear state space model by linearizing each block in a model individually. linmod2 computes a linear state-space model by perturbing the model inputs and model states, and uses an advanced algorithm to reduce truncation error. linmodv5 computes a linear state space model using the full model perturbation algorithm created prior to MATLAB 5.3.

linmod obtains linear models from systems of ordinary differential equations described as Simulink models. Inputs and outputs are denoted in Simulink block diagrams using Inport and Outport blocks.

The default algorithm uses preprogrammed analytic block Jacobians for most blocks which should result in more accurate linearization than numerical perturbation of block inputs and states. A list of blocks that have preprogrammed analytic Jacobians is available in the Simulink[®] Control Design[™] documentation along with a discussion of the block-by-block analytic algorithm for linearization. If you do not have Simulink Control Design software installed, you can access the documentation on The MathWorks[™] Web site at http://www.mathworks.com/access/helpdesk/help/toolbox/slcontrol/.

The default algorithm also allows for special treatment of problematic blocks such as the Transport Delay and the Quantizer. See the mask dialog of these blocks for more information and options.

Discrete-Time System Linearization

The function dlinmod can linearize discrete, multirate, and hybrid continuous and discrete systems at any given sampling time. Use the same calling syntax for dlinmod as for linmod, but insert the sample time at which to perform the linearization as the second argument. For example,

[Ad,Bd,Cd,Dd] = dlinmod('sys', Ts, x, u);

produces a discrete state-space model at the sampling time Ts and the operating point given by the state vector x and input vector u. To obtain a continuous model approximation of a discrete system, set Ts to 0.

For systems composed of linear, multirate, discrete, and continuous blocks, dlinmod produces linear models having identical frequency and time responses (for constant inputs) at the converted sampling time Ts, provided that

- Ts is an integer multiple of all the sampling times in the system.
- The system is stable.

For systems that do not meet the first condition, in general the linearization is a time-varying system, which cannot be represented with the [A,B,C,D] state-space model that dlinmod returns.

Computing the eigenvalues of the linearized matrix Ad provides an indication of the stability of the system. The system is stable if Ts>0 and the eigenvalues are within the unit circle, as determined by this statement:

all(abs(eig(Ad))) < 1

Likewise, the system is stable if Ts = 0 and the eigenvalues are in the left half plane, as determined by this statement:

```
all(real(eig(Ad))) < 0</pre>
```

When the system is unstable and the sample time is not an integer multiple of the other sampling times, dlinmod produces Ad and Bd matrices, which can be complex. The eigenvalues of the Ad matrix in this case still, however, provide a good indication of stability.

You can use dlinmod to convert the sample times of a system to other values or to convert a linear discrete system to a continuous system or vice versa.

You can find the frequency response of a continuous or discrete system by using the **bode** command.

Notes

By default, the system time is set to zero. For systems that are dependent on time, you can set the variable para to a two-element vector, where the second element is used to set the value of t at which to obtain the linear model.

The ordering of the states from the nonlinear model to the linear model is maintained. For Simulink systems, a string variable that contains the block name associated with each state can be obtained using

[sizes,x0,xstring] = sys

where xstring is a vector of strings whose *i*th row is the block name associated with the ith state. Inputs and outputs are numbered sequentially on the diagram.

For single-input multi-output systems, you can convert to transfer function form using the routine ss2tf or to zero-pole form using ss2zp. You can also convert the linearized models to LTI objects using ss. This function produces an LTI object in state-space form that can be further converted to transfer function or zero-pole-gain form using tf or zpk.

The default algorithms in linmod and dlinmod handle Transport Delay blocks by replacing the linearization of the blocks with a Pade approximation. For the 'v5' algorithm, linearization of a model that contains Derivative or Transport Delay blocks can be troublesome. For more information, see "Linearizing Models" in *Simulink User's Guide*.

Purpose	Invisibly load Simulink model	
Syntax	load_system('sys')	
Description	<pre>load_system('sys') loads 'sys', where sys is the name of a Simulink model, into memory without making its model window visible.</pre>	
Examples	The command	
	load_system('vdp')	
	loads the vdp sample model into memory.	
See Also	close_system, open_system	

model

Purpose	Execute particular phase of simulation of model
Syntax	<pre>[sys,x0,str,ts] = model([],[],[],'sizes'); [sys,x0,str,ts] = model([],[],[],'compile'); outputs = model(t,x,u,'outputs'); derivs = model(t,x,u,'derivs'); dstates = model(t,x,u,'update'); model([],[],[],'term');</pre>
Description	The model command executes a specific phase of the simulation of a Simulink model whose name is model. The command's last (flag) argument specifies the phase of the simulation to be executed. See "Simulating Dynamic Systems" for a description of the steps that Simulink software uses to simulate a model.
	This command is intended to allow linear analysis and other M-file program-based tools to run a simulation step-by-step, gathering information about the states and outputs of a model, at each step. It is not intended to be used to run a model step-by-step, for example, to debug a model. Use the Simulink debugger if you need to examine intermediate results to debug a model.

Arguments

sys	Vector of model size data:
	• sys(1) = number of continuous states
	• sys(2) = number of discrete states
	• sys(3) = number of outputs
	• sys(4) = number of inputs
	 sys(5) = reserved
	 sys(6) = direct-feedthrough flag (1 = yes, 0 = no)

	 sys(7) = number of sample times (= number of rows in ts)
x0	Vector containing the initial conditions of the system's states
str	Vector of names of the blocks associated with the model's states. The state names and initial conditions appear in the same order in str and x0, respectively.
ts	An <i>m</i> -by-2 matrix containing the sample time (period, offset) information
outputs	Outputs of the model at time step t.
derivs	Derivatives of the continuous states of the model at time t.
dstates	Discrete states of the model at time t.
t	Time step
x	State vector
u	Inputs
flag	String that indicates the simulation phase to be executed:
	• 'sizes' executes the size computation phase of the simulation. This phase determines the sizes of the model's inputs, outputs, state vector, etc.
	• 'compile' executes the compilation phase of the simulation. The compilation phase propagates signal and sample time attributes.
	• 'update' computes the next values of the model's discrete states.

Examples	This command executes the compilation phase of the outputs of that comes with Simulink software.		
	• 'derivs' computes the derivatives of the vdp([], [], [], 'compile')'s continuous states at time step t.		
	The following command termiteage's causes in Similar institute into the terminate simulation of the model.		
	vdp([], [], [], 'term')		
	Note You must always terminate simulation of the model by invoking the model command with the 'term' command. Simulink software does		

not let you close the model until you have terminated the simulation.

See Also sim

modeladvisor

Purpose	Open Model Advisor	
Syntax	<pre>modeladvisor('model')</pre>	
Arguments	<i>model</i> A string specifying the name or handle to the model or subsystem.	
Description	modeladvisor(model) opens the Model Advisor on the model or subsystem specified by model. If the specified model or subsystem is not open, this command opens it.	
Examples	The command	
	modeladvisor('vdp')	
opens the Model Advisor on the vdp demo model.		
	The command modeladvisor('f14/Aircraft Dynamics Model')	
opens the Model Advisor on the Aircraft Dynamics Model subsys the f14 demo model. The command		
opens the Model Advisor on the currently selected subsystem.		
	The command	
	modeladvisor(bdroot)	
	opens the Model Advisor on the currently selected model.	
See Also	"Consulting the Model Advisor"	

new_system

Purpose	Create empty Simulink system
Syntax	new_system('sys') new_system('sys', 'Model') new_system('sys', 'Model', 'subsystem_path') new_system('sys', 'Model', 'ErrorIfShadowed') new_system('sys', 'Library')
Description	<pre>new_system('sys') or new_system('sys', 'Model') creates an empty system where 'sys' is the name of the new system. This command displays an error if 'sys' is a MATLAB keyword, 'simulink', or more than 63 characters long.</pre>
	<pre>new_system('sys', 'Model', 'subsystem_path') creates a system from a subsystem where 'subsystem_path' is the full path of the subsystem. The model that contains the subsystem must be open when this command is executed.</pre>
	new_system('sys', 'Model', 'ErrorIfShadowed') creates an empty system having the specified name. This command generates an error if another model, M-file, or variable of the same name exists on the MATLAB path or workspace.
	<pre>new_system('sys', 'Library') creates an empty library.</pre>
	Note The new_system command does not open the window of the system or library that it creates.
	See Chapter 8, "Model and Block Parameters" for a list of the default parameter values for the new system.
Examples	This command creates a new system named 'mysys'. new_system('mysys')

```
The command

new_system('mysys','Library')

creates, but does not open, a new library named 'sys'.

The command

new_system('vdp','Model','ErrorIfShadowed')

returns an error because 'vdp' is the name of a model on the MATLAB

path.

The commands

load_system('f14')

new_system('f14')

create a new model named mycontroller that has the same contents as

does the subsystem named Controller in the f14 demo model.
```

See Also close_system, open_system, save_system

num2fixpt

Purpose	Convert number to data type	o nearest value representable by specified fixed-point
Syntax	outValue = num2 RndMeth, Do	fixpt(OrigValue, FixPtDataType, FixPtScaling, Satur)
Description	<pre>num2fixpt(OrigValue, FixPtDataType, FixPtScaling, RndMeth, DoSatur) returns the result of converting OrigValue to the nearest value representable by the fixed-point data type FixPtDataType. Both OrigValue and outValue are of data type double. As illustrated in the example that follows, you can use num2fixpt to investigate quantization error that might result from converting a number to a fixed-point data type. The arguments of num2fixpt include:</pre>	
	OrigValue	Value to be converted to a fixed-point representation. Must be specified using a double data type.
	FixPtDataType	The fixed-point data type used to convert OrigValue.
	FixPtScaling	Scaling of the output in either Slope or [Slope Bias] format. If FixPtDataType does not specify a generalized fixed-point data type using the sfix or ufix command, FixPtScaling is ignored.

	RndMeth	Rounding technique used if the fixed-point data
		type lacks the precision to represent OrigValue. If FixPtDataType specifies a floating-point data type using the float command, RndMeth is ignored. Valid values are Zero, Nearest, Ceiling, or Floor (the default).
	DoSatur	Indicates whether the output should be saturated to the minimum or maximum representable value upon underflow or overflow. If FixPtDataType specifies a floating-point data type using the float command, DoSatur is ignored. Valid values are on or off (the default).
Examples		to investigate the quantization effect associated with real-world value 9.875 as a signed, 8-bit fixed-point mand
	num2fixpt(9.8	375, sfix(8), 2 ⁻¹)
	ans =	
	9.5000000	000000
	reveals that a slop The command	be of 2^-1 results in a quantization error of 0.375.
	num2fixpt(9.8	275, sfix(8), 2 ⁻²)
	ans =	
	9.7500000	000000

demonstrates that a slope of 2^-2 reduces the quantization error to 0.125. But a slope of 2^-3 , as used in the command

num2fixpt(9.875, sfix(8), 2^-3)

ans =

9.8750000000000

eliminates the quantization error entirely.

See Also fixptbestexp, fixptbestprec

Purpose	Open Simulink system window or block dialog box
Syntax	<pre>open_system('sys') open_system('blk') open_system('blk', 'force') open_system('blk', 'parameter') open_system('blk', 'mask') open_system('blk', 'OpenFcn') open_system('sys', 'destsys', 'replace') open_system('sys', 'destsys', reuse')</pre>
Description	<pre>open_system('sys') opens the specified system or subsystem window, where 'sys' is the name of a model on the MATLAB path, the fully qualified pathname of a model, or the relative pathname of a subsystem of an already opened system (for example, engine/Combustion). On UNIX systems, the fully qualified pathname of a model can start with a tilde (~), signifying your home directory.</pre> Note If you use the open_system command to open a subsystem without first opening or loading the top level model, Simulink gives an error. Use load_system to load a model before you use open_system to open a subsystem in that model.
	<pre>open_system('blk'), where 'blk' is a full block pathname, opens the dialog box associated with the specified block. If the block's OpenFcn callback parameter is defined, the routine is evaluated. open_system('blk', force), where 'blk' is a full pathname or a masked system, looks under the mask of the specified system. This command is equivalent to using the Look Under Mask menu item. open_system('blk', 'parameter') opens this block's parameter dialog box. open_system('sys', 'mask') opens this block's mask.</pre>

open_system('blk', 'OpenFcn') runs this block's open function.

open_system('sys', 'destsys', 'replace') replaces the window of the previously opened system destsys with the window of the subsystem sys opened by this command. The location of the new window is determined by the location of the destination system destsys while the size of the window will match that used by sys.

open_system('sys', 'destsys', 'reuse') reuses the window of the previously opened system destsys to display the contents of the subsystem sys opened by this command. In this case, sys will be scaled to fit within the window size determined by the destination system destsys.

Note Use the MATLAB sprintf command to insert carriage return or line feed characters into paths passed to the open_system command. For example, the path to the Aircraft Dynamics Model subsystem of the f14 demo model contains line feeds. To open the subsystem, enter the following command at the MATLAB command line:

open_system(['f14/Aircraft' sprintf('\n') 'Dynamics' sprintf('\n') 'Model'])

Examples This command opens the controller system in its default screen location.

open_system('controller');

This command opens the block dialog box for the Gain block in the controller system.

open system('controller/Gain');

This command opens f14 into the f14/Controller window using reuse mode.

open_system('f14','f14/Controller','reuse');

Suppose that mymodel contains a masked subsystem, A, and a block, B, whose OpenFcn contains the following lines:

```
open_system('mymodel/B', 'parameter');
open_system('mymodel/A', 'mask');
```

Then opening block B causes both the parameter dialog box for B and the mask dialog box for A to appear.

This command opens f14 and vdp with a vectorized operation.

```
open_system( {'f14','vdp'} );
```

Open a subsystem after loading a model.

```
load_system('f14');
open_system('f14/Controller');
```

See Also

close system, load system, new system, save system

openDialog

Purpose	Open configuration parameters dialog	
Syntax	openDialog(<i>configObj</i>)	
Arguments	<pre>configObj A configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef)</pre>	
Description	openDialog opens a configuration parameters dialog box. If <i>configObj</i> is a configuration set, the dialog box displays the configuration set. If <i>configObj</i> is a configuration reference, the dialog box displays the referenced configuration set, or generates an error if the reference does not specify a valid configuration set. If the dialog box is already open, its window becomes selected.	
Example	The following example opens a configuration parameters dialog box that shows the current parameters for the current model. The parameter values derive from the active configuration set or configuration reference (configuration object). The code is the same in either case; the only difference is which type of configuration object is currently active. <pre>myConfigObj = getActiveConfigSet(gcs); openDialog(myConfigObj);</pre>	
See Also	"Configuration Sets", "Referencing Configuration Sets" attachConfigSet, attachConfigSetCopy, closeDialog, detachConfigSet, getActiveConfigSet, getConfigSet, getConfigSets, setActiveConfigSet	

Purpose	Replace blocks in Simulink model	
Syntax	replace_block('sys', 'old_blk', 'new_blk') replace_block('sys', 'Parameter', 'value',, 'blk')	
Description	<pre>replace_block('sys', 'old_blk', 'new_blk') replaces all blocks in 'sys' having the block or mask type 'old_blk' with 'new_blk'.</pre>	
	 If 'new_blk' is a Simulink built-in block, only the block name is necessary. 	
	• If 'old_blk' or 'new_blk' is in another system, its full block pathname is required.	
	• If 'noprompt' is omitted, Simulink software displays a dialog box that asks you to select matching blocks before making the replacement. Specifying the 'noprompt' argument suppresses the dialog box from being displayed.	
	• If a return variable is specified, the paths of the replaced blocks are stored in that variable.	
	replace_block('sys', 'Parameter', 'value',, 'blk') replaces all blocks in 'sys' having the specified values for the specified parameters with 'blk'. You can specify any number of parameter name/value pairs. For information on block parameters, see Chapter 8, "Model and Block Parameters"	
	Note Because it may be difficult to undo the changes this command makes, it is a good idea to save your Simulink model first.	
Examples	This command replaces all Gain blocks in the f14 system with Integrator blocks and stores the paths of the replaced blocks in RepNames. Simulink software lists the matching blocks in a dialog box before making the replacement.	

```
RepNames = replace_block('f14','Gain','Integrator')
This command replaces all blocks in the Unlocked subsystem in the
clutch system having a Gain of 'bv' with the Integrator block.
Simulink software displays a dialog box listing the matching blocks
before making the replacement.
    replace_block('clutch/Unlocked','Gain','bv','Integrator')
This command replaces the Gain blocks in the f14 system with
Integrator blocks but does not display the dialog box.
    replace_block('f14','Gain','Integrator', 'noprompt')
This command replaces the Small_Wheel subsystem in the
wheel_analysis model with the Large_Wheel subsystem from the
wheels library.
    replace_block('wheel_analysis','Name','Small_Wheel','wheels/Large_Wheel')
```

See Also find_system, set_param

Purpose	Save Simulink system
---------	----------------------

```
Syntax save_system
save_system('sys')
save_system('sys', 'newname')
save_system('sys', 'newname', 'BreakAllLinks', true)
save_system('sys', 'newname', 'BreakUserLinks', true)
save_system('sys', 'newname', 'SaveModelWorkspace', true)
save_system('sys', 'newname', 'ErrorIfShadowed', true)
save_system('sys', 'newname', 'SaveAsVersion', 'version')
save_system('sys', 'newname', 'OverWriteIfChangedOnDisk', true)
save_system('sys', 'newname', 'SaveModelWorkspace', true)
save_system('sys', 'newname', 'SaveModelWorkspace', true)
save_system('sys', 'newname', 'SaveModelWorkspace', true,
'BreakUserLinks', true, 'OverwriteIfChangedOnDisk', true)
```

Description save_system saves the current top-level system to a file with its current name.

save_system('sys') saves the specified top-level system to a file with
its current name. The system must be open. 'sys' can be a string, a
cell array of strings, a numeric handle, or an array of numeric handles.

save_system('sys', 'newname') saves the specified top-level system
to a file with the specified new name. The system to be saved must
be open. The new name can be a file name, in which case Simulink
software saves the system in the working directory, or a fully qualified
pathname. On UNIX systems, the fully qualified pathname can start
with a tilde (~), signifying your home directory.

'newname' can be empty ([]), in which case the current name is used. If 'sys' refers to more than one block diagram, 'newname' must be a cell array of new names.

This command displays an error if you enter any of the following as the new model name:

• A MATLAB keyword

- 'simulink'
- More than 63 characters

Additional arguments must be supplied as name-value pairs, in any order. Allowed names are:

• ErrorIfShadowed: true or false (default: false)

Generates an error if the specified new name already exists on the MATLAB path or workspace.

• BreakAllLinks: true or false (default: false)

Replaces links to library blocks with copies of the library blocks in the saved file. The 'BreakAllLinks' option affects any linked block, including user-defined and Simulink library blocks.

Note

The 'BreakAllLinks' option can result in compatibility issues when upgrading to newer versions of Simulink software. For example:

- Any masks on top of library links to Simulink S-functions will not upgrade to the new version of the S-function.
- Any library links to masked subsystems in a Simulink library will not upgrade to the new subsystem behavior.
- Any broken links prevent the automatic library forwarding mechanism from upgrading the link.

If you have saved a model with broken links, use the Check model, local libraries, and referenced models for known upgrade issues option in the Model Advisor to scan the model for out-of-date blocks. You can then use the slupdate command to upgrade the Simulink blocks to their current versions. Subsequently running the Model Advisor lists any remaining third-party library and optional Simulink blockset blocks that are still out of date and need to be manually upgraded.

• BreakUserLinks: true or false (default: false)

Replaces links to user-defined library blocks with copies of the library blocks in the saved file.

• SaveAsVersion: MATLAB version name (default: current)

Saves the system in a form that can be loaded by a specified version of Simulink software. Valid values include: R12, R12P1, R13, R13SP1, R14, R14SP1, R14SP2, R14SP3, R2006A, R2006B, R2007A, R2007B and R2008A. These version names are not case sensitive. If the system to be saved contains blocks not supported by the specified Simulink software version, the command replaces the unsupported blocks with empty masked subsystem blocks colored yellow. As a result, the converted system may generate incorrect results. • OverwriteIfChangedOnDisk: true or false (default: false)

If the file has changed on disk since the model was loaded, save_system displays an error to prevent the changes on disk from being overwritten. This error appears only if the Saving the model option in the Model File Change Notification section of the Simulink Preferences dialog is selected.

To save the model regardless of whether the file has been changed on disk supply the OverwriteIfChangedOnDisk option with value true.

• SaveModelWorkspace: true or false (default: false)

If the model workspace DataSource is a MAT-file, this command also saves the contents of the model workspace. 'SaveModelWorkspace' is most useful when DataSource is a MAT-file.

• ExportToXML: true or false (default: false)

Exports the specified block diagram to a file in a simple XML format. The full name of the file, including an extension, should be specified. The block diagram in memory is not changed and no callbacks are executed. The ExportToXML option should not be used in conjunction with any other save_system options.

The same options are applied to all the block diagrams that are saved.

save_system returns the full name of the file that was saved, as a string.
If multiple files were saved, the return value is a cell array of strings.

save_system can save only entire block diagrams, but the utility
function Simulink.SubSystem.copyContentsToBlockDiagram can be
used to copy the contents of a subsystem into a new block diagram,
which can then be saved using save_system.

If you set the UpdateHistory property of the model to UpdateHistoryWhenSave, you see the following behavior:

• When you save interactively, you see a dialog prompting for a comment to include in the model history.

• When you save using save_system, you are not prompted for a comment. save_system reuses the previous comment, unless you set 'ModifiedComment' before saving, as follows:

set_param(mymodel,'ModifiedComment',mycomment)

Examples This command saves the current system.

save_system

This command saves the vdp system with the name vdp.

```
save_system('vdp')
```

This command saves the vdp system to a file with the name 'myvdp'.

save system('vdp', 'myvdp')

This command saves the vdp system to another directory.

save_system('vdp', 'C:\TMP\vdp.mdl')

This command saves the vdp system to a file with the name 'myvdp' and replaces links to library blocks with copies of the library blocks in the saved file.

```
save system('vdp','myvdp','BreakAllLinks', true)
```

Both of these commands save the current model (with its current name), and break any library links in it:

```
save_system('mymodel,'mymodel','BreakAllLinks',true)
save system('mymodel,[],'BreakAllLinks',true)
```

This command saves the current model with a new name, but displays an error (instead of saving) if something with this name already exists on the MATLAB path:

```
save_system('mymodel','mynewmodel','ErrorIfShadowed',true)
```

This command tries to save the vdp system to a file with the name 'max', but returns an error because 'max' is the name of a MATLAB function.

```
save system('vdp', 'max', 'ErrorIfShadowed', true)
```

This command saves the vdp system to Simulink Version R13SP1 with the name 'myvdp'. It does not replace links to library blocks with copies of the library blocks.

save_system('vdp','myvdp','SaveAsVersion','R13SP1')

This command saves the current model with a new name, saves the model workspace, breaks any library links, and overwrites if the file has changed on disk:

```
save_system('mymodel, 'mynewmodel', 'SaveModelWorkspace',
true, 'BreakAllLinks',true, 'OverwriteIfChangedOnDisk', true)
```

This command returns the full path name of the file that was saved, as a string. If multiple files were saved, the return value is a cell array of strings.

```
filename = save system('mymodel')
```

See Also close_system, new_system, open_system

Purpose	Set Simulink system and block parameters	
Syntax	<pre>set_param('obj', 'parameter1', value1, 'parameter2', value2,)</pre>	
Description	<pre>set_param('obj', 'parameter1', value1, 'parameter2', value2,), where 'obj' specifies a model or block, sets the specified parameters to the specified values. Case is ignored for parameter names. Value strings are case sensitive.</pre>	
	Most block parameter values must be specified as strings. Two exceptions are the Position and UserData parameters, common to all blocks. All parameters that correspond to dialog box entries have string values. Model and block parameters are listed in Chapter 8, "Model and Block Parameters".	
	You can change block parameter values in the workspace and update the block diagram with these changes. To do this:	
	1 Use set_param to make the changes at the command prompt.	
	2 Make the model window the current window.	
	3 Select Edit > Update Diagram .	
	When you set multiple parameters on the same model or block, use a single set_param command with multiple pairs of arguments, rather than multiple set_param commands. This technique is more efficient because using a single call requires evaluating parameters only once, and can prevent dependency errors because the call sets all parameter values before checking the legality of the results.	
Examples	This command sets the Solver and StopTime parameters of the vdp system.	

This command sets the Gain parameter of the Mu block in the vdp system to 1000.

```
set param('vdp/Mu', 'Gain', '1000')
```

This command sets the position of the Fcn block in the vdp system.

```
set_param('vdp/Fcn', 'Position', [50 100 110 120])
```

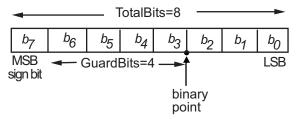
This command sets the Zeros and Poles parameters for the Zero-Pole block in the mymodel system.

```
set_param('mymodel/Zero-Pole','Zeros','[2 4]','Poles','[1 2 3]')
```

This command sets the Gain parameter for a block in a masked subsystem. The variable k is associated with the Gain parameter.

```
set_param('mymodel/Subsystem', 'k', '10')
```

This command sets the OpenFcn callback parameter of the block named Compute in system mymodel. The function 'my_open_fcn' executes when you double-click on the Compute block (see "Using Callback Functions" in the Simulink User's Guide).


```
set_param('mymodel/Compute', 'OpenFcn', 'my_open_fcn')
```

See Also find_system, get_param

Purpose	Specify model's active configuration set or configuration reference	
Syntax	<pre>setActiveConfigSet('model', 'configObjName')</pre>	
Arguments	<pre>model The name of an open model, or gcs to specify the current model configObjName The name of a configuration set (Simulink.ConfigSet) or configuration reference (Simulink.ConfigSetRef)</pre>	
Description	<pre>setActiveConfigSet specifies the active configuration set or configuration reference (configuration object) of model to be the configuration object specified by configObjName. If no such configuration object is attached to the model, an error occurs. The previously active configuration object becomes inactive.</pre>	
Example	The following example makes DevConfig the active configuration object of the current model. The code is the same whether DevConfig is a configuration set or configuration reference. setActiveConfigSet(gcs, 'DevConfig');	
See Also	"Configuration Sets", "Referencing Configuration Sets" attachConfigSet, attachConfigSetCopy, closeDialog, detachConfigSet, getActiveConfigSet, getConfigSet, getConfigSets, openDialog	

Purpose	Create MATLAB structure describing signed generalized fixed-point data type	
Syntax	a = sfix(TotalBits)	
Description	<pre>sfix(TotalBits) returns a MATLAB structure that describes the data type of a signed generalized fixed-point number with a word size given by TotalBits. sfix is automatically called when a signed generalized fixed-point data type is specified in a block dialog box. Note A default binary point is not included in this data type description. Instead, the scaling must be explicitly defined in the block dialog box.</pre>	
Examples	<pre>Define a 16-bit signed generalized fixed-point data type: a = sfix(16) a = Class: 'FIX' IsSigned: 1 MantBits: 16</pre>	
See Also	fixdt, float, sfrac, sint, ufix, ufrac, uint	

Purpose	Create MATLAB structure describing signed fractional data type	
Syntax	a = sfrac(TotalBits) a = sfrac(TotalBits, GuardBits)	
Description	sfrac(TotalBits) returns a MATLAB structure that describes the data type of a signed fractional number with a word size given by TotalBits.	
	sfrac(TotalBits, GuardBits) returns a MATLAB structure that describes the data type of a signed fractional number. The total word size is given by TotalBits with GuardBits bits located to the left of the binary point.	
	sfrac is automatically called when a signed fractional data type is specified in a block dialog box.	
	The most significant (leftmost) bit is the sign bit. The default binary point for this data type is assumed to lie immediately to the right of the sign bit. If guard bits are specified, they lie to the left of the binary point and to right of the sign bit. For example, the structure for an 8-bit signed fractional data type with 4 guard bits is:	

Examples Define an 8-bit signed fractional data type with 4 guard bits. Note that the range of this number is $-2^4 = -16$ to $(1 - 2^{(1-8)}) \cdot 2^4 = 15.875$:

```
a = sfrac(8,4)
a =
Class: 'FRAC'
IsSigned: 1
```

sfrac

MantBits: 8 GuardBits: 4

See Also fixdt, float, sfix, sint, ufix, ufrac, uint

Purpose	Create and access Signal Builder blocks	
Syntax	<pre>[time, data] = signalbuilder(block) [time, data, siglabels] = signalbuilder(block) [time, data, siglabels, grouplabels] = signalbuilder(block) block = signalbuilder([], 'create', time, data, siglabels,</pre>	
	<pre>block = signalbuilder(path, 'create', time, data, siglabels, grouplabels) block = signalbuilder(path,'create', time, data, siglabels, grouplabels, vis) block = signalbuilder(path,'create', time, data, siglabels, grouplabels, vis, pos)</pre>	
	<pre>block = signalbuilder(block, 'append', time, data, siglabels, grouplabels)</pre>	
	[time, data] = signalbuilder(block, 'get', signal, group) signalbuilder(block, 'set', signal, group, time, data)	
	index = signalbuilder(block, 'activegroup') signalbuilder(<i>block</i> , 'activegroup', <i>index</i>)	
	signalbuilder(block, 'print', []) signalbuilder(block, 'print', config, printArgs) figh = signalbuilder(block, 'print', config, 'figure')	
Description	Use the signalbuilder command to interact programmatically with Signal Builder blocks.	
	 "Create and Access Signal Builder Blocks" on page 4-154 "Get/Set Methods for Specific Signals and Groups" on page 4-155 "Query and Set the Active Group" on page 4-156 	

• "Print Signal Groups" on page 4-156

Create and Access Signal Builder Blocks

[time, data] = signalbuilder(block) returns the time
(x-coordinate) and amplitude (y-coordinate) data of the Signal Builder
block, block.

The output arguments, time and data, take different formats depending on the block configuration:

Configuration	Time/Data Format
1 signal, 1 group	Row vector of break points.
>1 signal, 1 group	Column cell vector where each element corresponds to a separate signal and contains a row vector of breakpoints.
1 signal, >1 group	Row cell vector where each element corresponds to a separate group and contains a row vector of breakpoints.
>1 signal, >1 group	Cell matrix where each element (i, j) corresponds to signal i and group j.

[time, data, siglabels] = signalbuilder(*block*) returns the signal labels, siglabels, in a string or a cell array of strings.

[time, data, siglabels, grouplabels] = signalbuilder(*block*) returns the group labels, grouplabels, in a string or a cell array of strings.

block = signalbuilder([], 'create', time, data, siglabels, grouplabels) creates a Signal Builder block in a new Simulink model using the specified values. The preceding table describes the allowable formats of time and data. If data is a cell array and time is a vector, the time values are duplicated for each element of data. Each vector in time and data must be the same length and have at least two elements. If time is a cell array, all elements in a column must have the same initial and final value. Signal labels, siglabels, and group labels, *grouplabels*, can be omitted to use default values. The function returns the path to the new block, block.

block = signalbuilder(path, 'create', time, data, siglabels, grouplabels) creates a new Signal Builder block at path using the specified values. If path is empty, the function creates a block in a new model, which has a default name. If data is a cell array and time is a vector, the time values are duplicated for each element of data. Each vector within time and data must be the same length and have at least two elements. If time is a cell array, all elements in a column must have the same initial and final value. Signal labels, siglabels, and group labels, grouplabels, can be omitted to use default values. The function returns the path to the new block, block.

block = signalbuilder(path, 'create', time, data, siglabels, grouplabels, vis) creates a new Signal Builder block and sets the visible signals in each group based on the values of the matrix vis. This matrix must be the same size as the cell array, data.

block = signalbuilder(path, 'create', time, data, siglabels, grouplabels, vis, pos) creates a new Signal Builder block and sets the block position to pos.

block = signalbuilder(block, 'append', time, data, siglabels, grouplabels) appends new groups to the Signal Builder block, block. The time and data arguments must have the same number of signals as the existing block.

Get/Set Methods for Specific Signals and Groups

[time, data] = signalbuilder(*block*, 'get', *signal*, *group*) gets the time and data values for the specified signal(s) and group(s). The signal argument can be the name of a signal, a scalar index of a signal, or an array of signal indices. The group argument can be a group label, a scalar index, or an array of indices.

signalbuilder(*block*, 'set', *signal*, *group*, *time*, *data*) sets the time and data values for the specified signal(s) and group(s). Use empty values of *time* and *data* to remove groups and signals.

Note The signalbuilder function does not allow you to alter and delete data in the same invocation.

Query and Set the Active Group

index = signalbuilder(block, 'activegroup') gets the index of the active group.

signalbuilder(block, 'activegroup', index) sets the active group
index to index.

Print Signal Groups

signalbuilder(block, 'print', []) prints the currently active
signal group.

signalbuilder(block, 'print', config, printArgs) prints the currently active signal group or the signal group that config specifies. The argument config is a structure that allows you to customize the printed appearance of a signal group. The config structure may contain any of the following fields:

Field	Description	Example Value
groupIndex	Scalar specifying index of signal group to print	2
timeRange	Two-element vector specifying the time range to print (must not exceed the block's time range)	[3 6]
visibleSignals	Vector specifying index of signals to print	[1 2]
yLimits	Cell array specifying limits for each signal's <i>y</i> -axis	{[-1 1], [0 1]}

Field	Description	Example Value
extent	Two-element vector of the form: [width, height]	[500 300]
	specifying the dimensions (in pixels) of the area in which to print the signals	
showTitle	Logical value specifying whether to print a title; true (1) prints the title	false

The optional argument *printArgs* allows you to configure print options (see print in the MATLAB Function Reference).

figh = signalbuilder(block, 'print', config, 'figure') prints
the currently active signal group or the signal group that config
specifies to a new hidden figure handle, figh.

Examples Example 1

The following command creates a new Signal Builder block in a new model editor window:

```
block = signalbuilder([], 'create', [0 5], {[2 2];[0 2]});
```

The Signal Builder block contains two signals in one group. To alter the second signal in the group, use the **set** keyword as follows:

```
signalbuilder(block, 'set', 2, 1, [0 5], [2 0])
```

To delete the first signal from the group, enter the following command:

signalbuilder(block, 'set', 1, 1, [], [])

To add a new signal in a new group, use the append keyword as follows:

signalbuilder(block, 'append', [0 2.5 5], [0 2 0]);

Example 2

The following command creates a new Signal Builder block in a new model editor window:

```
block = signalbuilder([], 'create', [0 2], {[0 1],[1 0]});
```

The Signal Builder block has two groups, each of which contains a signal. To delete the second group, simply delete its signal with the following command:

```
signalbuilder(block, 'set', 1, 2, [], [])
```

Example 3

The following command creates a new Signal Builder block in a new model editor window:

```
block = signalbuilder([], 'create', [0 1], ...
{[0 0],[1 1];[1 0],[0 1];[1 1],[0 0]});
```

The Signal Builder block has two groups, each of which contains three signals.

Purpose	Simulate dynamic system
Syntax	<pre>sim(model,timespan,options,ut); [t,x,y] = sim(model,timespan,options,ut); [t,x,y1, y2,, yn] = sim(model,timespan,options,ut);</pre>
Description	The sim command causes the specified Simulink model to be executed. The model is executed with the data passed to the sim command, which may include parameter values specified in an options structure. The values in the structure override the values shown for block diagram parameters in the Configuration Parameters dialog box, and the structure may set additional parameters that are not otherwise available (such as DstWorkSpace). The parameters in an options structure are useful for setting conditions for a specific simulation run. Use the simset command to create an options structure for use by the sim command. The simset command inputs name-value pairs and sets each named parameter to the value indicated. You do not need to specify values for all block diagram parameters that simset accepts. In most cases, an unspecified parameter defaults to the block diagram
	 value that is current when sim executes the model, but some exceptions exist. See the simset command documentation for details. Note If you use an options structure, check the simset documentation to determine the values used by the sim command for the parameters that you do not specify. With one exception, the default workspace for a simulation executed by the sim command is the MATLAB workspace. The exception is that the default workspace for To Workspace blocks is the workspace of the function that invoked the sim command.

Superseding the Base Workspace

When you run a simulation interactively, Simulink tries to resolve any symbols used in the model to appropriate workspace items, as described in "Resolving Symbols" and "Hierarchical Symbol Resolution", and it writes any exported or logged data to the MATLAB base workspace, as described in "Importing and Exporting Data" and "Logging Signals".

When you use the sim command to run a simulation programmatically, you have two options that do not exist with interactive simulation: you can specify a workspace other than the MATLAB base workspace as the last workspace searched in hierarchical symbol resolution, and a workspace other than the MATLAB base workspace as the destination for any data logged or exported during simulation.

Most simulation is interactive, so most Simulink documentation does not mention these possibilities: it unconditionally describes the MATLAB base workspace as the final workspace searched during hierarchical symbol resolution, and the workspace to which any exported or logged data is written.

To supersede the base workspace for symbol resolution, data output, or both, provide an options structure to the sim command and set one or both of the following two structure fields:

- SrcWorkspace Specifies which workspace is searched last during hierarchical symbol resolution.
- DstWorkspace Specifies which workspace is the destination of any logged or exported data.

Each of these fields can take any of these three values:

- base Use the base workspace, just as it would be used if no options structure had been provided.
- current Supersede the base workspace with the workspace of the function that called the sim command.

• parent — Supersede the base workspace with the workspace of the function that called the function that called the sim command.

Note When you create a new options structure, the default value for SrcWorkspace is base, but the default for DstWorkspace is current, which can cause unexpected behavior if you inadvertently accept it. See the simset documentation for a complete list of all options structure fields and their default values.

If you execute the sim command without providing an options structure, hierarchical resolution, data logging, and data export occur exactly as they do for interactive simulation. When you supersede the base workspace, the change is effective only for the duration of the sim command. After the command completes, the base workspace is accessible just as it was previously. You cannot supersede the base workspace for a sequence of programmatic simulations by setting a global state: each execution of the sim command must specify its own SrcWorkspace or DstWorkspace as needed.

Limitation with Referenced Model Accelerator Mode

When the sim command executes a referenced model in Accelerator mode, the source workspace is always the MATLAB base workspace (SrcWorkspace is base) even if a simset options structure specifies some other source workspace.

Parallel Processing with sim

Simulink fully supports calling sim directly from parfor to perform simultaneous simulations in rapid accelerator mode, provided the up-to-date check is 'off'. For other methods of simulation, sim is not fully compatible with the parfor function. For more information, see "Running Parallel Simulations"

Arguments

t	Returns the simulation's time vector.	
x	Returns the simulation's state matrix consisting of continuous states followed by discrete states.	
У	Returns the simulation's output matrix. Each column contains the output of a root-level Outport block, in port number order. If any Outport block has a vector input, its output takes the appropriate number of columns.	
y1,,yn	Each y _i returns the output of the corresponding root-level Outport block for a model that has n such blocks.	
model	Name of a block diagram.	
timespan	Simulation start and stop time. Specify as one of these:	
	tFinal to specify the stop time. The start time is 0.	
	[tStart tFinal] to specify the start and stop times.	
	[tStart OutputTimes tFinal] to specify the start and stop times and time points to be returned in t. Generally, t includes more time points. OutputTimes is equivalent to specifying Configuration Parameters > Data Import/Export > Output options > Produce specified output only.	

options	Optional simulation parameters specified as a structure created by the simset command (see simset).
ut	 Optional external inputs. UT can be: A MATLAB function (expressed as a string) that specifies the input:
	'sin(t)' at each simulation time step.
	• A table of input values versus time for all input ports:
	UT = [T, U1, Un] where T = [t1,, tm]'
	• A structure array containing data for all input ports.
	• A comma-separated list of tables. Each table corresponds to a specific input port, and must be an array, a structure, a Simulink.Timeseriesobject, or a Simulink.TsArray object.
	See "Importing Data from a Workspace" for a description of the array and structure input formats.

Examples This command simulates the Van der Pol equations, using the vdp model that comes with Simulink software. The command uses all default parameters.

[t,x,y] = sim('vdp')

This command simulates the Van der Pol equations, using the parameter values associated with the vdp model, but defines a value for the Refine parameter.

```
[t,x,y] = sim('vdp', [], simset('Refine',2));
```

This command simulates the Van der Pol equations for 1,000 seconds, saving the last 100 rows of the return variables. The simulation outputs values for t and y only, but saves the final state vector in a variable called xFinal.

See Also simset, simget

Purpose	Get settings of model's simulation parameters
Syntax	<pre>struct = simget(model) value = simget(model, 'param') value = simget(OptionStructure, param) simget</pre>
Description	<pre>struct = simget(model) returns the current simulation parameter settings for the specified model as a structure compatible with the options argument of the sim command. You can use this command along with the simset command to override model-specified simulation options for a particular simulation run. See simset for more information. If the model uses a workspace variable to specify a simulation parameter, simget returns the variable's value, not its name. If the variable does not exist in the workspace, Simulink software issues an error message.</pre>
	<pre>value = simget(model, 'param') returns the value of the simulation parameter, 'param', specified by the model, model.</pre>
	<pre>value = simget(OptionStructure, param) extracts the value of the specified simulation parameter from OptionStructure, returning an empty matrix if the value is not specified in the structure. param can be a cell array containing a list of parameter names. If a cell array is used, the output is also a cell array.</pre>
	<pre>simget returns a structure containing the names of simulation parameters recognized by the simget command.</pre>
	You need to enter only as many leading characters of a property name as are necessary to identify it.
Examples	This command retrieves the simulation options for the vdp model. options = simget('vdp');

This command retrieves the value of the $\ensuremath{\mathsf{Refine}}$ property for the vdp model.

refine = simget('vdp', 'Refine');

See Also sim, simset

```
PurposePlot simulation data in figure windowSyntaxsimplot(data);<br/>simplot(time, data);<br/>simplot(data, ports);<br/>simplot(data, 'diff')<br/>simplot(time, data, ports, 'diff')
```

```
Description The simplot command plots output from a simulation in a Handle Graphics<sup>®</sup> figure window. The plot looks like the display on the screen of a Scope block. Plotting the output on a figure window allows you to annotate and print the output.
```

The data to be plotted can be either a data structure or a matrix of the form produced by Simulink output blocks.

Specifying a Separate Time Vector

If data is a matrix or a structure without time, you can specify a separate time vector. time must be a vector with the same length as data.

Foe example:

simplot(time,data)

Specifying Specific Ports to Display

If data is a structure produced by a multi-port Scope block, the data from each port is displayed in a separate subplot. You can select specific ports to display by supplying a vector of port indices.

For example:

```
ports = [1,3];
simplot(data,ports)
```

plots the data from the first and third ports.

Overlaying Plots from Multiple Runs

If data is a cell array of structures or matrices, Simulink software overlays the plots from each element so that you can compare multiple runs. Each run is assumed to have identical structure. Line styles are used to differentiate between runs.

For example:

```
data = {run1, run2};
simplot(data)
```

overlays the data from run1 and run2.

Note If data contains Matrices or Structures without time, the data sets for all runs must be the same size.

You can use the 'diff' flag to display the differences between multiple runs. When you specify the 'diff' flag, Simulink software subtracts the first run from subsequent runs, and plots the results with the line style of the final run being compared.

For example:

```
data = {run1,run2};
simplot(data, 'diff')
```

plots run2 — run 1 using the line style of run2.

Note Simulink software uses linear interpolation if the time vectors are not identical.

If the start and stop times differ between runs, the difference is only plotted for the region of overlap.

Combining Input Argument Options:

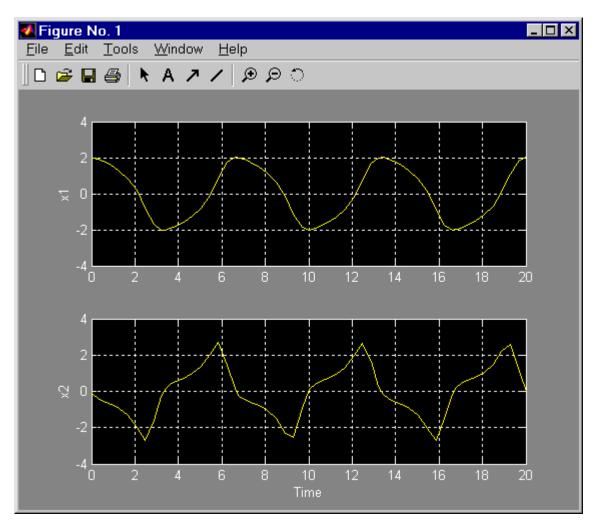
The options described above can be used in various combinations. All input arguments except for data are optional but when included must be entered in the following order:

```
simplot(time, data, ports, 'diff')
```

Obtaining Object Handles

You can obtain the handles for the plotted figure, its axes and lines using the simplot command:

- hfig = simplot(data) returns the figure handles.
- haxes = simplot(data) returns the handles for the figure axes.
- hlins = simplot(data) returns the handles for the lines in the figure.


Arguments	data	Data produced by one of the Simulink output blocks (for example, a root-level Outport block or a To Workspace block) or in one of the output formats used by those blocks: Array , Structure , Structure with time (see "Data Import/Export Pane").
	time	The vector of sample times produced by an output block when you have selected Array or Structure as the simulation's output format. The simplot command ignores this argument if the format of the data is Structure with time.

simplot

ports	The vector of port indices from which to display data. If the data is a structure produced by a multi-port Scope block, the data from each port is displayed in a separate subplot.
'diff'	Displays the differences between multiple runs. When you specify the 'diff' flag, Simulink software subtracts the first run from subsequent runs, and plots the results with the line style of the final run being compared.

Examples The following sequence of commands

```
vdp
set_param(gcs, 'SaveOutput', 'on')
set_param(gcs, 'SaveFormat', 'StructureWithTime')
sim(gcs)
simplot(yout)
```


plots the output of the vdp demo model on a figure window as follows.

sim, set_param, plot

simset

Purpose	Specify simulation options for simulations run via sim command		
Syntax	options = simset(param, value,); options = simset(old_opstruct, param, value,); options = simset(old_opstruct, new_opstruct); simset		
Description	The simset command creates and returns the structure required by the options argument of the sim command. The structure specifies the simulation parameter values to be used for the simulation run initiated by the sim command.		
	The block diagram parameter values in an options structure created by simset affect simulation only when the sim command executes with that options structure as an argument. After the simulation terminates, the values shown for block diagram parameters in the Configuration Parameters dialog box remain unchanged. The options structure persists and can be reused, perhaps after changing some of its values.		
	Note Use the set_param command to change a corresponding block diagram configuration parameter.		
	You can enter the values of the parameters as paired arguments of the simset command, e.g., 'Debug', 'on'. You need enter only as many leading characters as are necessary to identify a parameter. The structure contains default values for parameters that you do not specify.		
	options = simset(param, value,) returns an options structure containing the specified values for the specified parameters and default values for unspecified parameters.		
	options = simset(old_opstruct, param, value,) modifies the specified parameters in old_opstruct, an existing structure. You can use this form of the command to override the values of simulation parameters specified by the model to be simulated. To do this, use the		

	<pre>simget command to get the settings specified by the model and pass the settings to simset along with the parameters that you want to override.</pre>				
	options = simset(old_opstruct, new_opstruct) combines two existing options structures, old_opstruct and new_opstruct, into options. Any properties defined in new_opstruct overwrite the same properties defined in old_opstruct.				
	simset with no input arguments displays all parameter names and values that the simset command can specify				
	If a parameter is set more than once within a call to the simset command, the last specified value is used. For example:				
	<pre>simset('MaxStep', 0.01, 'MaxStep', 0.02)</pre>				
	assigns the final value of 0.02 to the MaxStep parameter.				
Parameters	AbsTol positive scalar {1e-6} <i>Absolute error tolerance.</i> This scalar applies to all elements of the state vector. AbsTol applies only to the variable-step solvers.				
	<pre>Debug 'on' {'off'} cmds Debug. Starts the simulation in debug mode (see "Starting the Debugger" in Simulink User's Guide for more information). The value of this option can be a cell array of commands to be sent to the debugger after it starts, e.g.,</pre>				
	<pre>opts = simset('debug', {'strace 4', 'diary solvertrace.txt', 'cont', 'diary off', 'cont'}) sim('vdp',[], opts);</pre>				
	Decimation positive integer {1} Decimation for output variables. Decimation factor applied to the return variables t, x, and y. A decimation factor of 1 returns				

simset

every data logging time point, a decimation factor of 2 returns every other data logging time point, etc.

DstWorkspace base | {current} | parent Where to assign variables. Specifies the workspace in which to assign any variables defined as return variables or as output variables on the To Workspace block. See "Superseding the Base Workspace" on page 4-160 for details.

ExtrapolationOrder 1 | 2 | 3 | {4} *ode14x extrapolation order*. Specifies extrapolation order of the ode14x implicit fixed-step solver.

FinalStateName string {''}

Name of final states variable. This property specifies the name of a variable in which Simulink software saves the model's states at the end of the simulation.

FixedStep positive scalar

Fixed step size. This property applies only to the fixed-step solvers. If the model contains discrete components, the default is the fundamental sample time; otherwise, the default is one-fiftieth of the simulation interval.

InitialState vector {[]}

Initial continuous and discrete states. The initial state vector consists of the continuous states (if any) followed by the discrete states (if any). InitialState supersedes the initial states specified in the model. The default, an empty matrix, causes the initial state values specified in the model to be used. The initial state values can be specified using either an array, structure, or structure-with-time format. See Importing and Exporting States for more information.

InitialStep positive scalar {auto}

Suggested initial step size. This property applies only to the variable-step solvers. The solvers try a step size of InitialStep first. By default, the solvers determine an initial step size automatically.

MaxOrder 1 | 2 | 3 | 4 | {5} Maximum order of ode15s. This property applies only to ode15s.

MaxDataPoints nonnegative integer {0} *Limit number of output data points.* This property limits the number of data points returned in t, x, and y to the last MaxDataPoints data logging time points. If specified as 0, the default, no limit is imposed.

MaxStep positive scalar {auto} Upper bound on the step size. This property applies only to the variable-step solvers and defaults to one-fiftieth of the simulation interval.

MinStep [positive scalar, nonnegative integer] {auto} Lower bound on the step size. This property applies only to variable-step solvers and defaults to a value based upon the machine precision.

NumberNewtonIterations positive integer {1} Number of Newton iterations. Specifies number of Newton's Method iterations to be performed by the ode14x implicit fixed-step solver.

OutputPoints {specified} | all Determine output points. When set to specified, the solver produces outputs t, x, and y only at the times specified in timespan. When set to all, t, x, and y also include the time steps

taken by the solver.

OutputVariables {txy} | tx | ty | xy | t | x | y Set output variables. If 't', 'x', or 'y' is missing from the property string, the solver produces an empty matrix in the corresponding output t, x, or y.

Refine positive integer {1} Output refine factor. This property increases the number of output points by the specified factor, producing smoother output. Refine applies only to the variable-step solvers. It is ignored if output times are specified. RelTol positive scalar {1e-3} *Relative error tolerance.* This property applies to all elements of the state vector. The estimated error in each integration step satisfies e(i) <= max(RelTol*abs(x(i)),AbsTol(i))</pre> This property applies only to the variable-step solvers and defaults to 1e-3, which corresponds to accuracy within 0.1%. Solver VariableStepDiscrete | ode45 | ode23 | ode113 | ode15s | ode23s | FixedStepDiscrete | ode5 | ode4 | ode3 | ode2 | ode1 Method to advance time. This property specifies the solver that is used to advance time. SaveFormat {'Array'} | 'Structure' | 'StructureWithTime' How to save output to workspace. Specifies format for exporting model states and root-level outputs to the MATLAB workspace. See "Exporting Data to the MATLAB Workspace" for more information. SrcWorkspace {base} | current | parent Where to evaluate expressions. This property specifies the workspace in which to evaluate MATLAB expressions defined in the model. See "Superseding the Base Workspace" on page 4-160 for more information. Limitation: Setting SrcWorkspace has no effect on a referenced model that executes in Accelerator mode. 'minstep', 'siminfo', 'compile' {''} Trace Tracing facilities. This property enables simulation tracing facilities (specify one or more as a comma-separated list): • The 'minstep' trace flag specifies that simulation stops when the solution changes so abruptly that the variable-step solvers

> cannot take a step and satisfy the error tolerances. By default, Simulink software issues a warning message and continues

the simulation.

4-176

- The 'siminfo' trace flag provides a short summary of the simulation parameters in effect at the start of simulation.
- The 'compile' trace flag displays the compilation phases of a block diagram model.

ZeroCross {on} | off Enable/disable location of zero crossings. This property applies only to the variable-step solvers. If set to off, variable-step solvers do not detect zero crossings for blocks having intrinsic zero-crossing detection. The solvers adjust their step sizes only to satisfy error tolerance.

SignalLogging {on} | off Enable/disable signal logging. This parameter enables signal logging for the model, overriding the Signal logging setting in the Configuration Parameters dialog box.

SignalLoggingName string Specify signal logging name. This parameter specifies the name of the signal logging object used to record logged signal data in the MATLAB workspace. It overrides the **Signal logging** name setting in the **Configuration Parameters** dialog box.

Unspecified Parameters

You do not need to specify values for all block diagram parameters that simset accepts. In most cases, an unspecified parameter defaults to the block diagram value that is current when sim executes the model, but some options (such as MaxDataPoints) take on a different value. Additionally, not all parameters accepted by simset have an equivalent block diagram parameter.

For each parameter that simset accepts, the following table shows the equivalent block diagram parameter (if any) and the default value that applies if simset is called with no value specified for that simset parameter.

Name of option specified to simset	Equivalent Block Diagram Parameter	Default Value when not specified to simset
AbsTol	AbsTol	Block diagram parameter
ConsecutiveZCsStepRelTol	ConsecutiveZCsStepRelTol	Block diagram parameter
Debug	Not available	Not available
Decimation	Decimation	Block diagram parameter
DstWorkspace	Not available	Not available
ExtrapolationOrder	ExtrapolationOrder	Block diagram parameter
FinalStateName	SaveFinalState is 'on' and FinalStateName is non-empty	Block diagram parameter
FixedStep	FixedStep	Block diagram parameter
InitialState	InitialState	Block diagram parameter
InitialStep	InitialStep	Block diagram parameter

Name of option specified to simset	Equivalent Block Diagram Parameter	Default Value when not specified to simset
MaxConsecutiveMinStep	MaxConsecutiveMinStep	Block diagram parameter
MaxConsecutiveZCs	MaxConsecutiveZCs	Block diagram parameter
MaxDataPoints	MaxDataPoints	All points (no limit)
MaxOrder	MaxOrder	Block diagram parameter
MaxStep	MaxStep	Block diagram parameter
MinStep	MinStep	Block diagram parameter
NumberNewtonIterations	NumberNewtonIterations	Block diagram parameter
OutputPoints	Not available	Not available
OutputVariables	Not available	Not available
Refine	Refine	Block diagram parameter

Name of option specified to simset	Equivalent Block Diagram Parameter	Default Value when not specified to simset
RelTol	RelTol	Block diagram parameter
SaveFormat	SaveFormat	Array
SignalLogging	SignalLogging	Block diagram parameter
SignalLoggingName	SignalLoggingName	Block diagram parameter
Solver	Solver	Block diagram parameter
SrcWorkspace	Not available	Not available
TimeOut	Not available	Not available
Trace	Not available	Not available
ZeroCross is 'on'	ZeroCrossControl is enable all	Block diagram parameter
ZeroCross is 'off'	ZeroCrossControl is disable all	Block diagram parameter

Examples

This command creates an options structure called myopts that defines values for the MaxDataPoints and Refine parameters, using default values for other parameters.

```
myopts = simset('MaxDataPoints', 100, 'Refine', 2);
```

This command simulates the vdp model for 10 seconds and uses the parameters defined in myopts.

```
[t,x,y] = sim('vdp', 10, myopts);
```

The following command overrides the signal logging setting specified by the vdp model.

```
sim('vdp', 10, simset(simget('vdp'), 'SignalLogging', 'on'))
```

See Also sim, simget

simulink

Purpose	Open Simulink block library
Syntax	simulink simulink('open') simulink('close')
Description	<pre>simulink or simulink('open') opens the Simulink Library Browser. simulink('close') closes the Library Browser.</pre>

Syntax ts = Simulink.Block.getSampleTimes(block) Arguments block Full name or handle of a Simulink block Returns ts The command returns ts which is a 1xn array of Simulink.SampleTime objects associated with the model passed to Simulink.Block.getSampleTimes. Here n is the number of sample times associated with the block. The format of the returns is: 1xn Simulink.SampleTime Package: Simulink value: [1x2 double] Description: [char string] ColorRGBValue: [1x2 double] OwnerBlock: [char string] ComponentSampleTimes: [1x2 struct] Methods • value — A two-element array of doubles that contains the sample time period and offset • Description — A character string that describes the sample time type • ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample time color	Purpose	Return sample time information for a block
Full name or handle of a Simulink block Returns ts The command returns ts which is a 1xn array of Simulink.SampleTime objects associated with the model passed to Simulink.Block.getSampleTimes. Here n is the number of sample times associated with the block. The format of the returns is: 1xn Simulink.SampleTime Package: Simulink value: [1x2 double] Description: [char string] ColorRGBValue: [1x3 double] Annotation: [char string] ComponentSampleTimes: [1x2 struct] Methods value — A two-element array of doubles that contains the sample time period and offset Description — A character string that describes the sample time type ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample time color Annotation — A character string that represents the annotation of a 	Syntax	<pre>ts = Simulink.Block.getSampleTimes(block)</pre>
<pre>The command returns ts which is a 1xn array of Simulink.SampleTime objects associated with the model passed to Simulink.Block.getSampleTimes. Here n is the number of sample times associated with the block. The format of the returns is: 1xn Simulink.SampleTime Package: Simulink value: [1x2 double] Description: [char string] ColorRGBValue: [1x3 double] Annotation: [char string] OwnerBlock: [char string] ComponentSampleTimes: [1x2 struct] Methods</pre> value — A two-element array of doubles that contains the sample time period and offset Description — A character string that describes the sample time type ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample time color Annotation — A character string that represents the annotation of a 	Arguments	
specific sample time (e.g., 'D1')	Returns	The command returns ts which is a 1xn array of Simulink.SampleTime objects associated with the model passed to Simulink.Block.getSampleTimes. Here n is the number of sample times associated with the block. The format of the returns is: 1xn Simulink.SampleTime Package: Simulink value: [1x2 double] Description: [char string] ColorRGBValue: [1x3 double] Annotation: [char string] OwnerBlock: [char string] ComponentSampleTimes: [1x2 struct] Methods • value — A two-element array of doubles that contains the sample time period and offset • Description — A character string that describes the sample time type • ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample time color

	• OwnerBlock — For asynchronous and variable sample times, a string containing the full path to the block that controls the sample time. For all other types of sample times, an empty string.
	• ComponentSampleTimes — A structure array of elements of the same type as Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or if the sample time is hybrid and the component sample times are available.
Description	ts = Simulink.Block.getSampleTimes(<i>block</i>) performs an update diagram and then returns the sample times of the block connected to the input argument <i>mdl/signal</i> . This method performs an update diagram to ensure that the sample time information returned is up-to-date. If the model is already in the compiled state via a call to the model API, then an update diagram is not necessary.
	Using this method allows you to access all information in the Sample Time Legend programmatically.
See Also	Simulink.BlockDiagram.getSampleTimes

Purpose	Add Bus to Vector blocks to convert virtual bus signals into vector signals
Syntax	<pre>[DstBlocks, BusToVectorBlocks] = Simulink.BlockDiagram.addBusToVector(model) [DstBlocks, BusToVectorBlocks] = Simulink.BlockDiagram.addBusToVector(model, includeLibs) [DstBlocks, BusToVectorBlocks] = Simulink.BlockDiagram.addBusToVector(model, includeLibs, reportOnly)</pre>
Arguments	model Model name or handle
	<i>includeLibs</i> Boolean specifying whether to search library blocks. Default: false; the function does not search library blocks.
	<i>reportOnly</i> Boolean specifying whether to change the model or just generate a report. Default: true; the function just generates a report.
Returns	DstBlocks An array of structures that contain information about blocks that are connected to buses but treat the buses as vectors. If no such blocks exist the array has 0 length. Each structure in the array contains the following fields:
	BlockPath A string specifying the path to the block to which the bus connects
	InputPort An integer specifying the input port to which the bus connects

LibPath

If the block is a library block instance, and *includeLibs* is true, the path to the source library block. Otherwise, LibPath is empty ([]).

BusToVectorBlocks

If *reportOnly* is false, and *model* contains any buses used as vectors, a cell array containing the path to each Bus to Vector block that was added to the model. Otherwise, *BusToVectorBlocks* is empty ([]).

Description Simulink.BlockDiagram.addBusToVector reports whether a model contains any bus signals used implicitly as vectors, and optionally changes the model by inserting a Bus to Vector block into each such signal, replacing the implicit use with an explicit conversion. The report and any changes can be limited to the model itself, or can be extended to include any library block of which an instance appears in the model.

Before executing this function, you must do the following:

- 1 Set Configuration Parameters > Diagnostics > Connectivity
 > Buses > Mux blocks used to create bus signals to error,
 or equivalently, execute set_param (model, 'StrictBusMsg',
 'ErrorLevel1').
- 2 Ensure that the model compiles without error.
- **3** Save the model.

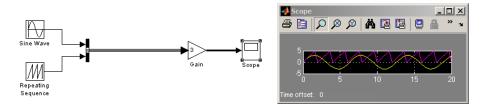
If *includeLibs* is false (the default), the function does not report on or change any blocks in libraries. If the argument is true, the function reports on and may change blocks in libraries.

If *reportOnly* is true (the default), the function does not change the model or any libraries, displays the number of buses used as vectors, and returns a report in *DstBlocks*.

If *reportOnly* is false, the function displays the number of buses used as vectors, returns a report in *DstBlocks* and *BusToVectorBlocks*, and

inserts a Bus to Vector block into each bus that is used as a vector, in the model and optionally in any libraries. The signal's source and destination blocks are unchanged by this insertion.

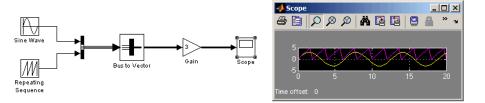
Note If Simulink.BlockDiagram.addBusToVector adds Bus to Vector blocks to the model or any library, the function permanently changes the saved copy of the diagram. Be sure to back up the model and any libraries before calling the function with *reportOnly* specified as false.


Caution

If Simulink.BlockDiagram.addBusToVector changes a library block, the change affects every instance of that block in every Simulink model that uses the library. To preview the effects of the change on blocks in all models, call Simulink.BlockDiagram.addBusToVector with *includeLibs* = true and *reportOnly* = true, then examine the information returned in *DstBlocks*.

The Bus to Vector block is intended only for use in existing models to facilitate the elimination of implicit conversion of buses into vectors. New models and new parts of existing models should avoid implicitly using buses as vectors, and should not use Bus to Vector blocks for any purpose. See Avoiding Mux/Bus Mixtures for more information about using Simulink.BlockDiagram.addBusToVector.

Example


The following model simulates correctly, but the input to the Gain block is a bus, while the output is a vector. Thus the Gain block uses a block as a vector.

If the model shown is open as the current model, you can eliminate the implicit conversion with the following command:

Simulink.BlockDiagram.addBusToVector(gcs, false, false)

Rebuilding and simulating the model then gives this result:

The Gain block no longer implicitly converts the bus to a vector; the inserted Bus to Vector block performs the conversion explicitly. Note that the results of simulation are the same for both models. The Bus to Vector block is virtual, and never affects simulation results, code generation, or performance.

See Also

- "Using Composite Signals"
- "Using Buses"
- Avoiding Mux/Bus Mixtures
- Bus Assignment
- Bus Creator
- Bus Selector
- Bus to Vector

- Simulink.Bus
- Simulink.Bus.cellToObject
- Simulink.Bus.createObject
- Simulink.BusElement
- Simulink.Bus.objectToCell
- Simulink.Bus.save

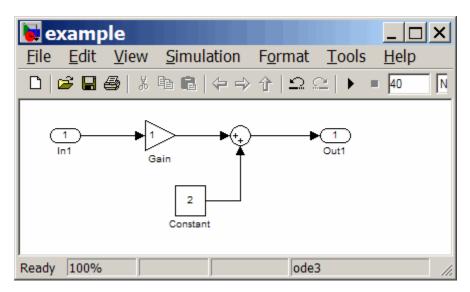
Simulink.BlockDiagram.copyContentsToSubSystem

Purpose	Copy contents of block diagram to empty subsystem
Syntax	Simulink.BlockDiagram.copyContentsToSubSystem(<i>bdiag</i> , <i>subsys</i>)
Arguments	bdiag Block diagram name or handle subsys Subsystem name or handle
Description	Simulink.BlockDiagram.copyContentsToSubSystem copies the contents of the block diagram <i>bdiag</i> to the subsystem <i>subsys</i> . The block diagram and subsystem must have already been loaded. The subsystem cannot be part of the block diagram. The function affects only blocks, lines, and annotations; it does not affect nongraphical information such as configuration sets. You can use this function to convert a referenced model derived from an atomic subsystem into an atomic subsystem that is equivalent to the original subsystem.
Limitation	Simulink.BlockDiagram.copyContentsToSubSystem cannot be used if the destination subsystem contains any blocks or signals. Other types of information can exist in the destination subsystem and are not affected by the function. Use Simulink.SubSystem.deleteContents if necessary to empty the subsystem before using Simulink.BlockDiagram.copyContentsToSubSystem.
Example	<pre>If two block diagrams exist, f14 and f16, and f16 contains an empty subsystem named f14cp, the following code copies the contents of f14, including all nested subsystems, to f16/f14cp. Nongraphical information in f14 is not copied. % open f14 and f16 open_system('f14'); open_system('f14'); % copy the block diagram f14 to an empty subsystem of f16 named f14cp</pre>

Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.BlockDiagram.copyContentsToSubSystem('f14', 'f16/f14cp');

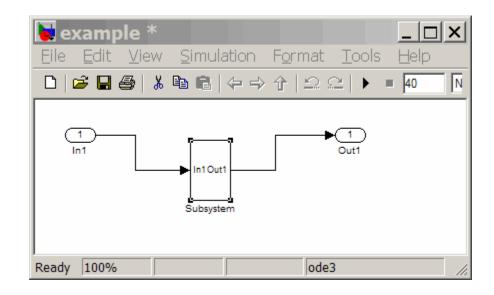
```
% close f14 and f16
close_system('f14', 0);
close_system('f16', 0);
```


See Also Simulink.BlockDiagram.deleteContents Simulink.SubSystem.convertToModelReference Simulink.SubSystem.copyContentsToBlockDiagram Simulink.SubSystem.deleteContents

Simulink.BlockDiagram.createSubSystem

Purpose	Create a subsystem containing a specified set of blocks
Syntax	Simulink.BlockDiagram.createSubSystem(<i>blocks</i>) Simulink.BlockDiagram.createSubSystem()
Arguments	blocks An array of block handles
Description	Simulink.BlockDiagram.createSubSystem(blocks), where <i>blocks</i> is an array of block handles, creates a subsystem and moves the specified blocks into the subsystem. All of the specified blocks must originally reside at the top level of the model or in the same subsystem.
	If any of the blocks have unconnected input ports, the command creates input port blocks for each unconnected input port in the subsystem and connects the input port block to the unconnected input port. The command similarly creates and connects output port blocks for unconnected output ports on the specified blocks. If any of the specified blocks is an input port, the command creates an input port block in the parent system and connects it to the corresponding input port of the newly created subsystem. The command similarly creates and connects output port blocks for each of the specified blocks that is an output port block.
	<pre>Simulink.BlockDiagram.createSubSystem()creates a subsystem out of currently selected blocks.</pre>
Example	The following function converts the contents of a model or subsystem into a subsystem. function convert2subsys(sys)
	<pre>blocks = find_system(sys, 'SearchDepth', 1); bh = []; for i = 2:length(blocks) bh = [bh get_param(blocks{i}, 'handle')]; end Simulink.BlockDiagram.createSubSystem(bh);</pre>

end


Consider, for example, the following model:

Executing

convert2subsys('example');

converts this model to:

See Also Simulink.BlockDiagram.copyContentsToSubSystem Simulink.BlockDiagram.deleteContents Simulink.SubSystem.convertToModelReference Simulink.SubSystem.copyContentsToBlockDiagram

Purpose	Delete contents of block diagram
Syntax	<pre>Simulink.BlockDiagram.deleteContents(bdiag)</pre>
Arguments	bdiag Block diagram name or handle
Description	Simulink.BlockDiagram.deleteContents deletes the contents of the block diagram <i>bdiag</i> . The block diagram must have already been loaded. The function affects only blocks, lines, and annotations; it does not affect nongraphical information such as configuration sets.
Example	<pre>If an open block diagram named f14 exists, the following code deletes the graphical contents of f14, including all subsystems. Nongraphical information in f14 is unaffected. Simulink.BlockDiagram.deleteContents('f14');</pre>
See Also	Simulink.BlockDiagram.copyContentsToSubSystem Simulink.SubSystem.convertToModelReference Simulink.SubSystem.copyContentsToBlockDiagram Simulink.SubSystem.deleteContents

Simulink.BlockDiagram.getChecksum

Purpose	Return checksum of model
Syntax	<pre>[checksum,details] = Simulink.BlockDiagram.getChecksum(mdl)</pre>
Description	[<i>checksum</i> , <i>details</i>] = Simulink.BlockDiagram.getChecksum(<i>md1</i>) returns the checksum of the specified model. Simulink software computes the checksum based on attributes of the model and the blocks the model contains.
	One use of this command is to determine why the Accelerator mode in Simulink software regenerates code. For an example, see the demo slAccelDemoWhyRebuild.
	Note Simulink.BlockDiagram.getChecksum compiles the specified model, using the command <i>model</i> ([], [], [], 'compileForRTW'), if the model is not already in a compiled state. To get the checksum for the model when Simulink software compiles it for simulation, use the command <i>model</i> ([], [], [], 'compile') to place the model in a compiled state before using Simulink.BlockDiagram.getChecksum.
	 This command accepts the argument mdl, which is the full name or handle of the model for which you are returning checksum data. This command returns the following output: checksum — Array of four 32-bit integers that represents the model's 128-bit checksum. details — Structure of the form ContentsChecksum: [1x1 struct] InterfaceChecksum: [1x1 struct] ContentsChecksumItems: [nx1 struct] InterfaceChecksumItems: [nx1 struct]

 ContentsChecksum — Structure of the following form that represents a checksum that provides information about all blocks in the model.

Value: [4x1 uint32] MarkedUnique: [bool]

- Value Array of four 32-bit integers that represents the model's 128-bit checksum.
- MarkedUnique True if any blocks in the model have a property that prevents code reuse.
- InterfaceChecksum Structure of the following form that represents a checksum that provides information about the model.

Value: [4x1 uint32] MarkedUnique: [bool]

- Value Array of four 32-bit integers that represents the model's 128-bit checksum.
- MarkedUnique Always true. Present for consistency with ContentsChecksum structure.
- ContentsChecksumItems and InterfaceChecksumItems Structure arrays of the following form that contain information that Simulink software uses to compute the checksum for ContentsChecksum and InterfaceChecksum, respectively:

```
Handle: [char array]
Identifier: [char array]
Value: [type]
```

• Handle — Object for which Simulink software added an item to the checksum. For a block, the handle is a full block path. For a block port, the handle is the full block path and a string that identifies the port.

• Identifier — Descriptor of the item Simulink software added to the checksum. If the item is a documented parameter, the identifier is the parameter name.

• Value — Value of the item Simulink software added to the checksum. If the item is a parameter, Value is the value returned by

get_param(handle, identifier)

See Also Simulink.SubSystem.getChecksum

Purpose	Return initial state structure of block diagram
Syntax	<pre>x0 = Simulink.BlockDiagram.getInitialState(mdl)</pre>
Description	x0 = Simulink.BlockDiagram.getInitialState(<i>mdl</i>) returns the initial state structure of the block diagram specified by the input argument <i>mdl</i> . This state structure can be used to specify the initial state vector in the Configuration Parameters dialog box or to provide an initial state condition to the linearization commands.
	The command returns x0, a structure of the form time: 0 signals: [1xn struct] where n is the number of states contained in the model, including any models referenced by Model blocks. The signals field is a structure

of the form

```
values: [1xm double]
dimensions: [1x1 double]
label: [char array]
blockName: [char array]
inReferencedModel: [bool]
sampleTime: [1x2 double]
```

- values Numeric array of length m, where m is the number of states in the signal
- \bullet dimensions Length of the values vector
- label Indication of whether the state is continuous (CSTATE) or discrete. If the state is discrete:

The name of the discrete state will be shown for S-function blocks

The name of the discrete state will be shown for those built-in blocks that assign their own names to discrete states

DSTATE is used in all other cases

- blockName Full path to block associated with this state
- inReferencedModel Indication of whether the state originates in a model referenced by a Model block (1) or in the top-level model (0)
- sampleTime Array containing the sample time and offset of the state.

Using the state structure simplifies specifying initial state values for models with multiple states, as each state is associated with the full path to its parent block.

See Also linmod

Purpose	Return all sample times associated with a model
Syntax	<pre>ts = Simulink.BlockDiagram.getSampleTimes(mdl)</pre>
Arguments	<i>md1</i> Name or handle of a Simulink model
Returns	<pre>ts The command returns ts which is a 1xn array of Simulink.SampleTime objects associated with the model passed to Simulink.BlockDiagram.getSampleTimes. Here n is the number of sample times associated with the block diagram. The format of the returns is as follows:</pre>
	• value — A two-element array of doubles that contains the sample time period and offset
	 Description — A character string that describes the sample time type
	• ColorRGBValue — A 1x3 array of doubles that contains the red, green and blue (RGB) values of the sample time color
	• Annotation — A character string that represents the annotation of a specific sample time (e.g., 'D1')

	• OwnerBlock — For asynchronous and variable sample times, a string containing the full path to the block that controls the sample time. For all other types of sample times, an empty string.
	• ComponentSampleTimes — A structure array of elements of the same type as Simulink.BlockDiagram.getSampleTimes if the sample time is an async union or if the sample time is hybrid and the component sample times are available.
Description	ts = Simulink.BlockDiagram.getSampleTimes(<i>md1</i>) performs an update diagram and then returns the sample times associated with the block diagram specified by the input argument <i>md1</i> . The update diagram

block diagram specified by the input argument *md1*. The update diagram ensures that the sample time information returned is up-to-date. If the model is already in the compiled state via a call to the model API, then an update diagram is not necessary.

Using this method allows you to access all information in the Sample Time Legend programmatically.

See Also Simulink.Block.getSampleTimes

Purpose	Convert cell array containing bus information to bus objects
Syntax	<pre>Simulink.Bus.cellToObject(busCell)</pre>
Description	Simulink.Bus.cellToObject(busCell) creates a set of bus objects in the MATLAB base workspace from a cell array of bus information.
See Also	• "Using Composite Signals"
	• "Using Buses"
	Bus Assignment
	• Bus Creator
	• Bus Selector
	Bus to Vector
	• Simulink.Bus
	 Simulink.Bus.createObject
	• Simulink.BusElement
	• Simulink.Bus.objectToCell
	• Simulink.Bus.save

Purpose	Create bus objects for blocks
Syntax	<pre>busInfo = Simulink.Bus.createObject(model, blks) busInfo = Simulink.Bus.createObject(model, blks, 'fileName') busInfo = Simulink.Bus.createObject(model, blks, 'fileName', 'format')</pre>
Description	 Simulink.Bus.createObject(model, blks, 'fileName', 'format') creates bus objects, i.e., instances of Simulink.Bus class, in the MATLAB workspace for specified blocks and optionally saves the bus objects in an M-file. The function accepts the following arguments: model — Name or handle of a model
	• <i>model</i> — Name or handle of a model
	 b1ks — List of subsystem-level Inport blocks, root-level or subsystem-level Outport blocks or Bus Creator blocks in the specified model. If only one block needs to be specified, this argument can be the full pathname of the block. Otherwise, this argument can be either a cell array containing block pathnames or a vector of block handles.
	• <i>'fileName'</i> — Name of the file in which to save the bus objects created by this function. If this argument is omitted, this function does not save the created bus objects in a file.
	• 'format' — Format used to store the bus objects. May be 'cell' or 'object' or omitted in which case 'cell' is assumed. Use cell array format to save the objects in a compact form.
	This function returns a structure array containing bus information for the specified blocks. Each element of the structure array corresponds to one of the specified blocks and contains the following fields:
	 block — Handle of the block
	• busName — Name of the bus object associated with the block
See Also	• "Using Composite Signals"

- "Using Buses"
- Bus Assignment
- Bus Creator
- Bus Selector
- Bus to Vector
- Simulink.Bus
- Simulink.Bus.cellToObject
- Simulink.BusElement
- Simulink.Bus.objectToCell
- Simulink.Bus.save

Simulink.Bus.objectToCell

Purpose	Convert bus objects to cell array containing bus information
Syntax	<pre>Simulink.Bus.objectToCell(busNames)</pre>
Description	Simulink.Bus.objectToCell(<i>busNames</i>) creates a cell array of cell arrays that contains bus information from a set of bus objects in the MATLAB base workspace. Each element of the cell array represents a bus object that has been converted.
	The argument <i>busNames</i> is a cell array of bus object names to convert to cell arrays. If the specified array is empty, the function converts all bus objects in the base workspace.
	The function converts each bus object to a cell array with the following data:
	{BusName, HeaderFile, Description, BusElements}
	The <i>BusElements</i> field is an array containing the following data for each element:
	<pre>{ElementName, Dimensions, DataType, SampleTime, Complexity, SamplingMode}</pre>
See Also	 "Using Composite Signals" "Using Buses" Bus Assignment Bus Creator Bus Selector Bus to Vector Simulink.Bus Simulink.Bus.cellToObject Simulink.Bus.createObject

- Simulink.BusElement
- Simulink.Bus.save

Simulink.Bus.save

Purpose	Save bus objects in M-file
Syntax	Simulink.Bus.save('fileName') Simulink.Bus.save('fileName', 'format') Simulink.Bus.save('fileName', 'format', busNames)
Description	Simulink.Bus.save('fileName', 'format', busNames) saves bus objects, i.e., instances of Simulink.Bus class, residing in the MATLAB workspace in an M-file. Executing the M-file restores the objects to the workspace. This function takes the following arguments:
	• 'fileName' — Name of the file in which to store the bus objects
	• 'format' — Format used to store the bus objects. May be 'cell' or 'object' or omitted in which case 'cell' is assumed. Use cell array format to save the objects in a compact form.
	When the M-file generated for the <code>'cell'</code> format executes, it
	 Calls Simulink.Bus.cellToObject to recreate the bus objects
	 Returns the new bus objects in the cell array
	To suppress the creation of bus objects, specify the optional argument 'false' when you execute the M-file.
	• <i>busNames</i> — A cell array containing names of bus objects to be saved. If the cell array is empty or omitted, this function saves all bus objects in the MATLAB workspace.
See Also	• "Using Composite Signals"
	• "Using Buses"
	• Bus Assignment
	Bus Creator
	• Bus Selector
	• Bus to Vector

- Simulink.Bus
- Simulink.Bus.cellToObject
- Simulink.Bus.createObject
- Simulink.BusElement
- Simulink.Bus.objectToCell

Simulink.SubSystem.convertToModelReference

Purpose	Convert atomic subsystem or function call subsystem to model reference
Syntax	<pre>[success,mdlRefBlkH] = Simulink.SubSystem.convertToModelReference(subsys, mdlRef, 'opt1', 'val1', 'opt2', 'val2',)</pre>
Description	<pre>[success,mdlRefBlkH] = Simulink.SubSystem.convertToModelReference(subsys, mdlRef, 'opt1', 'val1', 'opt2', 'val2',) converts an atomic subsystem or function call subsystem to a referenced model. The function creates a new model, copies the contents of the subsystem into the model, sets the new model's configuration parameters, and configures the model's root level Inport and Outport blocks. The function then replaces the subsystem block with a Model block that references the new model, or creates another, temporary model containing a Model block that references the new model, depending on the input option ReplaceSubsystem.</pre>
	Requirements

Converting a subsystem to a referenced model requires your model to have the following configuration parameter settings:

- Configuration Parameters > Optimization > Inline parameters must be On.
- Configuration Parameters > Diagnostics > Data Validity > Signal resolution must be Explicit only.
- Configuration Parameters > Diagnostics > Connectivity > Mux blocks used to create bus signals must be Error.

You can use the following commands to set these parameters to the values required by this function:

```
set_param(mdlName, 'InlineParams', 'on');
set_param(mdlName, 'SignalResolutionControl', 'UseLocalSettings');
set param(mdlName, 'StrictBusMsg', 'ErrorLevel1');
```

Error Handling

This function produces error or warning messages for models and subsystems that it cannot handle.

- For some errors, a message box appears that gives you the choice of cancelling or continuing.
- If continuing is impossible, Simulink cancels the conversion without offering a choice to continue.

Even if conversion is successful, you may still need to reconfigure the resulting model to meet your requirements.

Limitations

In the new model, the **Interpolate data** parameter of each root input port is selected by default. You can clear the parameter wherever this default is not appropriate. See the Inport block documentation for information about **Interpolate data**.

Demo

Execute

sldemo_mdlref_conversion

at the MATLAB command line for a demonstration of this command's usage.

- **Arguments** This function accepts the following arguments:
 - *subsys* Full name or handle of the atomic subsystem block to be converted
 - *mdlRef* Name of the model to which the subsystem is to be converted
 - opt1, val1, opt2, val2, ... Parameter/value pairs that specify various conversion options. This function supports the following option pairs:

Simulink.SubSystem.convertToModelReference

	 'ReplaceSubsystem', [true {false}] — If the option value is true, this function replaces the subsystem block with a Model block that references the model created from the subsystem. If you do not specify this option or specify its value as false, this function creates and opens a model containing a Model block that references the model derived from the subsystem block.
	 'BusSaveFormat', ['Cell' 'Object'] — If this option is specified, the function saves the bus objects that it creates in an M-file. See Simulink.Bus.save for more information.
	 'BuildTarget', ['Sim' 'RTW'] — If you specify this option, this function generates a model reference Sim or RTW target for the new model.
	 'Force', [true {false}] — If this parameter is true, this function reports some errors that would halt the conversion process as warnings and continues with the conversion. This allows you to use this function to do the initial steps of conversion and then complete the conversion process yourself. If you do not specify this option or specify it as false, this function halts the conversion if an error occurs.
Returns	This function returns the following values:
	• <i>success</i> — True if this function is successful; otherwise, false.
	 mdlRefBlkH — Handle of the Model block that references the new model
See Alce	

See Also Simulink.BlockDiagram.copyContentsToSubSystem

Simulink.Bus.save

Simulink.SubSystem.copyContentsToBlockDiagram

"Converting a Subsystem to a Referenced Model"

Purpose	Copy contents of subsystem to empty block diagram
Syntax	Simulink.SubSystem.copyContentsToBlockDiagram(<i>subsys</i> , <i>bdiag</i>)
Arguments	subsys Subsystem name or handle bdiag
	Block diagram name or handle
Description	Simulink.SubSystem.copyContentsToBlockDiagram copies the contents of the subsystem <i>subsys</i> to the block diagram <i>bdiag</i> . The subsystem and block diagram must have already been loaded. The subsystem cannot be part of the block diagram. The function affects only blocks, lines, and annotations; it does not affect nongraphical information such as configuration sets.
Limitation	Simulink.SubSystem.copyContentsToBlockDiagram cannot be used if the destination block diagram contains any blocks or signals. Other types of information can exist in the destination block diagram and are unaffected by the function. Use Simulink.BlockDiagram.deleteContents if necessary to empty the block diagram before using Simulink.SubSystem.copyContentsToBlockDiagram.
Example	If a block diagram named f14 has a subsystem named Controller, the following code copies the graphical contents of Controller, including all nested subsystems, to a new block diagram. Nongraphical information in Controller is not copied.
	% open f14
	open_system('f14');
	% create a new model
	<pre>newbd = new_system;</pre>
	open_system(newbd);

Simulink.SubSystem.copyContentsToBlockDiagram

% copy the subsystem Simulink.SubSystem.copyContentsToBlockDiagram('f14/Controller', newbd);

% close f14 and the new model close_system('f14', 0); close_system(newbd, 0);

See Also Simulink.BlockDiagram.copyContentsToSubSystem Simulink.BlockDiagram.deleteContents Simulink.SubSystem.convertToModelReference Simulink.SubSystem.deleteContents

Purpose	Delete contents of subsystem
Syntax	Simulink.SubSystem.deleteContents(<i>subsys</i>)
Arguments	subsys Subsystem name or handle
Description	Simulink.SubSystem.deleteContents deletes the contents of the subsystem <i>subsys</i> . The subsystem must have already been loaded. The function affects only blocks, lines, and annotations; it does not affect nongraphical information such as configuration sets.
Example	If an open block diagram named f14 has a subsystem named Controller, the following code deletes the graphical contents of Controller, including all nested subsystems. Nongraphical information in Controller remains unchanged.
	<pre>Simulink.SubSystem.deleteContents('f14/Controller');</pre>
See Also	Simulink.BlockDiagram.copyContentsToSubSystem
	Simulink.BlockDiagram.deleteContents
	Simulink.SubSystem.convertToModelReference
	Simulink.SubSystem.copyContentsToBlockDiagram

Simulink.SubSystem.getChecksum

Purpose	Return checksum of subsystem
Syntax	[checksum,details] = Simulink.SubSystem.getChecksum(subsys)
Description	[<i>checksum</i> , <i>details</i>] = Simulink.SubSystem.getChecksum(<i>subsys</i>) returns the checksum of the specified subsystem. Simulink software computes the checksum based on subsystem parameter settings and the blocks the subsystem contains.
	One use of this command is to determine why code generated for a subsystem is not being reused. For an example, see "Determining Why Subsystem Code Is Not Reused" in the Real-Time Workshop documentation.
	Note Simulink.SubSystem.getChecksum compiles the model that contains the specified subsystem, using the command <i>model</i> ([], [], [], 'compileForRTW'), if the model is not already in a compiled state. To get the checksum for the model when Simulink software compiles it for simulation, use the command <i>model</i> ([], [], [], 'compile') to place the model in a compiled state before using Simulink.SubSystem.getChecksum.
	This command accepts the argument <i>subsys</i> , which is the full name or handle of the atomic subsystem block for which you are returning checksum data.
	This command returns the following output:
	• checksum — Structure of the form
	Value: [4x1 uint32] MarkedUnique: [bool]
	 Value — Array of four 32-bit integers that represents the subsystem's 128-bit checksum.

- MarkedUnique True if the subsystem or the blocks it contains have properties that would prevent the code generated for the subsystem from being reused; otherwise, false.
- details Structure of the form

ContentsChecksum: [1x1 struct] InterfaceChecksum: [1x1 struct] ContentsChecksumItems: [nx1 struct] InterfaceChecksumItems: [mx1 struct]

- ContentsChecksum Structure of the same form as *checksum*, representing a checksum that provides information about all blocks in the system.
- InterfaceChecksum Structure of the same form as *checksum*, representing a checksum that provides information about the subsystem's block parameters and connections.
- ContentsChecksumItems and InterfaceChecksumItems Structure arrays of the following form that Simulink software uses to compute the checksum for ContentsChecksum and InterfaceChecksum, respectively:

Handle: [char array] Identifier: [char array] Value: [*type*]

- Handle Object for which Simulink software added an item to the checksum. For a block, the handle is a full block path. For a block port, the handle is the full block path and a string that identifies the port.
- Identifier Descriptor of the item Simulink software added to the checksum. If the item is a documented parameter, the identifier is the parameter name.
- Value Value of the item Simulink software added to the checksum. If the item is a parameter, Value is the value returned by

Simulink.SubSystem.getChecksum

get_param(handle, identifier)

See Also Simulink.BlockDiagram.getChecksum

Purpose	Create MATLAB structure describing signed integer data type
Syntax	a = sint(TotalBits)
Description	<pre>sint(TotalBits) returns a MATLAB structure that describes the data type of a signed integer with a word size given by TotalBits.</pre>
	sint is automatically called when a signed integer is specified in a block dialog box.
	The default binary point for this data type is assumed to lie to the right of all bits.
Examples	Define a 16-bit signed integer data type:
	a = sint(16) a = Class: 'INT' IsSigned: 1 MantBits: 16
See Also	fixdt, float, sfix, sfrac, ufix, ufrac, uint

slbuild

Purpose	Build standalone and model reference targets
Syntax	<pre>slbuild('model') slbuild('model', 'ModelReferenceSimTarget') slbuild('model', 'ModelReferenceRTWTarget') slbuild('model', 'ModelReferenceRTWTargetOnly')</pre>
Description	Note Except where noted, this command requires a Real-Time Workshop license.
	<pre>slbuild('model') builds a standalone executable from model, using the model's Real-Time Workshop configuration settings.</pre>
	Note The following commands honor the setting of the Rebuild options on the Model Referencing pane of the Configuration Parameters dialog for rebuilding the model reference target for this model and its referenced models.
	<pre>slbuild('model', 'ModelReferenceSimTarget') builds a model reference simulation target for the model. This command does not require a Real-Time Workshop license.</pre>
	<pre>slbuild('model', 'ModelReferenceRTWTarget') builds model reference simulation and Real-Time Workshop targets for model.</pre>
	slbuild(' <i>model</i> ', 'ModelReferenceRTWTargetOnly') builds a model reference RTW target for the model.
	If the Rebuild option on the Model Referencing pane of the Configuration Parameters dialog is set to Never, you can use two additional arguments, 'UpdateThisModelReferenceTarget' and 'Buildcond', to specify a rebuild option for building a model reference target for this 'model'. For example,

```
slbuild('model','ModelReferenceSimTarget', ...
'UpdateThisModelReferenceTarget', Buildcond)
```

conditionally builds the simulation target for this 'model' based on the value of Buildcond.

Note This option does not rebuild model reference targets for models referenced by this model.

'Buildcond' must be one of the following:

• 'IfOutOfDateOrStructuralChange'

Causes slbuild to rebuild this model if it detects any changes. This option is equivalent to the If any changes detected rebuild option on the **Model Referencing** pane of the **Configuration Parameters** dialog box.

• 'IfOutOfDate'

Causes slbuild to rebuild this model if it detects any changes in known dependencies of this model. This option is equivalent to the If any changes in known dependencies detected rebuild option on the **Model Referencing** pane of the **Configuration Parameters** dialog box.

• 'Force'

Causes slbuild to always rebuild the model. This option is equivalent to the "Always" rebuild option on the **Model Referencing** pane of the **Configuration Parameters** dialog box.

slCharacterEncoding

Purpose	Change MATLAB character set encoding
Syntax	<pre>slCharacterEncoding() slCharacterEncoding(encoding)</pre>
Description	This command allows you to change the current MATLAB character set encoding to be compatible with the encoding of a model that you want to open.
	<pre>slCharacterEncoding() returns the current MATLAB character set encoding.</pre>
	slCharacterEncoding(encoding) change the MATLAB character set encoding to the specified encoding. Valid values include:
	• 'US-ASCII'
	• 'UTF-8'
	• 'Shift_JIS'
	• 'ISO-8859-1'

To display a complete list of the names of character set encodings supported by MATLAB and the characters supported by the encodings, use the ICU Converter Explorer developed by IBM[®] Corp. and available on the Internet. The first column of the ICU Converter Explorer lists the primary names of the character sets supported by MATLAB. The remaining columns list aliases for the character sets. The slCharacterEncoding command accepts the aliases as well as the primary names of character sets. To display a table listing the characters supported by a character set and the encodings for the characters, click the character set's primary name in the ICU Converter Explorer.

Note You must close all open models or libraries before changing the MATLAB character set encoding except when changing from 'US-ASCII' to another encoding.

sldebug

Purpose	Start simulation in debug mode
Syntax	<pre>sldebug('sys')</pre>
Description	<pre>sldebug('sys') starts a simulation in debug mode. See "Simulink Debugger" in the Simulink documentation and Chapter 6, "Simulink Debugger Commands" in the Simulink Reference for information about using the debugger.</pre>
Examples	The following command: sldebug('vdp')
	loads the Simulink demo model vdp into memory and starts the simulation in debug mode. Alternatively, you can achieve the same result by using both the sim and simset commands:
	<pre>sim('vdp', [0,10], simset('debug', 'on'))</pre>
See Also	sim, simset

Purpose	Display diagnostic information about Simulink system
Syntax	[txtRpt, sRpt] = sldiagnostics('sys') [txtRpt, sRpt] = sldiagnostics('sys', <i>options</i>)

Description sldiagnostics('sys') displays the following diagnostic information associated with the model or subsystem specified by sys:

- Number of each type of block
- Number of each type of Stateflow object
- Number of states, outputs, inputs, and sample times
- Names of libraries referenced and instances of the referenced blocks
- Time and additional memory used for each compilation phase of the root model

If the model specified by sys is not loaded, sldiagnostics loads the model, completes the diagnostics, and then closes the model. If sys is a subsystem, the root model must be loaded for sldiagnostics to operate successfully.

sldiagnostics('sys', options) displays only the diagnostic information associated with the specific operations listed as options strings. The available options and their output are as follows:

Option	Description
CountBlocks	Lists all unique blocks in the system and the number of occurrences of each. This includes blocks that are nested in masked subsystems or hidden blocks.
CountSF	Lists all unique Stateflow objects in the system and the number of occurrences of each.

Option	Description
Sizes	Lists the number of states, outputs, inputs, and sample times, as well as a flag indicating direct feedthrough, used in the root model.
Libs	Lists all unique libraries referenced in the root model, as well as the names and numbers of the library blocks.
CompileStats	Lists the time and additional memory used for each compilation phase of the root model. This information helps users troubleshoot model compilation speed and memory issues.
Verbose	Lists the results of the CompileStats diagnostic during the compilation phase. This is useful for diagnosing the compilation itself if it takes an unreasonable amount of time or hangs.
RTWBuildStats	Lists the same information as the CompileStats diagnostic. When issued with the second output argument sRpt, it captures the Real-Time Workshop build statistics in sRpt.rtwbuild.
All	Performs all diagnostics.

Note Running the CompileStats diagnostic before simulating a model for the first time will show greater memory usage. However, subsequent runs of the CompileStats diagnostic on the model will return a lesser amount of memory usage.

[txtRpt, sRpt] = sldiagnostics('sys') or [txtRpt, sRpt] = sldiagnostics('sys', options) returns the diagnostic information as a textual report txtRpt and a structure array sRpt, which contains the following fields that correspond to the diagnostic options:

- blocks
- stateflow
- sizes
- links
- compilestats
- rtwbuild

Examples The following command counts and lists each type of block used in the sldemo_bounce model that comes with Simulink software.

```
sldiagnostics('sldemo_bounce', 'CountBlocks')
```

The following command counts and lists both the unique blocks and Stateflow objects used in the sf_boiler model that comes with Stateflow software; the textual report returned is captured as myReport.

```
myReport = sldiagnostics('sf_boiler', 'CountBlocks', 'CountSF')
```

The following commands open the f14 model that comes with Simulink software, and counts the number of blocks used in the Controller subsystem.

```
f14; sldiagnostics('f14/Controller', 'CountBlocks')
```

The following command runs the Sizes and CompileStats diagnostics on the f14 model, capturing the results as both a textual report and structure array.

[txtRpt, sRpt] = sldiagnostics('f14', 'Sizes', 'CompileStats')

See Also find_system, get_param

sldiscmdl

Purpose	Discretize Simulink model containing continuous blocks	
Syntax	<pre>sldiscmdl('sys',sampletime) sldiscmdl('sys',sampletime,'method') sldiscmdl('sys',sampletime,{options}) sldiscmdl('sys',sampletime,'method',cf) sldiscmdl('sys',sampletime,'method',{options}) sldiscmdl('sys',sampletime,'method',cf,{options})</pre>	

Description sldiscmdl('sys', sampletime) discretizes the model specified by 'sys' and sampletime. You can enter a sample time and an offset as a two-element vector for sampletime. The units for sampletime are seconds.

sldiscmdl('sys',sampletime,'method') discretizes the model with the transform method specified by 'method'. Available values for 'method' are shown below:

Value	Description
'zoh'	Zero-order hold on the inputs (the default if you do not specify a method)
'foh'	First-order hold on the inputs
'tustin'	Bilinear (Tustin) approximation
'prewarp'	Tustin approximation with frequency prewarping
'matched'	Matched pole-zero method (for SISO systems only)

sldiscmdl('sys',sampletime,{options}) discretizes the model with the criteria specified by {options}, where {options} is a cell array containing the following string elements:

```
{'target', 'ReplaceWith', 'PutInto', 'prompt'}
```

Available values for 'target' are shown below:

Value	Description
'all'	Discretize all continuous blocks
'selected'	Discretize selected blocks only
' <full name="" of<br="" path="">block>'</full>	Discretize specified block

Available values for 'ReplaceWith' are shown below:

Value	Description
'parammask'	Create discrete blocks whose parameters are retained from the corresponding continuous block
'hardcoded'	Create discrete blocks whose parameters are "hard_coded" values placed directly into the block's dialog box.

Available values for 'PutInto' are shown below:

Value	Description
'current'	Apply discretization to current model
'configurable'	Create discretization candidate in a configurable subsystem
'untitled'	Create discretization in a new untitled window
'сору'	Create discretization in copy of the original model

Available values for 'prompt' are shown below:

Value	Description
'on'	Show the discretization information
'off'	Do not show the discretization information

sldiscmdl('sys',sampletime,'method',cf) discretizes the model with the critical frequency specified by cf. The units for cf are Hz. This is only used when the transform method is 'prewarp'.

Examples This command discretizes all of the continuous blocks in the f14 model with a 1 second sample time.

```
sldiscmdl('f14',1.0)
```

This command discretizes the Controller subsystem in the f14 model using a first-order hold transform method with a 1-second sample time and a 0.1-second sample time offset. The discretized block has "hard-coded" parameters that are placed directly into the block's dialog box.

```
sldiscmdl('f14',[1.0 0.1],'foh',{'f14/Controller',...
'hardcoded','copy','on'})
```

This command discretizes the Controller subsystem in the f14 model using a zero-order hold transform method with a 1-second sample time and a 0.1-second sample time offset. It returns to the command window a cell array for the original continuous blocks in the system and a cell array for the discretized blocks in the system.

```
[a, b] = sldiscmdl('f14',[1.0 0.1],'zoh', {'f14/Controller',...
'hardcoded', 'copy', 'on'})
a =
  [1x43 char] [1x37 char] [1x53 char] [1x30 char]
b =
  [1x43 char] [1x37 char] [1x53 char] [1x30 char]
```

You can index into the cell arrays to get the new names of the discretized blocks and the original names of the continuous blocks.

For example, this command returns the name of the second discretized block.

b{2}
ans =
f14_disc_copy/Controller/Pitch Rate
Lead Filter

sllsFileChangedOnDisk

Purpose	Determine whether model has changed since it was loaded	
Syntax	Changed = sllsFileChangedOnDisk(sys)	
Description	Changed = sllsFileChangedOnDisk(sys) Returns true if the file which contains block diagram sys was changed on disk since the block diagram was loaded.	
Example	To ensure that code is not generated for a model whose file has changed on disk since it was loaded, include the following in the 'entry' section of the STF_make_rtw_hook.m file:	
	if (slIsFileChangedOnDisk(sys)) error('File has changed on disk since it was loaded. Aborting code generation.'); end	
See Also	"Customizing the Target Build Process with the STF_make_rtw Hook File"	
	"Model File Change Notification"	

Purpose	Open Model Discretizer GUI	
Syntax	slmdldiscui('name')	
Description	<pre>slmdldiscui('name') opens the Model Discretizer with the library or model specified by 'name'.</pre>	
Examples	This command opens the Model Discretizer with the f14 model.	
	<pre>slmdldiscui('f14')</pre>	
	This command opens the Model Discretizer with the library named Test.	
	slmdldiscui('Test')	

slreplace_mux

Purpose	Replace Mux blocks used to create buses with Bus Creator blocks	
Syntax	[muxes, uniqueMuxes, uniqueBds] = slreplace_mux(model, reportonly)	
Description	 slreplace_mux(model) or slreplace_mux(model, true) reports all Mux blocks that create buses in model and in libraries referenced by model. A signal created by a Mux block is a bus if the signal meets either or both of the following conditions: A Bus Selector block individually selects one or more of the signal's elements (as opposed to the entire signal). The signal's components have different data types, numeric types (complex or real), dimensionality, storage classes, or sampling modes. Note Before running this command, you should set the Mux blocks used to create bus signals connectivity diagnostic to warning or none. See "Connectivity Diagnostics Overview" for more information. slreplace_mux(model, false) replaces all Mux blocks in model that create buses, including Mux blocks in libraries, with Bus Creator 	
	blocks. This command saves the model, if changed, and saves and closes any library that it modifies.	

Note You should make a backup copy of your model and libraries before using this form of the command because it is difficult to undo its effects. [muxes, uniqueMuxes, uniqueBds] = slreplace_mux(model)
returns the following output variables:

• muxes

All Mux blocks used as Bus Creators in the model and in libraries referenced by the model

• uniqueMuxes

All Mux blocks used as Bus Creators in the model and in libraries referenced by the model except blocks in the model that are copies of blocks in libraries

• uniqueBds

Models and libraries that use Mux blocks as Bus Creators

slupdate

Purpose	Replace blocks from previous releases with latest versions	
Syntax	slupdate(' <i>sys</i> ') slupdate(' <i>sys</i> ', <i>prompt</i>) slupdate(' <i>sys</i> ', 'OperatingMode', 'Analyze')	
Description	<pre>slupdate('sys') replaces blocks in model sys from a previous release of Simulink software with the latest versions.</pre>	
	Note Best practice is to first open the model before you call slupdate.	
	<pre>slupdate('sys', prompt) specifies whether to prompt you before replacing a block. If prompt equals 1, the command prompts you before replacing the block. The prompt asks whether you want to replace the block. Valid responses are</pre>	
	• y	
	Replace the block (the default).	
	• n	
	Do not replace the block.	
	• a	
	Replace this and all subsequent obsolete blocks without further prompting.	
	If <i>prompt</i> equals 0, the command replaces all obsolete blocks without prompting you.	
	In addition to replacing obsolete blocks, slupdate	
	• Reconnects broken links to masked blocks in libraries provided by the MathWorks to ensure that the model reflects changes made to the blocks in this release. This will overwrite any customizations that you have made to the masks of these blocks.	

• Updates obsolete configuration settings for the model.

slupdate('sys', 'OperatingMode', 'Analyze') performs only the analysis portion without updating or changing the model. This command analyzes referenced models, linked libraries, and S-functions, and then returns a data structure with the following fields:

- Message string containing a message summarizing the results
- blockList cell array listing blocks that need to be updated
- blockReasons cell array listing reasons for updating the corresponding blocks
- modelList cell array listing referenced models and the parent model
- libraryList cell array listing non-MathWorks libraries referenced
- configSetList for internal use
- sfunList cell array listing S-functions referenced
- sfunOK logical array representing S-function status, where false indicates that an S-function needs updating and true indicates otherwise
- sfunType cell array listing apparent S-function type (e.g., m, mex)

trim

Purpose	Find trim point of dynamic system
Syntax	<pre>[x,u,y,dx] = trim('sys') [x,u,y,dx] = trim('sys',x0,u0,y0) [x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) [x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) [x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx, options) [x,u,y,dx,options] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx, options,t)</pre>

Description A trim point, also known as an equilibrium point, is a point in the parameter space of a dynamic system at which the system is in a steady state. For example, a trim point of an aircraft is a setting of its controls that causes the aircraft to fly straight and level. Mathematically, a trim point is a point where the system's state derivatives equal zero. trim starts from an initial point and searches, using a sequential quadratic programming algorithm, until it finds the nearest trim point. You must supply the initial point implicitly or explicitly. If trim cannot find a trim point, it returns the point encountered in its search where the state derivatives are closest to zero in a min-max sense; that is, it returns the point that minimizes the maximum deviation from zero of the derivatives. trim can find trim points that meet specific input, output, or state conditions, and it can find points where a system is changing in a specified manner, that is, points where the system's state derivatives equal specific nonzero values.

> [x,u,y,dx] = trim('sys') finds the equilibrium point nearest to the system's initial state, x0. Specifically, trim finds the equilibrium point that minimizes the maximum absolute value of [x-x0,u,y]. If trim cannot find an equilibrium point near the system's initial state, it returns the point at which the system is nearest to equilibrium. Specifically, it returns the point that minimizes abs(dx-0). You can obtain x0 using this command.

[sizes,x0,xstr] = sys([],[],[],0)

[x,u,y,dx] = trim('sys',x0,u0,y0) finds the trim point nearest to x0, u0, y0, that is, the point that minimizes the maximum value of

abs([x-x0; u-u0; y-y0])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy) finds the trim point closest to x0, u0, y0 that satisfies a specified set of state, input, and/or output conditions. The integer vectors ix, iu, and iy select the values in x0, u0, and y0 that must be satisfied. If trim cannot find an equilibrium point that satisfies the specified set of conditions exactly, it returns the nearest point that satisfies the conditions, namely,

abs([x(ix)-x0(ix); u(iu)-u0(iu); y(iy)-y0(iy)])

[x,u,y,dx] = trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx) finds specific nonequilibrium points, that is, points at which the system's state derivatives have some specified nonzero value. Here, dx0 specifies the state derivative values at the search's starting point and idx selects the values in dx0 that the search must satisfy exactly.

[x,u,y,dx,options] =

trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options) specifies an array of optimization parameters that trim passes to the optimization function that it uses to find trim points. The optimization function, in turn, uses this array to control the optimization process and to return information about the process. trim returns the options array at the end of the search process. By exposing the underlying optimization process in this way, trim allows you to monitor and fine-tune the search for trim points.

The following table describes how each element affects the search for a trim point. Array elements 1, 2, 3, 4, and 10 are particularly useful for finding trim points.

No.	Default	Description
1	0	Specifies display options. 0 specifies no display; 1 specifies tabular output; -1 suppresses warning messages.

No.	Default	Description
2	10 ⁻⁴	Precision the computed trim point must attain to terminate the search.
3	10-4	Precision the trim search goal function must attain to terminate the search.
4	10 ⁻⁶	Precision the state derivatives must attain to terminate the search.
5	N/A	Not used.
6	N/A	Not used.
7	N/A	Used internally.
8	N/A	Returns the value of the trim search goal function (λ in goal attainment).
9	N/A	Not used.
10	N/A	Returns the number of iterations used to find a trim point.
11	N/A	Returns the number of function gradient evaluations.
12	0	Not used.
13	0	Number of equality constraints.
14	100*(Numbe of variables)	rMaximum number of function evaluations to use to find a trim point.
15	N/A	Not used.
16	10 ⁻⁸	Used internally.
17	0.1	Used internally.
18	N/A	Returns the step length.

[x,u,y,dx,options] =
trim('sys',x0,u0,y0,ix,iu,iy,dx0,idx,options,t) sets the time
to t if the system is dependent on time.

Examples Consider a linear state-space model

 $\dot{x} = Ax + Bu$ y = Cx + Du

The A, B, C, and D matrices are as follows in a system called sys.

A =	[-0.09	-0.01;	1	0];
В =	[0	-7;	0	-2];
C =	[0	2;	1	-5];
D =	[-3	0;	1	0];

Example 1

To find an equilibrium point, use

```
[x,u,y,dx,options] = trim('sys')
x =
0
0
u =
0
y =
0
0
dx =
0
0
0
```

The number of iterations taken is

options(10) ans = 7

Example 2

To find an equilibrium point near x = [1;1], u = [1;1], enter

```
x0 = [1;1];
u0 = [1;1];
[x,u,y,dx,options] = trim('sys', x0, u0);
x =
    1.0e-11 *
   -0.1167
   -0.1167
u =
    0.3333
    0.0000
y =
   -1.0000
    0.3333
dx =
    1.0e-11 *
    0.4214
    0.0003
```

The number of iterations taken is

options(10) ans = 25

Example 3

To find an equilibrium point with the outputs fixed to 1, use

```
y = [1;1];
iy = [1;2];
[x,u,y,dx] = trim('sys', [], [], y, [], [], iy)
x =
```

```
0.0009
-0.3075
u =
-0.5383
0.0004
y =
1.0000
dx =
1.0e-16 *
-0.0173
0.2396
```

Example 4

To find an equilibrium point with the outputs fixed to 1 and the derivatives set to 0 and 1, use

```
y = [1;1];
iy = [1;2];
dx = [0;1];
idx = [1;2];
[x,u,y,dx,options] = trim('sys',[],[],y,[],[],iy,dx,idx)
x =
    0.9752
   -0.0827
u =
   -0.3884
   -0.0124
y =
    1.0000
    1.0000
dx =
    0.0000
    1.0000
```

The number of iterations taken is

```
options(10)
ans =
13
```

Limitations The trim point found by trim starting from any given initial point is only a local value. Other, more suitable trim points may exist. Thus, if you want to find the most suitable trim point for a particular application, it is important to try a number of initial guesses for x, u, and y.

Algorithm trim uses a sequential quadratic programming algorithm to find trim points. See the *Optimization Toolbox™ User's Guide* for a description of this algorithm.

Purpose	Create Simulink parameter objects from tunable parameters
Syntax	tunablevars2parameterobjects (modelName) tunablevars2parameterobjects (modelName, class)
Arguments	<pre>modelName Model name or handle class Parameter class to use for creating objects. Default: Simulink.Parameter.</pre>
Description	This function creates Simulink parameter objects in the base workspace for the variables listed in a model's Tunable Parameters dialog, then deletes the source information from the dialog. To preserve the information, save the resulting Simulink parameter objects into a MAT-file.
	If <i>class</i> is specified, the parameter objects are of that class. Otherwise, the parameter objects default to class Simulink.Parameter.
	If a tunable variable is already defined as a numeric variable in the base workspace, the variable will be replaced by a parameter object and the original variable will be copied to the object's Value property.
	If a tunable variable is already defined as a Simulink parameter object, the object will not be modified but the information for the variable will still be deleted from the Tunable Parameters dialog.
	If a tunable variable is defined as any other class of variable, the variable will not be modified and the information for the variable will not be deleted from the Tunable Parameters dialog.

See Also

Purpose	Create MATLAB structure describing unsigned generalized fixed-point data type
Syntax	a = ufix(TotalBits)
Description	ufix(TotalBits) returns a MATLAB structure that describes the data type of an unsigned generalized fixed-point data type with a word size given by TotalBits.
	ufix is automatically called when an unsigned generalized fixed-point data type is specified in a block dialog box.
	Note The default binary point is not included in this data type description. Instead, the scaling must be explicitly defined in the block dialog box.
Examples	<pre>Define a 16-bit unsigned generalized fixed-point data type: a = ufix(16) a = Class: 'FIX' IsSigned: 0 MantBits: 16</pre>
See Also	fixdt, float, sfix, sfrac, sint, ufrac, uint

Purpose	Create MATLAB structure describing unsigned fractional data type
Syntax	a = ufrac(TotalBits) a = ufrac(TotalBits, GuardBits)
Description	ufrac(TotalBits) returns a MATLAB structure that describes the data type of an unsigned fractional number with a word size given by TotalBits.
	ufrac(TotalBits, GuardBits) returns a MATLAB structure that describes the data type of an unsigned fractional number. The total word size is given by TotalBits with GuardBits bits located to the left of the binary point.
	ufrac is automatically called when an unsigned fractional data type is specified in a block dialog box.
	The default binary point for this data type is assumed to lie immediately to the left of all bits. If guard bits are specified, then they lie to the left the default binary point.
Examples	Define an 8-bit unsigned fractional data type with 4 guard bits. Note that the range of this number is from 0 to $(1 - 2^{-8}).2^4 = 15.9375$:
	a = ufrac(8,4) a = Class: 'FRAC' IsSigned: 0 MantBits: 8 GuardBits: 4
See Also	fixdt, float, sfix, sfrac, sint, ufix, uint

uint

Purpose	Create MATLAB structure describing unsigned integer data type
Syntax	a = uint(TotalBits)
Description	uint(TotalBits) returns a MATLAB structure that describes the data type of an unsigned integer with a word size given by TotalBits.uint is automatically called when an unsigned integer is specified in a block dialog box.The default binary point for this data type is assumed to lie to the right of all bits.
Examples	<pre>Define a 16-bit unsigned integer: a = uint(16) a = Class: 'INT' IsSigned: 0 MantBits: 16</pre>
See Also	fixdt, float, sfix, sfrac, sint, ufix, ufrac

Purpose	Extract signal logging objects from signal logs and write them into
	MATLAB workspace

Syntax log.unpack tsarray.unpack log.unpack('systems') log.unpack('all')

Description log.unpack or unpack(log) extracts the top level elements of the Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named log (e.g., logsout).

log.unpack('systems') or unpack(log, 'systems') extracts Simulink.Timeseries and Simulink.TsArray objects from the Simulink.ModelDataLogs or Simulink.SubsysDataLogs object named log. This command does not extract Simulink.Timeseries objects from Simulink.TsArray objects nor does it write intermediate Simulink.ModelDataLogs or Simulink.SubsysDataLogs objects to the MATLAB workspace.

log.unpack('all') or unpack(log, 'all') extracts
all the Simulink.Timeseries objects contained by
the Simulink.ModelDataLogs, Simulink.TsArray, or
Simulink.SubsysDataLogs object named log.

tsarray.unpack extracts the time-series objects of class Simulink.Timeseries from the Simulink.TsArray object named tsarray.

See Also "Importing and Exporting Data", Simulink.ModelDataLogs, Simulink.SubsysDataLogs, Simulink.ScopeDataLogs, Simulink.Timeseries, Simulink.TsArray, who, whos

view_mdlrefs

Purpose	Display graph of model reference dependencies
Syntax	<pre>view_mdlrefs('model_name')</pre>
Description	<pre>view_mdlrefs('model_name') launches the Model Dependency Viewer, which displays a graph of model reference dependencies for the model specified by model_name. The nodes in the graph represent Simulink models. The directed lines indicate model dependencies.</pre>
	The default display omits library blocks. You could see this same display by opening model_name and choosing Tools > Model Dependencies > Model Dependency Viewer > .mdl File Dependencies Excluding Libraries from the model menu. Use View > Dependency Type to see other dependency displays.
	The Model Dependency Viewer is the same tool, and provides the same options, whether you launch it by typing view_mdlrefs or by using the Simulink GUI. See "Using the Model Dependency Viewer" for details. To see a demo of the Model Dependency Viewer, type sldemo_mdlref_depgraph in the memory integrity checking option is enabled in the MATLAB Command Window.

See Also find_mdlrefs

Purpose	List names of top-level data logging objects in Simulink data log
Syntax	<pre>log.who tsarray.who log.who('systems') log.who('all')</pre>
Description	<pre>log.who or who(log) lists the names of the top-level signal logging objects contained by log, where log is the handle of a Simulink.ModelDataLogs object name.</pre>
	tsarray.who or who(tsarray) lists the names of Simulink.TimeSeries objects contained by the Simulink.TsArray object named tsarray.
	<pre>log.who('systems') or who(log, 'systems') lists the names of all signal logging objects contained by log except for Simulink.Timeseries objects stored in Simulink.TsArray objects contained by log.</pre>
	<pre>log.who('all') or who(log, 'all') lists the names of all the Simulink.Timeseries objects contained by the Simulink.ModelDataLogs, Simulink.TsArray, or Simulink.SubsysDataLogs object named log.</pre>
	For information about other uses of who, execute help whoin the MATLAB Command Window.
See Also	"Importing and Exporting Data", Simulink.ModelDataLogs, Simulink.SubsysDataLogs, Simulink.ScopeDataLogs, Simulink.Timeseries, Simulink.TsArray, whos, unpack

whos

Purpose	List names and types of top-level data logging objects in Simulink data log
Syntax	<pre>log.whos tsarray.whos log.whos('systems') log.whos('all')</pre>
Description	<pre>log.whos or whos(log) lists the names and types of the top-level signal logging objects contained by log, where log is the handle of a Simulink.ModelDataLogs object name.</pre>
	tsarray.whos or whos(tsarray) lists the names and types of Simulink.TimeSeries objects contained by the Simulink.TsArray object named tsarray.
	<pre>log.whos('systems') or whos(log, 'systems') lists the names and types of all signal logging objects contained by log except for Simulink.Timeseries objects stored in Simulink.TsArray objects contained by log.</pre>
	<pre>logs.who('all') or whos(log, 'all') lists the names and types of all the Simulink.Timeseries objects contained by the Simulink.ModelDataLogs, Simulink.TsArray, or Simulink.SubsysDataLogs object named log.</pre>
	For information about other uses of whos, execute help whosin the MATLAB Command Window.
See Also	"Importing and Exporting Data", Simulink.ModelDataLogs, Simulink.SubsysDataLogs, Simulink.ScopeDataLogs, Simulink.Timeseries, Simulink.TsArray, who, unpack

5

Mask Icon Drawing Commands

color	Change drawing color of subsequent mask icon drawing commands
disp	Display text on icon of masked subsystem
dpoly, droots	Display transfer function or zero-pole representation on icon of masked subsystem
fprintf	Display variable text centered on icon of masked subsystem
image	Display image on icon of masked subsystem
patch	Draw color patch of specified shape on icon of masked subsystem
plot	Draw graph connecting series of points
port_label	Draw port label on icon of masked subsystem
text	Display text at specific location on icon of masked subsystem

color

Purpose	Change drawing color of subsequent mask icon drawing commands
Syntax	color(colorstr)
Description	color(colorstr) sets the drawing color of all subsequent mask drawing commands to the color specified by the string colorstr.
	colorstr must be one of the following supported color strings.
	blue green red cyan magenta yellow black
	Entering any other string or specifying the color using RGB values results in a warning at the MATLAB command prompt and the color change is ignored. The specified drawing color does not influence the color used by the patch or image drawing commands.
Examples	The following commands
	<pre>color('cyan'); droots([-1], [-2 -3], 4) color('magenta') port_label('input',1,'in') port_label('output',1,'out') draw the following mask icon. in</pre>

See Also droots, port_label

disp

Purpose	Display text on icon of masked subsystem
Syntax	<pre>disp(text) disp(text, 'texmode', 'on')</pre>
Description	disp(text) displays text centered on the icon where text is any MATLAB expression that evaluates to a string.
	disp(text, 'texmode', 'on') allows you to use TeX formatting commands in text. The TeX formatting commands in turn allow you to include symbols and Greek letters in icon text. See "Mathematical Symbols, Greek Letters, and TEX Characters" in the MATLAB documentation for information on the TeX formatting commands supported by Simulink software.
Examples	The following command
	<pre>disp('{\itEquation:} \alpha^2 + \beta^2 \rightarrow \gamma^2, \chi, \phi_3 = {\bfcool}', 'texmode','on')</pre>
	draws the equation that appears on this masked block icon.

Equation: $\alpha^2 + \beta^2 \rightarrow y^2$, y, $\phi_3 = cool$

Equation

See Also fprintf, port_label, text

Purpose	Display transfer function or zero-pole representation on icon of masked
	subsystem

Syntax dpoly(num, den) dpoly(num, den, 'character') droots(zero, pole, gain) droots(zero, pole, gain,'z') droots(zero, pole, gain,'z-')

Description dpoly(*num*, *den*) displays the transfer function whose numerator is *num* and denominator is den.

dpoly(num, den, 'character') allows you to specify the name of the transfer function's independent variable. The default is *s*.

droots(zero, pole, gain) displays the transfer function whose zero is a zero, pole is pole, and gain is gain.

droots(zero, pole, gain, 'z') and droots(zero, pole, gain, 'z-') express the equation in terms of z or 1/z.

When the icon is drawn, the initialization commands are executed and the resulting equation is drawn on the icon:

• To display a continuous transfer function in descending powers of *s*, enter

```
dpoly(num, den)
```

For example, for num = $[0 \ 0 \ 1]$; and den = $[1 \ 2 \ 1]$ the icon looks like this:

1	
s ² +2s+1	

• To display a discrete transfer function in descending powers of *z*, enter

dpoly(num, den, 'z')

For example, for num = $[0 \ 0 \ 1]$; and den = $[1 \ 2 \ 1]$; the icon looks like this:

• To display a discrete transfer function in ascending powers of 1/z, enter

```
dpoly(num, den, 'z-')
```

For example, for num and den as defined previously, the icon looks like this:

z-2	
1+2z-1+z-2	

• To display a zero-pole gain transfer function, enter

droots(z, p, k)

For example, the preceding command creates this icon for these values:

```
z = []; p = [-1 -1]; k = 1;
```

1 (s+1)(s+1)

If the parameters are not defined or have no values when you create the icon, Simulink software displays three question marks (???) in the icon. When the parameter values are entered in the mask dialog box, Simulink software evaluates the transfer function and displays the resulting equation in the icon.

See Also disp, port_label, text

fprintf

Purpose	Display variable text centered on icon of masked subsystem
Syntax	<pre>fprintf(text) fprintf(format, var)</pre>
Description	The fprintf command displays formatted text centered on the icon and can display <i>format</i> along with the contents of <i>var</i> .
	Note While this command is identical in name to its corresponding MATLAB function, it provides only the functionality described above.
Examples	This command fprintf('Hello');
	displays the string 'Hello' on the icon.
	This command
	fprintf('Juhi = %d',17);
	uses the decimal notation format (%d) to display the variable 17.
See Also	disp, port_label, text

Purpose Display image on icon of masked subsystem

Syntax image(a) image(a, position) image(a, position, rotation)

Description image (a) displays the image a, where a is an M-by-N-by-3 array of RGB values. You can use the MATLAB commands imread and ind2rgb to read and convert bitmap files (such as GIF) to the necessary matrix format.

image(a, position) creates the image at the specified position:

Position	Description
[x, y, w, h]	Position (x, y) and size (w, h) of the image where the position is relative to the lower-left corner of the mask. The image is scaled to fit the specified size.
'center'	Center of the mask
'top-left'	Top left corner of the mask, unscaled
'bottom-le	fBottom left corner of the mask, unscaled
'top-right	'Top right corner of the mask, unscaled
'bottom-ri	Bottom right corner of the mask, unscaled

image(a, position, rotation) allows you to specify whether the image rotates ('on') or remains stationary ('off') as the icon rotates. The default is 'off'.

Examples This command

image(imread('icon.tif'))

reads the icon image from a TIFF file named <code>icon.tif</code> in the MATLAB path.

The following commands read and convert a GIF file, label.gif, to the appropriate matrix format. You can type these commands in the Initialization pane of the Mask Editor.

```
[data, map]=imread('label.gif');
pic=ind2rgb(data,map);
```

Then type the command

image(pic)

in the **Icon** pane of the Mask Editor to read the converted label image.

See Also patch, plot

Purpose	Draw color patch of specified shape on icon of masked subsystem	
Syntax	patch(x, y) patch(x, y, [r g b])	
Description	patch(x, y) creates a solid patch having the shape specified by the coordinate vectors x and y. The patch's color is the current foreground color.	
	patch(x, y, $[r g b]$) creates a solid patch of the color specified by the vector $[r g b]$, where r is the red component, g the green, and b the blue. For example,	
	patch([0 .5 1], [0 1 0], [1 0 0])	
	creates a red triangle on the mask's icon.	
Examples	This command	
	patch([0 .5 1], [0 1 0], [1 0 0])	
	creates a red triangle on the mask's icon.	

Pyramid

See Also image, plot

<u>plot</u>

Purpose	Draw graph connecting series of points	
Syntax	plot(Y) plot(X1,Y1,X2,Y2,)	
Description	plot(Y) plots, for a vector Y, each element against its index. If Y is a matrix, it plots each column of the matrix as though it were a vector.	
	plot $(X1, Y1, X2, Y2,)$ plots the vectors Y1 against X1, Y2 against X2, and so on. Vector pairs must be the same length and the list must consist of an even number of vectors.	
	Plot commands can include NaN and inf values. When NaNs or infs are encountered, Simulink software stops drawing, then begins redrawing at the next numbers that are not NaN or inf. The appearance of the plot on the icon depends on the value of the Drawing coordinates parameter.	
	Simulink software displays three question marks (???) in the block icon and issues warnings in these situations:	
	• When the values for the parameters used in the drawing commands are not yet defined (for example, when the mask is first created and values have not yet been entered in the mask dialog box)	
	• When a masked block parameter or drawing command is entered incorrectly	
Examples	This command	
	plot([0 1 5], [0 0 4])	
	generates the plot that appears on the icon for the Ramp block, in the Sources library.	

See Also image

port_label

Purpose	Draw port label on icon of masked subsystem	
Syntax	<pre>port_label('port_type', port_number, 'label') port_label('port_type', port_number, 'label', 'texmode', 'on')</pre>	

Description port_label('port_type', port_number, 'label') draws a label on a port. Valid values for port_type include the following:

Value	Description
input	Simulink input port
output	Simulink output port
lconn	Physical Modeling connection port on the left side of a masked subsystem
rconn	Physical Modeling connection port on the right side of a masked subsystem

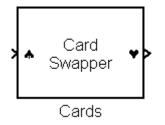
The input argument *port_number* is an integer, and *label* is a string specifying the port's label.

Note Physical Modeling port labels are assigned based on the nominal port location. If the masked subsystem has been rotated or flipped, for example, a port labeled using 'lconn' as the port_type may not appear on the left side of the block.

port_label('port_type', port_number,

'*label*', 'texmode', 'on') lets you use TeX formatting commands in labe1. The TeX formatting commands allow you to include symbols and Greek letters in the port label. See "Mathematical Symbols, Greek Letters, and Tex Characters" in the MATLAB documentation for information on the TeX formatting commands supported by Simulink software.

Examples The command


port_label('input', 1, 'a')

defines a as the label of input port 1.

The commands

```
disp('Card\nSwapper');
port_label('input',1,'\spadesuit','texmode','on');
port_label('output',1,'\heartsuit','texmode','on');
```

draw playing card symbols as the labels of the ports on a masked subsystem.

See Also

disp, fprintf, text

Purpose	Display text at specific location on icon of masked subsystem	
Syntax	<pre>text(x, y, 'text') text(x, y, 'text', 'horizontalAlignment', 'halign', 'verticalAlignment', 'valign') text(x, y, 'text', 'texmode', 'on')</pre>	

Description The text command places a character string at a location specified by the point (x,y). The units depend on the **Drawing coordinates** parameter.

text(x, y, text, 'texmode', 'on') allows you to use TeX formatting commands in text. The TeX formatting commands in turn allow you to include symbols and Greek letters in icon text. See "Mathematical Symbols, Greek Letters, and TEX Characters" in the MATLAB documentation for information on the TeX formatting commands supported by Simulink software.

You can optionally specify the horizontal and/or vertical alignment of the text relative to the point (x, y) in the text command.

The text command offers the following horizontal alignment options.

Option	Aligns
'left'	The left end of the text at the specified point
'right'	The right end of the text at the specified point
'center'	The center of the text at the specified point

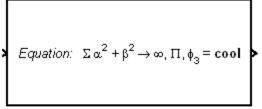
The text command offers the following vertical alignment options.

Option	Aligns
'base'	The baseline of the text at the specified point
'bottom'	The bottom line of the text at the specified point
'middle'	The midline of the text at the specified point

Option	Aligns
'cap'	The capitals line of the text at the specified point
'top'	The top of the text at the specified point

Note While this command is identical in name to its corresponding MATLAB function, it provides only the functionality described above.

Examples The command


text(0.5, 0.5, 'foobar', 'horizontalAlignment', 'center')

centers foobar in the icon.

The command

```
text(.05,.5,'{\itEquation:} \Sigma \alpha^2 +
\beta^2 \rightarrow \infty, \Pi, \phi_3 = {\bfcool}',
'hor','left','texmode','on')
```

draws a left-aligned equation on the icon.

Equation

See Also disp, fprintf, port_label

text

6

Simulink Debugger Commands

animate	Enable or disable animation mode
ashow	Show algebraic loop
atrace	Set algebraic loop trace level
bafter	Insert breakpoint after specified method
break	Insert breakpoint before specified method
bshow	Show specified block
clear	Clear breakpoints from model
continue	Continue simulation
disp	Display block's I/O when simulation stops
ebreak	Enable (or disable) breakpoint on solver errors
elist	List simulation methods in order in which they are executed during simulation
emode	Toggle model execution between accelerated and normal mode
-1	
etrace	Enable or disable method tracing
help	Enable or disable method tracing Display help for debugger commands

nanbreak	Set or clear nonfinite value break mode
next	Advance simulation to start of next method at current level in model's execution list
probe	Display block data
quit	Abort simulation
rbreak	Break when simulation requires solver reset
run	Run simulation to completion
slist	Display sorted list of model's root system and of each of its nonvirtual subsystems
states	Display current state values
status	Display debugging options in effect
step	Advance simulation by one or more methods
stimes	Display sample times defined by model being debugged
stop	Stop simulation
strace	Set solver trace level
systems	List model's nonvirtual systems
tbreak	Set or clear time breakpoint
trace	Display block's I/O each time block executes
undisp	Remove block from debugger's list of display points
untrace	Remove block from debugger's list of trace points
where	Display current location of simulation in simulation loop

xbreak	Break when debugger encounters step-size-limiting state
zcbreak	Toggle breaking at nonsampled zero-crossing events
zclist	List blocks containing nonsampled zero crossings

animate

Purpose	Enable or disable animation mode		
Syntax	animate [animate [delay stop]	
Short Form	ani		
Arguments	delay	Length in seconds between method calls (1 second by default).	
	stop	Disable animation mode.	
Description	animate without any arguments enables animation mode. animate delay enables animation mode and specifies delay as the time delay in seconds between method calls. animate stop disables animation mode.		
See Also	continue		

Purpose	Show algebraic loop		
Syntax	ashow <g< th=""><th colspan="2">ashow <gcb <b="" s#n="" s:b="" ="">clear></gcb></th></g<>	ashow <gcb <b="" s#n="" s:b="" ="">clear></gcb>	
Short Form	as		
Arguments	gcb s:b	Current block. The block whose system index is s and block index is b .	
	s#n clear	The algebraic loop numbered n in system s. Switch that clears loop coloring.	
Description	ashow without any arguments lists all of a model's algebraic loops in the MATLAB Command Window. ashow gcb or ashow s:b highlights the algebraic loop that contains the specified block. ashow s#n highlights the nth algebraic loop in system s. The ashow clear command removes algebraic loop highlights from the model diagram.		
See Also	atrace, slist		

atrace

Purpose	Set algebraic loop trace level		
Syntax	atrace level		
Short Form	at		
Arguments	level Trace	e level (0 = none, 4 = everything).	
Description	The atrace command sets the algebraic loop trace level for a simulation.		
	Command	Displays for Each Algebraic Loop	
	Command atrace 0	Displays for Each Algebraic Loop No information	
	atrace O	No information The loop variable solution, the number of iterations required to solve the loop, and the estimated	
	atrace 0 atrace 1	No information The loop variable solution, the number of iterations required to solve the loop, and the estimated solution error	
	atrace 0 atrace 1 atrace 2	No information The loop variable solution, the number of iterations required to solve the loop, and the estimated solution error Same as level 1	

See Also

states, systems

Purpose	Insert breakpoint after specified method		
Syntax	bafter bafter m:mid bafter <sid:bid gcb="" =""> [mth] [tid:TID] bafter <s:sid gcs="" =""> [mth] [tid:TID] bafter mdl [mth] [tid:TID]</s:sid></sid:bid>		
Short Form	ba		

Arguments	mid	Method ID
	sid:bid	Block ID
	gcb	Currently selected block
	sid	System ID
	gcs	Currently selected system
	mdl	Currently selected model
	mth	A method name, e.g., Outputs.Major
	TID	Task ID
Description		ts a breakpoint after the current method.
	bafter m: <i>mi</i> (see "Method	<i>d</i> inserts a breakpoint after the method specified by <i>mid</i> ID").
	bafter <i>sid:bid</i> inserts a breakpoint after each invocation of the method of the block specified by <i>sid:bid</i> (see "Block ID") in major time steps. bafter gcb inserts a breakpoint after each invocation of a method of the currently selected block (see gcb) in major times steps.	
		<i>d</i> inserts a breakpoint after each method of the root system subsystem specified by the system ID: <i>sid</i> .

Note The systems command displays the system IDs for all nonvirtual systems in the currently selected model.

bafter **gcs** inserts a breakpoint after each method of the currently selected nonvirtual system.

bafter mdl inserts a breakpoint after each method of the currently selected model.

The optional *mth* parameter allow you to set a breakpoint after a particular block, system, or model method and task. For example, bafter **gcb** Outputs sets a breakpoint after the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint after invocation of a method by a particular task. For example, suppose that the currently selected nonvirtual subsystem operates on task 2 and 3. Then bafter gcs Outputs tid:2 sets a breakpoint after the invocation of the subsystem's Outputs method that occurs when task 2 is active.

See Also break, ebreak, tbreak, xbreak, nanbreak, zcbreak, rbreak, clear, where, slist, systems

Purpose	Insert break	point before specified method
Syntax	break < s: si	bid gcb> [mth] [tid:TID] d gcs> [mth] [tid:TID] mth] [tid:TID]
Short Form	b	
Arguments	mid sid:bid gcb	Method ID Block ID Currently selected block

310.010	DIOCK ID
gcb	Currently selected block
sid	System ID
gcs	Currently selected system
mdl	Currently selected model
mth	A method name, e.g., $Outputs.Major$
TID	task ID

Description break inserts a breakpoint before the current method.

break m:mid inserts a breakpoint before the method specified by mid (see "Method ID").

break *sid:bid* inserts a breakpoint before each invocation of the method of the block specified by *sid:bid* (see "Block ID") in major time steps. break gcb inserts a breakpoint before each invocation of a method of the currently selected block (see gcb) in major times steps.

break **s**:*sid* inserts a breakpoint at each method of the root system or nonvirtual subsystem specified by the system ID: *sid*.

Note The systems command displays the system IDs for all nonvirtual systems in the currently selected model.

break gcs inserts a breakpoint at each method of the currently selected nonvirtual system.

 $\verb|break|$ mdl inserts a breakpoint at each method of the currently selected model.

The optional *mth* parameter allow you to set a breakpoint at a particular block, system, or model method. For example, break gcb Outputs sets a breakpoint at the Outputs method of the currently selected block.

The optional TID parameter allows you to set a breakpoint at the invocation of a method by a particular task. For example, suppose that the currently selected nonvirtual subsystem operates on task 2 and 3. Then break gcs Outputs tid:2 sets a breakpoint at the invocation of the subsystem's Outputs method that occurs when task 2 is active.

See Also bafter, clear, ebreak, nanbreak, rbreak, systems, tbreak, where, xbreak, zcbreak, slist

Purpose	Show specified block
Syntax	bshow s:b
Short Form	bs
Arguments	s:b The block whose system index is s and block index is b.
Description	The bshow command opens the model window containing the specified block and selects the block.
See Also	slist

clear

Purpose	Clear breakpoints from model	
Syntax	clear clear m: m clear <i>id</i> clear <s<i>i</s<i>	id d:bid gcb>
	Short For	m
Arguments	mid id sid:bid gcb	Method ID Breakpoint ID Block ID Currently selected block
Description	<pre>clear clears a breakpoint from the current method. clear m:mid clears a breakpoint from the method specified by mid. clear id clears the breakpoint specified by the breakpoint ID id. clear sid:bid clears any breakpoints set on the methods of the block specified by sid:bid.</pre>	
See Also	selected bl	

continue

Purpose	Continue simulation
Syntax	continue
Short Form	C
Description	The continue command continues the simulation from the current breakpoint. If animation mode is not enabled, the simulation continues until it reaches another breakpoint or its final time step. If animation mode is enabled, the simulation continues in animation mode to the first method of the next major time step, ignoring breakpoints.
See Also	run, stop, quit, animate

disp

Purpose	Display block's I/O when simulation stops	
Syntax	disp disp gcb disp s : b	
	Short Form d	
Arguments	s:b The block whose system index is s and block index is b.gcb Current block.	
Description	The disp command registers a block as a display point. The debugger displays the inputs and outputs of all display points in the MATLAB Command Window whenever the simulation halts. Invoking disp without arguments shows a list of display points. Use undisp to unregister a block.	
See Also	undisp, slist, probe, trace	

Purpose	Enable (or disable) breakpoint on solver errors
Syntax	ebreak
Short Form	eb
Description	This command causes the simulation to stop if the solver detects a recoverable error in the model. If you do not set or disable this breakpoint, the solver recovers from the error and proceeds with the simulation without notifying you.
See Also	break, bafter, tbreak, xbreak, nanbreak, zcbreak, rbreak, clear, where, slist, systems

Purpose	List simulation methods in order in which they are executed during simulation
Syntax	elist m:mid [tid:TID] elist <gcs s:sid="" =""> [mth] [tid:TID] elist <gcb sid:bid="" =""> [mth] [tid:TID]</gcb></gcs>
	Short Form el
Description	elist m:mid lists the methods invoked by the system or nonvirtual subsystem method corresponding to the method id mid (see the where command for information on method IDs), e.g.,
	(sldebug @19): elist m:19 RootSystem.Outputs 'vdp' [tid=0] : ◀ (alling method 0:0 Integrator.Outputs 'vdp/x1' [tid=0]
	0:1 Outport.Outputs 'vdp/Out1' [tid=0] 0:2 Integrator.Outputs 'vdp/x2' [tid=0]
	Block id Method Block Task id

The method list specifies the calling method followed by the methods that it calls in the order in which they are invoked. The entry for the calling method includes

• The name of the method

The name of the method is prefixed by the type of system that defines the method, e.g., RootSystem.

- The name of the model or subsystem instance on which the method is invoked
- The ID of the task that invokes the method

The entry for each called method includes

• The ID (*sid:bid*) of the block instance on which the method is invoked

The block ID is prefixed by a number specifying the system that contains the block (the sid). This allows Simulink software to assign the same block ID to blocks residing in different subsystems.

• The name of the method

The method name is prefixed with the type of block that defines the method, e.g., Integrator.

- The name of the block instance on which the method is invoked
- The task that invokes the method

The optional task ID parameter (**tid**:*TID*) allows you to restrict the displayed lists to methods invoked for a specified task. You can specify this option only for system or atomic subsystem methods that invoke Outputs or Update methods.

elist <gcs | s:sid> lists the methods executed for the currently
selected system (specified by the gcs command) or the system or
nonvirtual subsystem specified by the system ID sid, e.g.,

```
(sldebug @19): elist gcs
RootSystem.Start 'vdp':
0:0 Integrator.Start 'vdp/x1'
0:2 Integrator.Start 'vdp/x2'
0:4 Scope.Start 'vdp/Scope'
0:5 Fcn.Start 'vdp/Fcn'
0:6 Product.Start 'vdp/Product'
0:7 Gain.Start 'vdp/Mu'
0:8 Sum.Start 'vdp/Mu'
0:8 Sum.Start 'vdp/Sum'
RootSystem.Initialize 'vdp':
0:0 Integrator.Initialize 'vdp/x1'
...
```

The system ID of a model's root system is 0. You can use the debugger's systems command to determine the system IDs of a model's subsystems.

Note The elist and where commands use block IDs to identify subsystems in their output. The block ID for a subsystem is not the same as the system ID displayed by the systems command. Use the elist *sid:bid* form of the elist command to display the methods of a subsystem whose block ID appears in the output of a previous invocation of the elist or where command.

elist <gcs | s:sid> mth lists methods of type mth to be executed for the system specified by the gcs command or the system ID sid, e.g.,

```
(sldebug @19): elist gcs Start
RootSystem.Start 'vdp':
0:0 Integrator.Start 'vdp/x1'
0:2 Integrator.Start 'vdp/x2'
0:4 Scope.Start 'vdp/Scope'
0:5 Fcn.Start 'vdp/Fcn'
0:6 Product.Start 'vdp/Product'
0:7 Gain.Start 'vdp/Mu'
0:8 Sum.Start 'vdp/Sum'
...
```

Use elist **gcb** to list the methods invoked by the nonvirtual subsystem currently selected in the model.

See Also where, slist, systems

emode

Purpose	Toggle model execution between accelerated and normal mode
Syntax	emode
Short Form	em
Description	Toggles the simulation between accelerated and normal mode when using the Accelerator mode in Simulink software. See "Using the Accelerator Mode with the Simulink Debugger" in "Using Simulink" for more information.

Purpose	Enable or	r disable method tracing
Syntax	etrace]	L evel level-number
	Short Fo et	orm
Description	This command enables or disables method tracing, depending on the value of level:	
	Level	Description
	0	Turn tracing off.
	1	Trace model methods.
	2	Trace model and system methods.
	3	Trace model, system, and block methods.
	When method tracing is on, the debugger prints a message at the command line every time a method of the specified level is entered or exited. The message specifies the current simulation time, whether the simulation is entering or exiting the method, the method id and name, and the name of the model, system, or block to which the method belongs.	
See Also	elist, wł	nere, trace

help

Purpose	Display help for debugger commands
Syntax	help
Short Form	? or h
Description	The help command displays a list of debugger commands in the command window. The list includes the syntax and a brief description of each command.

Purpose	Set or clear nonfinite value break mode
Syntax	nanbreak
Short Form	na
Description	The nanbreak command causes the debugger to break whenever the simulation encounters a nonfinite (NaN or Inf) value. If nonfinite break mode is set, nanbreak clears it.
See Also	break, bafter, ebreak, rbreak, tbreak, xbreak, zcbreak

Purpose	Advance simulation to start of next method at current level in model's execution list
Syntax	next
Short Form	n
Description	The next command advances the simulation to the start of the next method at the current level in the model's method execution list.
	Note The next command has the same effect as the step over command. See step for more information.
See Also	step

Purpose	Display block d	lata
Syntax	probe probe s:b probe gcb probe level]	level-type
Short Form	p	
Arguments	s:b gcb level-type	The block whose system index is s and block index is b . Currently selected block. The type of information displayed [io all].
Description	<pre>probe causes the debugger to enter an interactive probe mode. In this mode, the debugger displays the I/O of any block you select with a click of a mouse button. To exit probe mode, enter any command or press the Enter key. probe s:b displays the I/O of the block whose index is s:b.</pre>	
		plays the I/O of the currently selected block.
	probe level]	Level-type specifies the type of information displayed, he value of level-type:
	Level	Displays
	io	Block's I/O
	all	All information regarding a block's current state, including inputs and outputs, states, and zero crossings

By default, level-type is set to all.

probe

See Also disp, trace

Purpose	Abort simulation
Syntax	quit
Short Form	q
Description	The quit command terminates the current simulation.
See Also	stop

rbreak

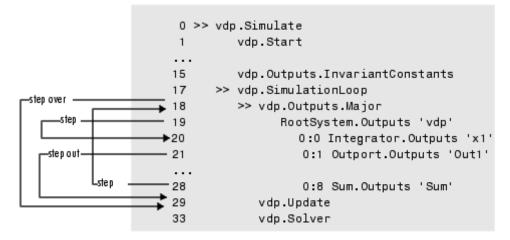
Purpose	Break when simulation requires solver reset
Syntax	rbreak
Short Form	rb
Description	This command enables (or disables) a solver reset breakpoint if the breakpoint is disabled (or enabled). The breakpoint causes the debugger to halt the simulation whenever an event that requires a solver reset occurs. The halt occurs before the solver is reset.
See Also	break, bafter, ebreak, nanbreak, tbreak, xbreak, zcbreak

Purpose	Run simulation to completion
Syntax	run
Short Form	r
Description	The run command runs the simulation from the current breakpoint to its final time step. It ignores breakpoints and display points.
See Also	continue, stop, quit

Purpose	Display sorted list of model's root system and of each of its nonvirtual subsystems		
Syntax	slist		
Short Form	sli		
Description	The slist command displays the sorted list of a model's root system and each of its nonvirtual subsystems. For example, the sorted list for the vdp model's root system is		
0:0 'vdp/x1' (Integrator)			
	0:1 'vdp/Out1' (Outport)		
	0:2 'vdp/x2' (Integrator)		
	0:3 'vdp/Out2' (Outport)		
	0:4 'vdp/Scope' (Scope)		
	0:5 'vdp/Fcn' (Fcn)		
	0:6 'vdp/Product' (Product)		
	0:7 'vdp/Mu' (Gain)		
	0:8 'vdp/Sum' (Sum)		

For each system (root or nonvirtual), the slist command displays a title line followed by an entry for each block in the order in which the blocks appear in the sorted list. The title line specifies the name of the system, the number of nonvirtual blocks that the system contains, and the number of blocks in the system that have direct feedthrough ports. Each block entry lists the block's id and the name and type of the block. The block id consists of a system index and a block index separated by a colon (s:b). The block index is the position of the block in the sorted list. The system index is the order in which Simulink software generated the system's sorted list. The system index has no special significance. It simply allows blocks that appear in the same position in different sorted lists to have unique identifiers.

A sorted list is a list of a root system or nonvirtual subsystem's blocks sorted according to data dependencies and other criteria. Simulink software uses sorted lists to create block method execution lists (see elist) for root system and nonvirtual subsystem methods that invoke the corresponding methods of the blocks that the root system or subsystem contains. In general, root system and nonvirtual subsystem methods invoke the block methods in the same order as the blocks appear in the sorted list. However, significant exceptions occur. For example, execution lists for multitask models group all blocks operating at the same rate (i.e., in the same task) together with slower groups appearing later than faster groups. The grouping of methods by task can result in an order of block method execution that differs from the order in which blocks appear in the sorted list. However, within groups, methods execute in the same order as the corresponding blocks appear in the sorted list.


See Also systems, elist

states

Purpose	Display current state values		
Syntax	states		
Short Form	state		
Description	The states command displays a list of the current states of the model. The display lists the index, current value, system:block:element ID, state vector name, and block name for each state.		
Example	The following command displays information about the states for the hardstop demo: (sldebug @41): >> states		
	Continuous States: Idx Value (system:block:element Name 'BlockName') 0 -0.5 (0:1:0 CSTATE 'hardstop/position') 1 100 (0:9:0 CSTATE 'hardstop/velocity')		

Purpose	Display debugging options in effect
Syntax	status
Short Form	stat
Description	The status command displays a list of the debugging options in effect.

Purpose	Advance simulation by one or more methods		
Syntax	step [in into] step over step out step top step blockmth		
Short Form	S		
Description	 This command advances the simulation Into (step [in into]), over (step over), or out of the method at which the simulation is currently stopped (step out) 		
	 To the top of the simulation loop (step top), i.e., to the start of the first method executed at the start of the next time step To the next method that operates on a block (step blockmth) The following diagram illustrates the effect of various forms of the 		
	step command.		

If this command advances the simulation to the start of a block method, the debugger points the debug pointer at the block on which the method operates.

See Also next, where, elist

stimes

Purpose	Display sample times defined by model being debugged		
Syntax	stimes		
Short Form	sti		
Description	This command displays information about the sample times defined by this model, including the sample time's period, offset, and task ID.		
Example	The following command displays the sample times for the f14 demo:		
	(sldebug @O): >> stimes		
	Sample times for 'f14' [Number of sample times = 3]		
	1. [0 , 0] tid=0 (continuous sample time)		
	<pre>2. [0 , 1] tid=1 (continuous but fixed in minor step)</pre>		
	3. [0.1 , 0] tid=2		

Purpose	Stop simulation
Syntax	stop
Short Form	sto
Description	The stop command stops the simulation.
See Also	continue, run, quit

strace

Purpose	Set solver trace level		
Syntax	strace level		
Short Form	i		
Arguments	level Trace	level (0 = none, 1 = everything).	
Description	The strace command causes the solver to display diagnostic information in the MATLAB Command Window, depending on the value of level. Valid values are 0 (no information) or 1 (maximum detail).		
	Command	Displays	
	strace O	No information	
	strace 1	Information about time steps, integration steps, zero crossings, and solver resets	

When diagnostic tracing is on, the debugger displays the sizes of major and minor time steps:

```
[TM = 13.21072088374186 ] Start of Major Time Step
[Tm = 13.21072088374186 ] Start of Minor Time Step
```

The debugger also displays integration information, including the time step of the integration method, the step size of the integration method, the outcome of the integration step, the normalized error, and the index of the state:

```
[Tm = 13.21072088374186 ] [H = 0.2751116230148764 ] Begin Integration Step
[Tf = 13.48583250675674 ] [Hf = 0.2751116230148764 ] Fail [Er = 1.0404e+000]
[Ix = 1]
[Tm = 13.21072088374186 ] [H = 0.2183536061326544 ] Retry
[Ts = 13.42907448987452 ] [Hs = 0.2183536061326539 ] Pass [Er = 2.8856e-001]
```

[IX = 1]

When a zero crossing is detected, the debugger displays information about the iterative search algorithm used to identify when the zero crossing occurred. This includes the time step of the zero crossing, the step size of the zero crossing detection algorithm, the length of the time interval bracketing the zero crossing, and a flag denoting the rising or falling direction of the zero crossing:

```
[Tz = 3.61533333333333] ] Detected 1 Zero Crossing Event 0[F]
Begin iterative search to bracket zero crossing event
[Tz = 3.62111157580072 ] [Hz = 0.00577824246771424 ] [Iz = 4.2222e-003] 0[F]
[Tz = 3.621116982080098 ] [Hz = 0.005783648746797265 ] [Iz = 4.2164e-003] 0[F]
[Tz = 3.621116987943544 ] [Hz = 0.005783654610242994 ] [Iz = 4.2163e-003] 0[F]
[Tz = 3.621116987943544 ] [Hz = 0.005783654610242994 ] [Iz = 1.1804e-011] 0[F]
[Tz = 3.621116987949452 ] [Hz = 0.005783654616151157 ] [Iz = 5.8962e-012] 0[F]
[Tz = 3.621116987949452 ] [Hz = 0.005783654616151157 ] [Iz = 5.1514e-014] 0[F]
End iterative search to bracket zero crossing event
```

When solver resets occur, the debugger displays the time at which the solver was reset:

[Tr = 6.246905153573676] Process Solver Reset [Tr = 6.246905153573676] Reset Zero Crossing Cache [Tr = 6.246905153573676] Reset Derivative Cache

For more information about the notation displayed by strace, type the following command at the sldebug prompt:

help time

See Also atrace, etrace, states, trace, zclist

systems

Purpose	List model's nonvirtual systems
Syntax	systems
Short Form	sys
Description	The systems command lists a model's nonvirtual systems in the MATLAB Command Window.
See Also	slist

Purpose	Set or clear time breakpoint		
Syntax	tbreak		
	tbreak t		
Short Form	tb		
Description	The tbreak command sets a breakpoint at the specified time step. If a breakpoint already exists at the specified time, tbreak clears the breakpoint. If you do not specify a time, tbreak toggles a breakpoint at the current time step.		
See Also	break, bafter, ebreak, xbreak, nanbreak, zcbreak, rbreak		

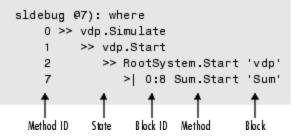
trace

Purpose	Display block's I/O each time block executes		
Syntax	trace gcb trace s:b		
Short Form	tr		
Arguments	s:b gcb	The block whose system index is s and block index is b . Current block.	
Description	The trace command registers a block as a trace point. The debugger displays the I/O of each registered block each time the block executes.		
See Also	disp, probe, untrace, slist, strace		

Purpose	Remove block from debugger's list of display points		
Syntax	undisp gcb undisp s:b		
Short Form	und		
Arguments	s:b gcb	The block whose system index is s and block index is b . Current block.	
Description	The undisp command removes the specified block from the debugger's list of display points.		
See Also	disp, slist		

untrace

Purpose	Remove block from debugger's list of trace points				
Syntax	untrace gcb untrace s:b				
Short Form	unt				
Arguments	s:b The block whose system index is s and block index is b.gcb Current block.				
Description	The untrace command removes the specified block from the debugger's list of trace points.				
See Also	trace, slist				


 Purpose
 Display current location of simulation in simulation loop

Syntax where [detail]

w

Short Form

Description The where command displays the current location of the simulation in the simulation loop, for example,

The display consists of a list of simulation nodes with the last entry being the node that is about to be entered or exited. Each entry contains the following information:

• Method ID

The method ID identifies a specific invocation of a method.

- A symbol specifying its state:
 - >> (active)
 - > | (about to be entered)
- Name of the method invoked (e.g., RootSystem.Start)
- Name of the block or system on which the method is invoked (e.g., Sum)

• System and block ID (sid:bid) of the block on which the method is invoked

For example, 0:8 indicates that the specified method operates on block 8 of system 0.

where detail, where detail is any nonnegative integer, includes inactive nodes in the display.

```
0 >> vdp.Simulate
         >> vdp.Start
    1
    2
            >> RootSystem.Start 'vdp'
               0:4 Scope.Start 'Scope'
   3
    4
                  0:5 Fcn.Start 'Fcn'
                  0:6 Product.Start
    5
'Product'
                  0:7 Gain.Start 'Mu'
    6
    7
               >| 0:8 Sum.Start 'Sum'
```


Purpose	Break when debugger encounters step-size-limiting state				
Syntax	xbreak				
Short Form	x				
Description	The xbreak command pauses execution of the model when the debugger encounters a state that limits the size of the steps that the solver takes. If xbreak mode is already on, xbreak turns the mode off.				
See Also	break, bafter, ebreak, zcbreak, tbreak, nanbreak, rbreak				

zcbreak

Purpose	Toggle breaking at nonsampled zero-crossing events				
Syntax	zcbreak				
Short Form	zcb				
Description	The zcbreak command causes the debugger to break when a nonsampled zero-crossing event occurs. If zero-crossing break mode is already on, zcbreak turns the mode off.				
See Also	break, bafter, xbreak, tbreak, nanbreak, zclist				

Purpose	List blocks containing nonsampled zero crossings				
Syntax	zclist				
Short Form	zcl				
Description	The zclist command displays a list of blocks in which nonsampled zero crossings can occur. The command displays the list in the MATLAB Command Window.				
See Also	zcbreak				

zclist

Simulink Classes

EventData	Provide information about block method execution events
Simulink.AliasType	Create alias for signal and/or parameter data type
Simulink.Annotation	Specify properties of model annotation
Simulink.BlockCompDworkData	Provide postcompilation information about block's DWork vector
Simulink.BlockCompInputPortData	Provide postcompilation information about block input port
Simulink.BlockCompOutput- PortData	Provide postcompilation information about block output port
Simulink.BlockData	Provide run-time information about block-related data, such as block parameters
Simulink.BlockPortData	Describe block input or output port
Simulink.BlockPreComp- InputPortData	Provide precompilation information about block input port
Simulink.BlockPreComp- OutputPortData	Provide precompilation information about block output port
Simulink.Bus	Specify properties of signal bus
Simulink.BusElement	Describe element of signal bus
Simulink.ConfigSet	Access model configuration set

Simulink.ConfigSetRef	Link model to configuration set stored independently of any model
Simulink.ModelAdvisor	Run Model Advisor from M-file
Simulink.ModelDataLogs	Container for model's signal data logs
Simulink.ModelWorkspace	Describe model workspace
Simulink.MSFcnRunTimeBlock	Get run-time information about Level-2 M-file S-function block
Simulink.NumericType	Specify data type
Simulink.Parameter	Specify value, value range, data type, and other properties of block parameter
Simulink.ParamRTWInfo	Specify information needed to generate code for parameter
Simulink.RunTimeBlock	Allow Level-2 M-file S-function and other M-file programs to get information about block while simulation is running
Simulink.ScopeDataLogs	Store data logged by Scope signal viewer
Simulink.Signal	Specify attributes of signal
Simulink.SignalRTWInfo	Specify information needed to generate code for signal
Simulink.StructElement	Describe element of data structure
Simulink.StructType	Describe data structure used as value of signal or parameter
Simulink.SubsysDataLogs	Container for subsystem's signal data logs
Simulink.TimeInfo	Provide information about time data in Simulink.Timeseries object

Simulink.Timeseries	Store data for any signal except mux or bus signal
Simulink.TsArray	Store data for mux or bus signal

EventData

I UI PUSE I TOVIDE INIOTINATION ADOUT DIOCK METHOD execution events	Purpose	Provide information about block method execution events
---	---------	---

Description Simulink software creates an instance of this class when a block method execution event occurs during simulation and passes it to any listeners registered for the event (see add_exec_event_listener). The instance specifies the type of event that occurred and the block whose method execution triggered the event. See "Accessing Block Data During Simulation" in *Simulink User's Guide* for more information.

Parent None

Children None

Property Summary

Name	Description
"Type"	Type of method execution event that occurred.
"Source"	Block that triggered the event.

Properties

Туре

Description

Type of method execution event that occurred. Possible values are:

Event	Occurs		
'PreOutputs'	Before a block's Outputs method executes.		
'PostOutputs'	After a block's Outputs method executes.		
'PreUpdate'	Before a block's Update method executes.		
'PostUpdate'	After a block's Update method executes.		
'PreDerivatives'	Before a block's Derivatives method executes.		
'PostDerivatives'	After a block's Derivatives method executes.		

Data Type

string

Access

RO

Source

Description Block that triggered the event

Data Type Simulink.RunTimeBlock

Access

RO

Simulink.AliasType

Purpose Create alias for signal and/or parameter data type

Description This class allows you to designate MATLAB variables as aliases for signal and parameter data types. You do this by creating instances of this class and assigning them to variables in the MATLAB or model workspaces (see "Creating a Data Type Alias" on page 7-6). The MATLAB variable to which a Simulink.AliasType object is assigned is called a data type alias. The data type to which an alias refers is called its base type. Simulink software allows you to set the BaseType property of the object that the variable references, thereby designating the data type for which it is an alias.

Simulink software lets you use aliases instead of actual type names in dialog boxes and set_param commands to specify the data types of Simulink block outputs and parameters. Using aliases to specify signal and parameter data types can greatly simplify global changes to the signal and parameter data types that a model specifies. In particular, changing the data type of all signals and parameters whose data type is specified by an alias requires only changing the base type of the alias. By contrast, changing the data types of signals and parameters whose data types are specified by an actual type name requires respecifying the data type of each signal and parameter individually.

Note Suppose you specify an instance of the Simulink.AliasType class as the value of a Simulink.Parameter object's **Data type** property. If you enter the parameter object in a subsystem's mask, the subsystem displays the data type's base type instead of its alias name.

Creating a Data Type Alias

You can use either the Model Explorer or MATLAB commands (see "MATLAB Commands for Creating Data Type Aliases" on page 7-7) to create a data type alias.

To use the Model Explorer to create an alias:

1 Select Base Workspace (i.e., the MATLAB workspace) in the Model Explorer's **Model Hierarchy** pane.

You must create data type aliases in the MATLAB workspace. If you attempt to create an alias in a model workspace, Simulink software displays an error.

2 Select Simulink.AliasType from the Model Explorer's Add menu.

Simulink software creates an instance of a Simulink.AliasType object and assigns it to a variable named Alias in the MATLAB workspace.

3 Rename the variable to a more appropriate name, for example, a name that reflects its intended usage.

To change the name, edit the name displayed in the **Name** field in the Model Explorer's **Contents** pane.

4 Enter the name of the data type that this alias represents in the Base type field in the Model Explorer's Dialog pane.

You can specify the name of any existing standard or user-defined data type in this field. Skip this step if the desired base type is double (the default).

5 Use the MATLAB save command to save the newly created alias in a MAT-file that can be loaded by the models in which it is used.

MATLAB Commands for Creating Data Type Aliases

Use the following syntax to create a data type alias at the MATLAB command line or in a MATLAB program

ALIAS = Simulink.AliasType;

where ALIAS is the name of the variable that you want to serve as the alias. For example, the following line creates an alias names MyFloat.

MyFloat = Simulink.AliasType;

The following notations get and set the properties of a data type alias, respectively,

```
PROPVALUE = ALIAS.PROPNAME;
ALIAS.PROPNAME = PROPVALUE;
```

where ALIAS is the name of the alias, PROPNAME is the name of the alias object's properties, and PROPVALUE is the property's value. For example, the following code saves the current value of MyFloat's BaseType property and assigns it a new value.

```
old = MyFloat.BaseType;
MyFloat.BaseType = 'single';
```

See "Properties" on page 7-11 for information on the names, permitted values, and usage of the properties of data type alias objects.

Data Type Aliases in the Generated Code

You can cause data type aliases to appear in the code generated for a model using any of the following methods.

- Specifying the signal data type of a block in the model as a Simulink.AliasType via the **Block Parameters** dialog box.
- Creating a Simulink.Signal object that uses the Simulink.AliasType as its data type. Use this signal object as the name of a signal in the model and specify that the signal name must resolve to an object in the MATLAB workspace. See "Signal Objects" in the Real-Time Workshop User's Guide for more information.
- Creating a Simulink.Parameter object that uses the Simulink.AliasType as its data type. Use this parameter object as a block parameter in the model. See "Generated Code for Parameter Data Types" in the Real-Time Workshop User's Guide for more information.

Notes

- If you assign a data type in a block's **Block Parameters** dialog box and by using a Simulink.Signal object on the signal feeding into the block, the code is always generated using the data type in the dialog box.
- The Real-Time Workshop code generator tries to preserve the names of alias types in the generated code. However, in some cases, an alias type name might revert to its underlying equivalent built-in data type. If you have a Real-Time Workshop Embedded Coder license, you can guarantee that the code generator uses the alias type name in the generated code, by using replacement types (see "Replacing Built-In Data Type Names in Generated Code" in the Real-Time Workshop Embedded Coder documentation).

Parent None

Children None

Simulink.AliasType

Property	Simulink.Alia	Simulink.AliasType: Temperature				
Dialog Box	Base type:	double			•	
	Header file:					
	Description:					
	,		1		1	
			<u>R</u> evert	<u>H</u> elp	Apply	

Base type

The data type to which this alias refers. The default is double. To specify another data type, select the data type from the adjacent pull-down list of standard data types or enter the data type's name in the edit field. Note that you can, with one exception, specify a nonstandard data type, e.g., a data type defined by a Simulink.NumericType object, by entering the data type's name in the edit field. The exception is a Simulink.NumericType whose Category is Fixed-point: unspecified scaling.

Note Fixed-point: unspecified scaling is a partially specified type whose definition is completed by the block that uses the Simulink.NumericType. Forbidding its use in alias types avoids creating aliases that have different base types depending on where they are used.

Header file

Name of a user-supplied C header file that defines a data type having the same name as this alias (i.e., as the MATLAB variable

that references this alias object). If this field is not empty, code generated from this model defines the alias type by including the specified header file. If this field is empty, the generated code defines the alias type itself.

Description

Describes the usage of the data type referenced by this alias.

Properties

Name	Description
BaseType	A string specifying the name of a standard or custom data type. (Base Type)
Description	A string that describes the usage of the data type. May be a null string. (Description)
HeaderFile	A string that specifies the name of a C header file that defines a data type having the same name as the alias. (Header File)

Simulink.Annotation

Purpose Specify properties of model annotation

None.

Description Instances of this class specify the properties of annotations. You can use getCallbackAnnotation in an annotation callback function to get the Simulink.Annotation instance for the annotation associated with the callback function. You can use find_system and get_param to get the Simulink.Annotation instance associated with any annotation in a model. For example, the following code gets the annotation object for the first annotation in the currently selected model and turns on its drop shadow

```
ah = find_system(gcs, 'FindAll', 'on', 'type', 'annotation');
ao = get_param(ah(1), 'Object');
ao.DropShadow = 'on';
```

Children

Property Summary

Property	Description	Values
Text	String specifying text of annotation. Same as Name.	string
ClickFcn	Specifies MATLAB code to be executed when a user single-clicks this annotation. Simulink software stores the code entered in this field with the model. See "Associating Click Functions with Annotations" for more information.	string
Description	String that describes this annotation.	string

Property	Description	Values
FontAngle	String specifying the angle of the annotation's font. The default value, 'auto', specifies use of the model's preferred font angle.	'normal' 'italic' 'oblique' {'auto'}
FontName	String specifying name of annotation's font. The default value, 'auto', specifies use of the model's preferred font.	string
FontSize	Integer specifying size of annotation's font in points. The default value, -1, specifies use of the model's preferred font size.	real { ' - 1 ' }
FontWeight	String specifying the weight of the annotation's font. The default value, 'auto', specifies use of the model's preferred font weight.	'light' 'normal' 'demi' 'bold' {'auto'}
Handle	Annotation handle.	real
HiliteAncestors	For internal use.	
Name	String specifying text of annotation. Same as Text.	string
Selected	String specifying whether this annotation is currently selected ('on') or not selected ('off').	{'on'} 'off'
Parent	String specifying parent name of annotation object.	string
Path	Path to the annotation.	string

Property	Description	Values
Position	Two-element vector specifying the x-y coordinates of this annotation relative to the top, left corner of the block diagram, e.g., [236 83].	vector [left bottom] not enclosed in quotation marks. The maximum value for a coordinate is 32767.
Horizontal- Alignment	String specifying the horizontal alignment of this annotation, e.g., 'center'.	{'center'} 'left' 'right'
VerticalAlignment	String specifying the vertical alignment of this annotation, e.g., 'middle'.	{'middle'} 'top' 'cap' 'baseline' 'bottom'
ForegroundColor	String specifying foreground color of this annotation.	RGB value array string [r,g,b,a] where r, g, b, and a are the red, green, blue, and alpha values of the color normalized to the range 0.0 to 1.0, delineated with commas. The alpha value is optional and ignored.
		Block background color can also be 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'gray', 'lightBlue', 'orange', 'darkGreen'.

Property	Description	Values
BackgroundColor	String specifying background color of this annotation.	RGB value array string [r,g,b,a] where r, g, b, and a are the red, green, blue, and alpha values of the color normalized to the range 0.0 to 1.0, delineated with commas. The alpha value is optional and ignored.
		Block background color can also be 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'gray', 'lightBlue', 'orange', 'darkGreen'.
DropShadow	String specifying whether to display a drop shadow. Options are 'on' or 'off'.	'on' {'off'}
TeXMode	String specifying whether to render TeX markup. Options are 'on' or 'off'.	'on' {'off'}
Туре	Annotation type. This is always 'annotation'	string
LoadFcn	String specifying M-code to be executed when the model containing this annotation is loaded. See "Annotation Callback Functions" in the online Simulink documentation.	string

Property	Description	Values
DeleteFcn	String specifying M-code to be executed before deleting this annotation. See "Annotation Callback Functions" in the online Simulink documentation.	string
RequirementInfo	For internal use.	string
Тад	User-specified text that is assigned to the annotation's Tag parameter and saved with the annotation.	string
UseDisplayText- AsClickCallback	String specifying whether to use the contents of the Text property as this annotation's click function. Options are 'on' or 'off'.	'on' {'off'}
	If set to 'on', the text of the annotation is interpreted as a valid MATLAB expression and run. If set to 'off', clicking on the annotation runs the click function, if there is one. If there is no click function, clicking the annotation has no effect.	
	See "Associating Click Functions with Annotations" in the Simulink documentation for more information.	
UserData	Any data that you want to associate with this annotation.	vector

Purpose	Provide postcompilation information about block's DWork vector
Description	Simulink software returns an instance of this class when an M-file program, e.g., a Level-2 M-file S-function, invokes the "Dwork" on page 7-136 method of a block's run-time object after the model containing the block has been compiled.
Parent	Simulink.BlockData

Parent Simulink.BlockData

Children None

Property Summary

Name	Description
"Usage" on page 7-17	Usage type of this DWork vector.
"UsedAsDiscState"	True if this DWork vector is being used to store the values of a block's discrete states.

Properties

Usage

Description

Returns a string indicating how this DWork vector is used. Permissible values are:

- DWork
- DState
- Scratch
- Mode

Data Type

string

Access

 $RW \ for \ M\mbox{-file S-function blocks}, \ RO \ for \ other \ blocks.$

UsedAsDiscState

Description

True if this DWork vector is being used to store the values of a block's discrete states.

Data Type

Boolean

Access

RW for M-file S-function blocks, RO for other blocks.

Purpose	Provide postcompilation information about block input port	
Description	Simulink software returns an instance of this class when an M-file program, e.g., a Level-2 M-file S-function, invokes the "InputPort" on page 7-137 method of a block's run-time object after the model containing the block has been compiled.	
Parent	Simulink.BlockPortData	
Children	None	
Property	Name	Description
Summary	"DirectFeedthrough"	True if this port has direct feedthrough.
	"Overwritable"	True if this port is overwritable.
Properties	DirectFeedthrough Description True if this input port has direct feedthrough. Data Type Boolean Access RW for M-file S functions, RO for other blocks.	
	Overwritable Description True if this input port is o Data Type Boolean Access RW for M-file S functions,	

Simulink.BlockCompOutputPortData

Purpose	Provide postcompilation information about block output port	
Description	Simulink software returns an instance of this class when an M-file program, e.g., a Level-2 M-file S-function, invokes the "OutputPort" on page 7-138 method of a block's run-time object after the model containing the block has been compiled.	
Parent	Simulink.BlockPortData	
Children	None	
Property Summary	Name	Description
	"Reusable"	Specifies whether an output port's memory is reusable.
		is reusable.
Properties		is reusable.
Properties	Reusable	
Properties	Description	ut port's memory is reusable. Options are:
Properties	Description Specifies whether an outp	ut port's memory is reusable. Options are:

RW for M-file S functions, RO for other blocks.

Purpose	Provide run-time information about block-related data, such as block parameters
Description	This class defines properties that are common to objects that provide run-time information about a block's ports and work vectors.
Parent	None
Children	Simulink.BlockPortData,Simulink.BlockCompDworkData

Property Summary	Name	Description
	"AliasedThroughDataType" on page 7-22	Fundamental base data type.
	"AliasedThroughDataType- ID" on page 7-23	Fundamental base data type ID.
	"Complexity"	Numeric type (real or complex) of the block data.
	"Data"	The block data.
	"DataAsDouble"	The block data in double form.
	"Datatype"	Data type of the block data.
	"DatatypeID"	Index of the data type of the block data.
	"Dimensions"	Dimensions of the block data.
	"Name"	Name of the block data.
	"Type"	Type of block data (e.g., a parameter).

Properties

AliasedThroughDataType

Description

Data type aliases allow a data type (B) to be recursively aliased to another alias type or BaseType (A). If alias type A is aliased to another alias type that is aliased to another alias type and so forth, this property allows the alias type to be iteratively searched (aliased through) until the type is no longer an alias type and that final result is the value of the property returned. For example, assume that you have created the Simulink Alias types A and B as follows:

```
A=Simulink.AliasType('double')
```

```
A =
Simulink.AliasType
Description: ''
HeaderFile: ''
BaseType: 'double'
B=Simulink.AliasType('A')
B =
Simulink.AliasType
Description: ''
HeaderFile: ''
BaseType: 'A'
```

If the data type of an item of block data is B, this property returns the base type A instead of B.

Data Type

string

```
Access
```

RO

AliasedThroughDataTypeID

Description

Index of the data type alias returned by the $\tt AliasedThroughDataType$ property.

Data Type

integer

Access

RO

Complexity

Description

Numeric type (real or complex) of the block data.

Data Type

string

Access

 RW for M-file S functions, RO for other blocks.

Data

Description

The block data.

Data Type

The data type specified by the "Datatype" or "DatatypeID" properties of this object.

Access

RW

DataAsDouble

Description

The block data's in double form.

Data Type

double

Access

RO

Datatype

Description

Data type of the values of the block-related object.

Data Type

string

Access

RO

DatatypeID

Description

Index of the data type of the values of the block-related object. Enter the numeric value for the desired data type, as follows:

Data Type	Value
'inherited'	-1
'double'	0
'single'	1
'int8'	2
'uint8'	3
'int16'	4
'uint16'	5

Data Type	Value
'int32'	6
'uint32'	7
'boolean' or fixed-point data types	8

Data Type

integer

Access

 RW for M-file S functions, RO for other blocks

Dimensions

Description

Dimensions of the block-related object, e.g., parameter or DWork vector.

Data Type

array

Access

 RW for M-file S functions, RO for other blocks

Name

Description

Name of block-related object, e.g., a block parameter or DWork vector.

Data Type

string

Access

 $\mathsf{RW}\xspace$ for M-file S functions, $\mathsf{RO}\xspace$ for other blocks

Туре

Description

Type of block data. Possible values are:

Туре	Description
'BlockPreCompInputPortData'	This object contains data for an input port before the model is compiled.
'BlockPreCompOutputPortData'	This object contains data for an output port before the model is compiled.
'BlockCompInputPortData'	This object contains data for an input port after the model is compiled.
'BlockCompOutputPortData'	This object contains data for an output port after the model is compiled.
'BlockPreCompDworkData'	This object contains data for a DWork vector before the model is compiled.
'BlockCompDworkData'	This object contains data for a DWork vector after the model is compiled.
'BlockDialogPrmData'	This object describes a dialog box parameter of a Level-2 M-file S-function.
'BlockRuntimePrmData'	This object describes a run-time parameter of a Level-2 M-file S-function.
'BlockCompContStatesData'	This object describes the continuous states of the block at the current time step.
'BlockDerivativesData'	This object describes the derivatives of the block's continuous states at the current time step.

Data Type string Access R0

Simulink.BlockPortData

Purpose	Describe block input or output port
Description	This class defines properties that are common to objects that provide run-time information about a block's ports.
Parent	Simulink.BlockData
Children	Simulink.BlockPreCompInputPortData,Simulink.BlockPreComp- OutputPortData,Simulink.BlockCompInputPortData, Simulink.BlockCompOutputPortData

Property Summary

Name	Description
"IsBus"	True if this port is connected to a bus.
"IsSampleHit"	True if this port produces output or accepts input at the current simulation time step.
"SampleTime"	Sample time of this port.
"SampleTimeIndex"	Sample time index of this port.
"SamplingMode"	Sampling mode of the port.

Properties

IsBus

Description

True if this port is connected to a bus.

Data Type

Boolean

Access

RO

IsSampleHit

Description

True if this port produces output or accepts input at the current simulation time step.

Data Type

Boolean

Access

RO

SampleTime

Description

Sample time of this port.

Data Type

[period offset] where period and offset are values of type double. See "How to Specify the Sample Time" for more information.

Access

 RW for M-file S functions, RO for other blocks

SampleTimeIndex

Description

Sample time index of this port.

Data Type

integer

Access

RO

SamplingMode

Description

Sampling mode of the port. Valid values are:

Value	Description
'frame'	Port accepts or outputs frame-based signals. The use of frame-based signals requires a Signal Processing Blockset license.
'inherited'	Sampling mode is inherited from the port to which this port is connected.
'sample'	Port accepts or outputs sampled data.

Data Type

string

Access

 $RW \ for \ M\mbox{-file } S \ functions, \ RO \ for \ other \ blocks$

Purpose	Provide precompilation information about block input port		
Description	Simulink software returns an instance of this class when an M-file program, e.g., a Level-2 M-file S-function, invokes the "InputPort" on page 7-137 method of a block's run-time object before the model containing the block has been compiled.		
Parent	Simulink.BlockPort	Data	
Children	None		
Property	Name	Description	
Summary	"DirectFeedthrough"	True if this port has direct feedthrough.	
	"Overwritable"	True if this port is overwritable.	
Properties	Data Type Boolean Access RW for M-file S function	has direct feedthrough. ns, R0 for other blocks	
	Overwritable Description True if this input port Data Type Boolean Access RW for M-file S function		

Simulink.BlockPreCompOutputPortData

Purpose	Provide precompilation information about block output port			
Description	Simulink software returns an instance of this class when an M-file program, e.g., a Level-2 M-file S-function, invokes the "OutputPort" on page 7-138 method of a block's run-time object before the model containing the block has been compiled.			
Parent	Simulink.BlockP	Simulink.BlockPortData		
Children	none			
Property	Name	Description		
Summary	"Reusable"	Specifies whether an output port's memory is reusable.		
Properties	Reusable			

Description

Specifies whether an output port's memory is reusable. Options are: NotReusableAndGlobal and ReusableAndLocal.

Data Type

string

Access

 $RW \ for \ M\mbox{-file } S \ functions, \ RO \ for \ other \ blocks$

Purpose Specify properties of signal bus

Description Objects of this class (in conjunction with objects of the Simulink.BusElement class) specify the properties of a signal bus. You can use these objects to enable Simulink software to validate the properties of buses connected to the inputs of blocks in your model. You do this by entering the name of a bus object defining a bus in the **Bus object** field of a block's parameter dialog box. When you update the

object field of a block's parameter dialog box. When you update the model's diagram or start a simulation of the model, Simulink software checks whether the buses connected to the blocks have the properties specified by the bus objects. If not, Simulink software halts and displays an error message.

You can use the Model Explorer's **Add** > **Simulink Bus** command (see "Using the Model Explorer to Create Data Objects"), the Simulink Bus Editor (see Using the Bus Editor), or MATLAB commands (see "Working with Data Objects") to create bus objects in the base MATLAB workspace. If you attempt to create an alias in a model workspace, Simulink software displays an error. You must use the Bus Editor or the MATLAB command line to set the properties of a bus object. Simulink software also provides a set of utility functions for creating and saving bus objects.

Simulink.Bus

Property Dialog Box

Simulink.Bus: Bus Bus elements (read only)	
•	k
Header file:	
Description:	
	Launch Bus Editor

Bus elements

Table that displays the properties of the bus's elements. You cannot edit this table. You must use either the Simulink **Bus Editor** (see "Using Bus Objects") or MATLAB commands to add or delete bus elements or change the properties of existing bus elements. To launch the bus editor, click the **Launch Bus Editor** button at the bottom of this dialog box or select **Bus Editor** from the model editor's **Tools** menu.

Header file

Name of a C header file that declares the structure of this bus. This field is intended for use by Real-Time Workshop software (see "Code Generation with User-Defined Data Types" *Real-Time Workshop Embedded Coder User's Guide*). Simulink software ignores this field.

Description

Description of this structure. This field is intended for you to use to document this bus. Simulink software does not use this field.

Properties	Name	Access	Description
	Description	RW	String that describes this bus. This property is intended for user use. Simulink software does not use it. (Description)
	Elements	RW	An array of Simulink.BusElement objects that define the names, data types, dimensions, and other properties of the bus's elements. The elements must have unique names. (Bus elements)
	HeaderFile	RW	String that specifies the name of a C header file that declares the structure of this bus. This property is intended for use by Real-Time Workshop software. Simulink does not use it. (Header file)

See Also • "Using Composite Signals"

- "Using Buses"
- Bus Assignment
- Bus Creator
- Bus Selector
- Bus to Vector
- Simulink.Bus.cellToObject
- Simulink.Bus.createObject

- Simulink.BusElement
- Simulink.Bus.objectToCell
- Simulink.Bus.save

Purpose Describe element of signal bus

Description Objects of this class define elements of buses defined by objects of the Simulink.Bus class.

Property Summary

Name	Description
"Complexity"	Numeric type of this bus element.
"DataType"	Data type of this bus element.
"Dimensions"	Dimensions of this bus element.
"Name"	Name of this bus element.
"SampleTime"	Sample time of this bus element.
"SamplingMode"	Sampling mode of this bus element.

Property Dialog Box

Simulink.Bu	sElement: BusElement			
Name:	a			
Data Type:	double		•	>>
Dimensions:	1	Complexity:	real	•
Sample time:	-1	Sampling mode	e: Sample based	•
		Revert	Help	Apply

Properties

Complexity

Numeric type ('real' or 'complex') of this element. Must be 'real' if this bus element is itself a bus.

Data Type: string

Access: RW

DataType

Name of the data type of this element. The value of this field can be the name of a

- built-in Simulink data type, e.g., double or uint8
- Simulink.NumericType object, with one exception. The exception is a Simulink.NumericType whose Category is Fixed-point: unspecified scaling.

Note Fixed-point: unspecified scaling is a partially specified type whose definition is completed by the block that uses the Simulink.NumericType. Forbidding its use for bus elements avoids creating bus elements that have different data types depending on where they are used.

• Simulink.Bus object. This allows you to create bus objects that specify hierarchical buses, i.e., buses that contain other buses.

Click the **Show data type assistant** button **Data Type Assistant**, which helps you set the **Data type** parameter. (See "Using the Data Type Assistant".)

Data Type: string

Access: RW

Dimensions

A vector specifying the dimensions of this element. Must be 1 if this element is itself a bus.

Data Type: array.

Access: RW

Name

Name of this element.

Data Type: string

Access: RW

SampleTime

Size of the interval between times when this signal's value must be recomputed. Must be -1 (inherited) if this bus element is itself a bus or if the bus that includes this element passes through a block that changes the bus's sample time, such as a Rate Transition block. See "How to Specify the Sample Time" for more information.

Data Type: double

Access: RW

SamplingMode

Sampling mode of this element. Must be sample-based if this element is itself a bus. This field is intended to be used by applications based on Simulink models.

Data Type: string

Access: RW

- **See Also** "Using Composite Signals"
 - "Using Buses"
 - Bus Assignment
 - Bus Creator
 - Bus Selector

- Bus to Vector
- Simulink.Bus
- Simulink.Bus.cellToObject
- Simulink.Bus.createObject
- Simulink.Bus.objectToCell
- Simulink.Bus.save

Purpose Access model configuration set

Description Instances of this handle class allow you to write programs to create, modify, and attach configuration sets to models. See "Configuration Sets" and "Configuration Set API" for more information.

Property Summary

Name	Description
"Components"	Components of the configuration set.
"Description"	Description of the configuration set.
"Name"	Name of the configuration set.
"SimulationMode"	Mode used for simulation with this configuration.

Note You can use the **Model Configuration** dialog box to set the Name and Description properties of a configuration set. See "Model Configuration Dialog Box" for more information.

Method Summary

Name	Description
"attachComponent"	Attach a component to a configuration set.
"copy"	Create a copy of a configuration set.
"getComponent"	Get a component of a configuration set.
"getFullName"	Get the full pathname of a configuration set.
"getModel"	Get the handle of the model that owns a configuration set.
"get_param"	Get the value of a configuration set parameter.
"isActive"	Determine whether a configuration set is the active set of the model that owns it.

Name	Description
"isValidParam"	Determine whether a specified parameter is a valid parameter of a configuration set.
"setPropEnabled"	Prevent or allow a user to change a parameter.
"set_param"	Set the value of a configuration set parameter.

Properties

Components

Description

Array of Simulink.ConfigComponent objects representing the components of the configuration set, e.g., solver parameters, data import/export parameters, etc.

Data Type

array

Access

RW

Description

Description

Description of the configuration set. You can use this property to provide additional information about a configuration set, such as its purpose. This field can remain blank.

Data Type

string

Access

RW

Name

Description

Configuration set's name. This name represents the configuration set in the Model Explorer.

Data Type

string

Access

RW

SimulationMode

Description

Model's simulation mode. Valid values are normal, accelerator, or external.

Data Type

string

Access

RW

Methods

attachComponent

Purpose

Attach a component to this configuration set.

Syntax

attachComponent(component)

Arguments

component

Instance of Simulink.ConfigComponent class.

Description

This method replaces a component in this configuration set with a component having the same name.

Example

The following example replaces the solver component of the active configuration set of model A with the solver component of the active configuration set of model B.

```
hCs = getActiveConfigSet('B');
hSolverConfig = hCs.getComponent('Solver');
hSolverConfig = hSolverConfig.copy;
hCs = getActiveConfigSet('A');
hCs.attachComponent(hSolverConfig);
```

сору

Purpose

Create a copy of this configuration set.

Syntax

сору

Description

This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration sets. This is because Simulink.ConfigSet is a handle class. See "Handle Versus Value Classes" in *Simulink User's Guide* for more information.

getComponent

Purpose

Get a component of this configuration set.

Syntax

getComponent(componentName)

Arguments

componentName

String specifying the name of the component to be returned.

Description

Returns the specified component. Omit the argument to get a list of the names of the components that this configuration set contains.

Example

The following code gets the solver component of the active configuration set of the currently selected model.

```
hCs = getActiveConfigSet(gcs);
hSolverConfig = hCs.getComponent('Solver');
```

The following code displays the names of the components of the currently selected model's active configuration set at the MATLAB command line.

```
hCs = getActiveConfigSet(gcs);
hCs.getComponent
```

getFullName

Purpose

Get the full pathname of a configuration set.

Syntax

getFullName

Description

This method returns a string specifying the full pathname of a configuration set, e.g., 'vdp/Configuration'.

getModel

Purpose

Get the model that owns this configuration set.

Syntax

getModel

Description

Returns a handle to the model that owns this configuration set.

Example

The following command opens the block diagram of the model that owns the configuration set referenced by the MATLAB workspace variable hCs.

open_system(hCs.getModel);

get_param

Purpose

Get the value of a configuration set parameter.

Syntax

get_param(paramName)

Arguments

paramName

String specifying the name of the parameter whose value is to be returned.

Description

This method returns the value of the specified parameter. Specifying *paramName* as 'ObjectParameters' returns the names of the valid parameters in the configuration set.

Example

The following command gets the name of the solver used by the selected model's active configuration.

```
hAcs = getActiveConfigSet(bdroot);
hAcs.get_param('SolverName');
```

Note You can also use the get_param model construction command to get the values of parameters of a model's active configuration set, e.g., get_param(bdroot, 'SolverName') gets the solver name of the currently selected model.

isActive

Purpose

Determine whether this configuration set is its model's active configuration set.

Syntax

isActive

Description

Returns true if this configuration set is the active configuration set of the model that owns this configuration set.

isValidParam

Purpose

Determine whether a specified parameter is a valid parameter of this configuration set. A parameter is valid if it is compatible with other parameters in the configuration set. For example, if SolverType is set to 'variable-step', FixedStep is an invalid parameter.

Syntax

isValidParam(paramName)

Arguments

paramName

String specifying the name of the parameter whose validity is to be determined.

Description

This method returns true if the specified parameter is a valid parameter of this configuration set; otherwise, it returns false.

Example

The following code sets the parameter StopTime only if it is a valid parameter of the currently selected model's active configuration set.

```
hAcs = getActiveConfigSet(gcs);
if hAcs.isValidParam('StopTime')
set_param('StopTime', '20');
```

end

setPropEnabled

Purpose

Enable a configuration set parameter to be changed.

Syntax

setPropEnabled(paramName, isEnabled)

Arguments

paramName

Name of the parameter whose value is to be set.

isEnabled

Specify as true to enable parameter; as false, to disable the parameter.

Description

This method sets the enabled status the parameter specified by paramName to the value specified by isEnabled. Disabling a parameter prevents the user from changing it.

Example

The following code prevents the user from setting the simulation stop time of the currently selected model.

```
hAcs = getActiveConfigSet(gcs);
hAcs.setPropEnabled('StopTime', false);
```

set_param

Purpose

Set the value of a configuration set parameter.

Syntax

set_param(paramName, paramValue)

Arguments

paramName

Name of the parameter whose value is to be set.

paramValue

Value to assign to the parameter.

Description

This method sets the configuration set parameter specified by paramName to the value specified by paramValue.

Example

The following command sets the simulation stop time of the selected model's active configuration.

```
hAcs = getActiveConfigSet(gcs);
hAcs.set_param('StopTime', '20');
```

Note You can also use the set_param model construction command to set the parameters of the active configuration set, e.g., set_param(gcs, 'StopTime', '20') sets the simulation stop time of the currently selected model.

Simulink.ConfigSetRef

Purpose	Link model to configuration set stored independently of any model
Description	Instances of this handle class allow a model to reference configuration sets that exist outside any model. See "Configuration Sets", "Configuration Set API", and "Referencing Configuration Sets" for more information.

Property Summary

Name	Description
"Description"	Description of the configuration reference.
"Name"	Name of the configuration reference.
"WSVarName"	Name of the workspace variable that contains the referenced configuration set.

Note You can use the **Configuration Reference** dialog box to set the Name, Description, and WSVarName properties of a configuration reference. See "Creating and Attaching a Configuration Reference" for details.

Method	Name	Description
Summary	"copy"	Create a copy of a configuration reference.
	"getFullName"	Get the full pathname of a configuration reference.
	"getModel"	Get the handle of the model that owns a configuration reference.
	"get_param"	Get the value of a configuration set parameter indirectly through a configuration reference.
	"getRefConfigSet"	Get the configuration set specified by a configuration reference.

Name	Description
"isActive"	Determine whether a configuration reference is the active configuration object of the model.
"refresh"	Update configuration reference after any change to properties or configuration set availability.

Properties

Description

Description

Description of the configuration reference. You can use this property to provide additional information about a configuration reference, such as its purpose. This field can remain blank.

Data Type

string

Access

RW

Name

Description

Name of the configuration reference. This name represents the configuration reference in the GUI.

Data Type

string

Access

RW

WSVarName

Description

Name of the workspace variable that contains the referenced configuration set.

Data Type

string Access

RW

Methods

сору

Purpose

Create a copy of this configuration reference.

Syntax

сору

Description

This method creates a copy of this configuration set.

Note You must use this method to create copies of configuration references. This is because Simulink.ConfigSetRef is a handle class. See "Handle Versus Value Classes" for more information.

getFullName

Purpose

Get the full pathname of a configuration reference.

Syntax

getFullName

Description

This method returns a string specifying the full pathname of a configuration reference, e.g., 'vdp/Configuration'.

getModel

Purpose

Get the model that owns this configuration reference.

Syntax

getModel

Description

Returns a handle to the model that owns this configuration reference.

Example

The following command opens the block diagram of the model that owns the configuration set referenced by the MATLAB workspace variable hCr.

open_system(hCr.getModel);

get_param

Purpose

Get the value of a configuration set parameter indirectly through a configuration reference.

Syntax

get_param(paramName)

Arguments

paramName

String specifying the name of the parameter whose value is to be returned.

Description

This method returns the value of the specified parameter from the configuration set to which the configuration reference points. To obtain this value, the method uses the value of WSVarName to retrieve the configuration set, then retrieves the value of *paramName* from that configuration set. Specifying *paramName* as 'ObjectParameters' returns the names of all valid parameters in the configuration set. If a valid configuration set is not attached to the configuration reference, the method returns unreliable values.

The inverse method, set_param, is not defined for configuration references. To obtain a parameter value through a configuration reference, you must first use the getRefConfigSet method to retrieve the configuration set from the reference, then use **set_param** directly on the configuration set itself.

You can also use the get_param model construction command to get the values of parameters of a model's active configuration set, e.g., get_param(bdroot, 'SolverName') gets the solver name of the currently selected model.

Example

The following command gets the name of the solver used by the selected model's active configuration.

```
hAcs = getActiveConfigSet(bdroot);
hAcs.get param('SolverName');
```

getRefConfigSet

Purpose

Get the configuration set specified by a configuration reference

Syntax

getRefConfigSet

Description

Returns a handle to the configuration set specified by the WSVarName property of a configuration reference.

isActive

Purpose

Determine whether this configuration set is its model's active configuration set.

Syntax

isActive

Description

Returns true if this configuration set is the active configuration set of the model that owns this configuration set.

refresh

Purpose

Update configuration reference after any change to properties or configuration set availability

Syntax

refresh

Description

Updates a configuration reference after using the API to change any property of the reference, or after providing a configuration set that did not exist at the time the set was originally specified in WSVarName. If you omit executing refresh after any such change, the configuration reference handle will be stale, and using it will give incorrect results.

Purpose	Run Model Advisor from M-file
Description	Use instances of this class in M-file programs to run the Model Advisor, for example, to perform a standard set of checks. MATLAB software creates an instance of this object for each model that you open in the current MATLAB session. To get a handle to a model's Model Advisor object, execute the following command

ma = Simulink.ModelAdvisor.getModelAdvisor(model);

where *model* is the name of the model or subsystem that you want to check. Your program can then use the Model Advisor object's methods to initialize and run the Model Advisor's checks.

About IDs

. . . .

Many Simulink.ModelAdvisor object methods require or return IDs. An *ID* is a string that identifies a Model Advisor check, task, or group. ID must remain constant. A Simulink.ModelAdvisor object includes methods that enable you to retrieve the ID or IDs for all checks, tasks, and groups, checks belonging to groups and tasks, the active check, and selected checks, tasks and groups. See the Simulink.ModelAdvisor "Method Summary" for more information.

Syntax

ma = Simulink.ModelAdvisor

Arguments

та

A variable representing the ${\tt Simulink.ModelAdvisor}$ object you create.

Method	Name	Description
Summary	"closeReport"	Close Model Advisor report.
	"deselectCheck"	Deselect checks.

Name	Description
"deselectCheckAll"	Deselect all checks.
"deselectCheckForGroup"	Deselect a group of checks.
"deselectCheckForTask"	Deselect checks that belong to a specified task or set of tasks.
"deselectTask"	Deselect tasks.
"deselectTaskAll"	Deselect all tasks.
"displayReport"	Display Model Advisor report.
"exportReport"	Copy report to a specified location.
"getBaselineMode"	Get baseline mode setting for the Model Advisor.
"getCheckAll"	Get the IDs of the checks performed by the Model Advisor.
"getCheckForGroup"	Get checks belonging to a check group.
"getCheckForTask"	Get checks belonging to a task.
"getCheckResult"	Get check results.
"getCheckResultData"	Get check result data.
"getCheckResultStatus"	Get pass/fail status of a check or set of checks.
"getGroupAll"	Get the IDs of the groups of tasks performed by the Model Advisor.

Name	Description
"getInputParameters" on page 7-68	Get input parameters of a check.
"getListViewParameters" on page 7-69	Get list view parameters of a check.
"getModelAdvisor"	Get the Model Advisor for a model or subsystem.
"getSelectedCheck"	Get selected checks.
"getSelectedSystem" on page 7-71	Get path of system currently targeted by the Model Advisor.
"getSelectedTask"	Get selected tasks.
"getTaskAll"	Get the IDs of the tasks performed by the Model Advisor.
"Simulink.ModelAdvisor.reportExists"	Determine whether a report exists for a system or subsystem.
"runCheck"	Run selected checks.
"runTask"	Run checks for selected tasks.
"selectCheck"	Select checks.
"selectCheckAll"	Select all checks.
"selectCheckForGroup"	Select a group of checks.
"selectCheckForTask"	Select checks that belong to a specified task.
"selectTask"	Select tasks.
"selectTaskAll"	Select all tasks.
"setActionEnable" on page 7-77	Set enable/disable status for a check action.

Name	Description
"setBaselineMode"	Set baseline mode for the Model Advisor.
"setCheckErrorSeverity" on page 7-78	Set severity of a check failure.
"setCheckResult"	Set result for the currently running check.
"setCheckResultData"	Set result data for the currently running check.
"setCheckResultStatus"	Set pass/fail status for the currently running check.
"setListViewParameters" on page 7-82	Set list view parameters for a check.
"verifyCheckRan"	Verify that checks have run.
"verifyCheckResult"	Generate a baseline set of check results or compare the current set of results to the baseline results.
"verifyCheckResultStatus"	Verify that a model has passed or failed a set of checks.
"verifyHTML"	Generate a baseline report or compare the current report to a baseline report.

Methods close

closeReport

Purpose

Close Model Advisor report.

Syntax

closeReport

Description

Closes the report associated with this Model Advisor object, which closes the Model Advisor window.

See Also

"displayReport"

deselectCheck

Purpose

Deselect a check.

Syntax

success = deselectCheck(ID)

Arguments

ID

String or cell array that specifies the IDs of the checks to be deselected

success

True (1) if the check is deselected.

Description

This method deselects the checks specified by ID.

Note This method cannot deselect disabled checks.

See Also

"getCheckAll", "deselectCheckForGroup", "selectCheck"

deselectCheckAll

Purpose

Deselect all checks.

Syntax

success = deselectCheckAll

success

True (1) if all checks are deselected.

Description

Deselects all checks that are not disabled.

See Also

"selectCheckAll"

deselectCheckForGroup

Purpose

Deselect a group of checks.

Syntax

success = deselectCheckForGroup(groupName)

Arguments

groupName

String or cell array that specifies the names of the groups to be deselected

success

True (1) if the method succeeds in deselecting the specified group.

Description

Deselects a specified group of checks.

See Also

"selectCheckForGroup"

deselectCheckForTask

Purpose

Deselect checks that belong to a specified task or set of tasks.

Syntax

success = deselectCheckForTask(ID)

ID

String or cell array of strings that specify the IDs of tasks whose checks are to be deselected.

success

True (1) if the specified tasks are deselected.

Description

Deselects checks belonging to the tasks specified by the ID argument.

See Also

"getTaskAll", "selectCheckForTask"

deselectTask

Purpose

Deselect a task.

Syntax

success = deselectTask(ID)

Arguments

ID

String or cell array that specifies the ID of tasks to be deselected

success

True (1) if the method succeeded in deselecting the specified tasks

Description

Deselects the tasks specified by ID.

See Also

"selectTask", "getTaskAll"

deselectTaskAll

Purpose

Deselect all tasks.

Syntax

success = deselectTaskAll

success

True (1) if this method succeeds in deselecting all tasks

Description

Deselects all tasks.

See Also

"selectTaskAll"

displayReport

Purpose

Display report in Model Advisor.

Syntax

displayReport

Description

Displays the report associated with this Model Advisor object in the Model Advisor window. The report includes the most recent results of running checks on the system associated with this Model Advisor object and the current selection status of checks, groups, and tasks for the system.

See Also

``Simulink.ModelAdvisor.reportExists''

exportReport

Purpose

Create a copy of a report generated by Model Advisor.

Syntax

[success message] = exportReport(destination)

Arguments

destination

Path name of copy to be made of the report file.

success

True (1) if this method succeeded in creating a copy of the report at the specified location.

message

Empty if the copy was successful; otherwise, the reason the copy did not succeed.

Description

This method creates a copy of the last report generated by the Model Advisor and stores the copy at the specified location.

See Also

"Simulink.ModelAdvisor.reportExists"

getBaselineMode

Purpose

Determine whether the Model Advisor is in baseline data generation mode.

Syntax

mode = getBaselineMode

Arguments

mode

Boolean value indicating baseline mode

Description

The mode output variable returns true if the Model Advisor is in baseline data mode. Baseline mode causes the Model Advisor's verification methods, e.g., "verifyHTML", to generate baseline data.

See Also

"setBaselineMode", "verifyHTML", "verifyCheckResult", "verifyCheckResultStatus"

getCheckAll

Purpose

Get the IDs of all checks.

Syntax

IDs = getCheckAll

IDs

Cell array of strings specifying the IDs of all checks performed by the Model Advisor

Description

Returns a cell array of strings specifying the IDs of all checks performed by the Model Advisor.

See Also

"getTaskAll", "getGroupAll"

getCheckForGroup

Purpose

Get checks that belong to a check group.

Syntax

IDs = getCheckForTask(groupName)

Arguments

groupName

String specifying the name of a group

IDs

Cell array of IDs

Description

Returns a cell array of IDs of the tasks belonging to the group specified by groupName.

See Also

"getCheckForTask"

getCheckForTask

Purpose

Get the checks that belong to a task.

Syntax

checkIDs = getCheckForTask(taskID)

taskID ID of a task

checkIDs Cell array of IDs of checks belonging to the specified task

Description

Returns a cell array of IDs of the checks belonging to the task specified by ${\tt taskID}.$

See Also

"getCheckForGroup"

getCheckResult

Purpose

Get the results of running a check or set of checks.

Syntax

result = getCheckResult(ID)

Arguments

ID

ID of a check or cell array of check IDs

result

A check result or cell array of check results

Description

Gets results for the specified checks. The format of the results depends on the checks that generated the data.

Note This method is intended for accessing results generated by custom checks created with the Model Advisor's customization API, an optional feature available with Simulink[®] Verification and ValidationTM software (see the online Simulink Verification and Validation documentation for more information).

See Also

``getCheckResultData", ``getCheckResultStatus"

getCheckResultData

Purpose

Get the data resulting from running a check or set of checks.

Syntax

result = getCheckResultData(ID)

Arguments

ID

Check ID or cell array of check IDs

result

Data from a check result or cell array of data from check results

Description

Gets the check result data for the specified checks. The format of the data depends on the checks that generated the data.

Note This method is intended for accessing check result data generated by custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

``getCheckResult", ``getCheckResultStatus"

getCheckResultStatus

Purpose

Get the pass/fail status of a check or set of checks.

Syntax

result = getCheckResultStatus(ID)

ID

Check ID or cell array of check IDs

result

Boolean or a cell array of Boolean values indication the pass/fail status of a check or set of checks

Description

Invoke this method after running a set of checks to determine whether the checks passed or failed.

See Also

``getCheckResult", ``getCheckResultData"

getGroupAll

Purpose

Get all groups of checks performed by the Model Advisor.

Syntax

IDs = getGroupAll

Arguments

IDs

Cell array of IDs of all groups of checks performed by the Model Advisor.

Description

Returns a cell array of IDs of all groups of checks performed by the Model Advisor.

See Also

"getCheckAll", "getTaskAll"

getInputParameters

Purpose

Get input parameters of a check.

Syntax

params = obj.getInputParameters(check_ID)

params

A cell array of ModelAdvisor.InputParameter objects.

obj

A variable representing the Simulink.ModelAdvisor object.

check_ID

A string that uniquely identifies the check.

You can omit the *check_ID* if you use the method inside a check callback function.

Description

Returns the input parameters associated with a check.

Note This method is intended for accessing custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

ModelAdvisor.InputParameter

getListViewParameters

Purpose

Get list view parameters of a check.

Syntax

params = obj.getListViewParameters(check_ID)

Arguments

params

A cell array of ModelAdvisor.ListViewParameter objects.

obj

A variable representing the Simulink.ModelAdvisor object.

check_ID

A string that uniquely identifies the check.

You can omit the *check_ID* if you use the method inside a check callback function.

Description

Returns the list view parameters associated with a check.

Note This method is intended for accessing custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

"setListViewParameters" on page 7-82, ModelAdvisor.ListViewParameter

getModelAdvisor

Purpose

Get a Model Advisor object for a system or subsystem.

Syntax

```
obj = Simulink.ModelAdvisor.getModelAdvisor(system)
obj = Simulink.ModelAdvisor.getModelAdvisor(system, 'new')
```

Arguments

```
system
```

Name of model for which the Model Advisor is to be gotten

'new'

Required when changing Model Advisor working scope from one system to another without closing the previous session. Alternatively, you can close the previous session before invoking getModelAdvisor, in which case 'new' can be omitted.

obj

Model Advisor object

Description

This static method (see "Static Methods") creates and returns an instance of Simulink.ModelAdvisor class for the model or subsystem specified by system.

getSelectedCheck

Purpose

Get the currently selected checks.

Syntax

IDs = getSelectedCheck

Arguments

```
IDs
```

Cell array of IDs of currently selected checks

Description

Returns the checks currently selected in the Model Advisor.

See Also

"getSelectedTask"

getSelectedSystem

Purpose

Get system currently targeted by the Model Advisor.

Syntax

path = getSelectedSystem

Arguments

path

Path of the system selected system

Description

Gets the path of the system currently targeted by the Model Advisor, i.e., the system or subsystem most recently selected for checking either interactively by the user or programmatically via Simulink.ModelAdisor.getModelAdvisor.

See Also

"getModelAdvisor"

getSelectedTask

Purpose

Get selected tasks.

Syntax

IDs = getSelectedTask

Arguments

IDs

Cell array of IDs of currently selected tasks.

Description

Returns the tasks currently selected in the Model Advisor.

See Also

"getSelectedCheck"

getTaskAll

Purpose

Get the tasks performed by the Model Advisor.

Syntax

IDs = getTaskAll

Arguments

IDs

Cell array of IDs of tasks performed by the Model Advisor.

Description

Returns a cell array of IDs of tasks performed by the Model Advisor.

See Also

"getCheckAll", "getGroupAll"

Simulink.ModelAdvisor.reportExists

Purpose

Determine whether a report exists for a model or subsystem.

Syntax

exists = reportExists('system')

Arguments

'system'

String specifying path name of a system or subsystem

```
exists
```

True (1) if a report exists for system

Description

This method returns true (1) if a report file exists for the model (system) or subsystem specified by system in the slprj/modeladvisor subdirectory of the MATLAB working directory.

See Also

"exportReport"

runCheck

Purpose

Run the currently selected checks.

Syntax

success = runCheck

Arguments

success

True (1) if the checks were run.

Description

Runs the checks currently selected in the Model Advisor. Invoking this method is equivalent to selecting the **Run Advisor** button on the Model Advisor window.

See Also

``selectCheck"

runTask

Purpose

Run the currently selected tasks.

Syntax

success = runTask

Arguments

success

True (1) if the tasks were run.

Description

Runs the tasks currently selected in the Model Advisor. Invoking this method is equivalent to selecting the **Run Selected Checks** button on the Model Advisor window.

See Also

"selectTask"

selectCheck

Purpose

Select a check.

Syntax

success = selectCheck(ID)

Arguments

ID

ID or cell array of IDs of checks to be selected

success

True (1) if this method succeeded in selecting the specified checks

Description

This method cannot select a check that is disabled.

See Also

"selectCheckAll", "selectCheckForGroup", "deselectCheck"

selectCheckAll

Purpose

Select all checks.

Syntax

success = selectCheckAll

Arguments

success

True (1) if this method succeeded in selecting all checks.

Description

Selects all checks that are not disabled.

See Also

``selectCheck", ``selectCheckForGroup", ``deselectCheck"

selectCheckForGroup

Purpose

Select a group of checks.

Syntax

success = selectCheckForGroup(ID)

Arguments

ID

ID or cell array of group IDs

success

True (1) if this method succeeded in selecting the specified groups

Description

Selects the groups specified by $\ensuremath{\texttt{ID}}.$

See Also

``deselectCheckForGroup"

selectCheckForTask

Purpose

Select checks that belong to a specified task or set of tasks.

Syntax

success = selectCheckForTask(ID)

Arguments

ID

ID or cell array of IDs of tasks whose checks are to be selected

success

True (1) if this method succeeded in selecting the checks for the specified tasks

Description

Selects checks belonging to the tasks specified by the ID argument.

See Also

``deselectCheckForTask''

selectTask

Purpose

Select a task.

Syntax

success = selectTask(ID)

Arguments

ID

ID or cell array of IDs of the task to be selected

success

True (1) if this method succeeds in selecting the specified tasks

Description

Selects a task.

See Also

"deselectTask"

selectTaskAll

Purpose

Select all tasks.

Syntax

success = selectTaskAll

Arguments

success

True (1) if this method succeeds in selecting all tasks

Description

Selects all tasks.

See Also "deselectTaskAll"

setActionEnable

Purpose

Set enable/disable status for check action

Syntax

obj.setActionEnable(value)

Arguments

obj

A variable representing the Simulink.ModelAdvisor object.

value

Boolean value indicating whether the Action box is enabled or disabled.

- true Enable the Action box.
- false Disable the Action box.

Description

The setActionEnable method specifies the enables or disables the Action box. Only a check callback function can invoke this method.

Note This method is intended for accessing custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

ModelAdvisor.Action

setBaselineMode

Purpose

Set the baseline data generation mode for the Model Advisor.

Syntax

setBaselineMode(mode)

Arguments

mode

Boolean value indicating setting of Model Advisor's baseline mode, either on (true) or off (false)

Description

Sets the Model Advisor's baseline mode to mode. Baseline mode causes the Model Advisor's verify methods to generate baseline comparison data for verifying the results of a Model Advisor run.

See Also

"getBaselineMode", "verifyCheckResult", "verifyHTML"

setCheckErrorSeverity

Purpose

Set severity of a check failure.

Syntax

obj.setCheckErrorSeverity(value)

obj

A variable representing the Simulink. ModelAdvisor object.

value

Integer indicating severity of failure.

- 0 Check Result = Warning
- 1 Check Result = Failed

Description

Sets result status for a currently running check that fails to *value*. Only a check callback function can invoke this method.

Note This method is intended for accessing custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

``setCheckResultStatus"

setCheckResult

Purpose

Set the result for the currently running check.

Syntax

success = setCheckResult(result)

Arguments

result

String or cell array that specifies the result of the currently running task

success

True (1) if this method succeeds in setting the check result

Description

Sets the check result for the currently running check. Only the check's callback function can invoke this method.

Note This method is intended for use with custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

``getCheckResult", ``setCheckResultData", ``setCheckResultStatus"

setCheckResultData

Purpose

Set the result data for the currently running check.

Syntax

success = setCheckResultData(data)

Arguments

data

Result data to be set

success

True (1) if this method succeeds in setting the result data for the current check

Description

Sets the check result data for the currently running check. Only the check's callback function can invoke this method.

Note This method is intended for use with custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

"getCheckResultData", "setCheckResult", "setCheckResultStatus"

setCheckResultStatus

Purpose

Set the pass/fail status for the currently running check.

Syntax

success = setCheckResultStatus(status)

Arguments

status

Boolean value that indicates the status of the check that just ran, either pass (true) or fail (false)

success

True (1) if the status was set.

Description

Sets the pass/fail status for the currently running check to status. Only the check's callback function can invoke this method.

Note This method is intended for use with custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

"getCheckResultStatus", "setCheckResult", "setCheckResultData", "setCheckErrorSeverity" on page 7-78

setListViewParameters

Purpose

Specify list view parameters for a check.

Syntax

obj.setListViewParameters(check_ID, params)

Arguments

obj

A variable representing the Simulink.ModelAdvisor object.

check_ID

A string that uniquely identifies the check.

You can omit the *check_ID* if you use the method inside a check callback function.

params

A cell array of ModelAdvisor.ListViewParameter objects.

Description

Set the list view parameters for the check.

Note This method is intended for accessing custom checks created with the Model Advisor's customization API, an optional feature available with Simulink Verification and Validation software (see the online Simulink Verification and Validation documentation for more information).

See Also

"getListViewParameters" on page 7-69, ModelAdvisor.ListViewParameter

verifyCheckRan

Purpose

Verify that the Model Advisor has run a set of checks.

Syntax

```
[success, missingChecks, additionalChecks] =
verifyCheckRan(IDs)
```

Arguments

```
IDs
```

Cell array of IDs of checks to verify

success

Boolean value specifying whether the checks ran

missingChecks

Cell array of IDs for specified checks that ran

additionalChecks

Cell array of IDs for unspecified checks that ran

Description

The output variable success returns true if all the checks specified by IDs have run. If not, success returns false, missingChecks lists specified checks that did not run. The additionalChecks argument lists unspecified checks that ran.

See Also

``verify Check Result Status"

verifyCheckResult

Purpose

Generate a baseline Model Advisor check results file or compare the current check results to the baseline check results.

Syntax

[success message] = verifyCheckResult(baseline, checkIDs)

Arguments

baseline

Pathname of the baseline check results MAT-file

checkIDs Cell array of check IDs.

success

Boolean value specifying whether the method succeeded

message

String specifying an error message

Description

If the Model Advisor is in baseline mode (see "setBaselineMode"), this method stores the most recent results of running the checks specified by checkIDs in a MAT-file at the location specified by baseline. If the method is unable to store the check results at the specified location, it returns false in the output variable success and the reason for the failure in the output variable message. If the Model Advisor is not in baseline mode, this method compares the most recent results of running the checks specified by checkIDs with the report specified by baseline. If the current results match the baseline results, this method returnstrue as the value of the success output variable.

Note You must run the checks specified by checkIDs (see "runCheck") before invoking verifyCheckResult.

This method enables you to compare the most recent check results generated by the Model Advisor with a baseline set of check results. You can use the method to generate the baseline report as well as perform current-to-baseline result comparisons. To generate a baseline report, put the Model Advisor in baseline mode, using "setBaselineMode". Then invoke this method with the baseline argument set to the location where you want to store the baseline results. To perform a current-to-baseline report comparison, first ensure that the Model Advisor is not in baseline mode (see "getBaselineMode"). Then invoke this method with the path of the baseline report as the value of the baseline input argument.

See Also

"setBaselineMode", "getBaselineMode", "runCheck", "verifyCheckResultStatus"

verifyCheckResultStatus

Purpose

Verify that a model has passed or failed a set of checks.

Syntax

[success message] = verifyCheckResultStatus(baseline, checkIDs)

Arguments

baseline Array of Boolean variables

checkIDs

Cell array of check IDs.

success

Boolean value specifying whether the method succeeded

message

String specifying an error message

Description

This method compares the pass/fail (true/false) statuses from the most recent running of the checks specified by checkIDs with the Boolean values specified by status. If the statuses match the baseline, this method returns true as the value of the success output variable.

Note You must run the checks specified by checkIDs (see "runCheck") before invoking verifyCheckResultStatus.

See Also

"runCheck"

verifyHTML

Purpose

Generate a baseline Model Advisor report or compare the current report to a baseline report.

Syntax

[success message] = verifyHTML(baseline)

Arguments

baseline

Pathname of a Model Advisor report

success

Boolean value specifying whether the method succeeded

message

String specifying an error message

Description

If the Model Advisor is in baseline mode (see "setBaselineMode"), this method stores the report most recently generated by the Model Advisor at the location specified by baseline. If the method is unable to store a copy of the report at the specified location, it returns false in the output variable success and the reason for the failure in the output variable message. If the Model Advisor is not in baseline mode, this method compares the report most recently generated by the Model Advisor with the report specified by baseline. If the current report has exactly the same content as the baseline report, this method returns true as the value of the success output variable.

This method enables you to compare a report generated by the Model Advisor with a baseline report to determine if they differ. You can use the method to generate the baseline report as well as perform current-to-baseline report comparisons. To generate a baseline report, put the Model Advisor in baseline mode. Then invoke this method with the baseline argument set to the location where you want to store the baseline report. To perform a current-to-baseline report comparison, first ensure that the Model Advisor is not in baseline mode (see "getBaselineMode"). The invoke this method with the path of the baseline report as the value of the baseline input argument.

See Also

``set Baseline Mode", ``get Baseline Mode", ``verify Check Result"

Purpose Container for model's signal data logs

Description Simulink software creates instances of this class to contain signal logs that it creates while simulating a model (see "Logging Signals"). In particular, Simulink software creates an instance of this class for a top-level model and for each model referenced by the top-level model that contains signals to be logged. Simulink software assigns the ModelDataLogs object for the top-level model to a variable in the MATLAB workspace. The name of the variable is the name specified in the **Signal logging name** field on the **Data Import/Export** pane of the model's **Configuration Parameters** dialog box. The default value is logsout.

A ModelDataLogs object has a variable number of properties. The first property, named Name, specifies the name of the model whose signal data the object contains or, if the model is a referenced model, the name of the Model block that references the model. The remaining properties reference objects that contain signal data logged during simulation of the model. The objects may be instances of any of the following types of objects:

• Simulink.ModelDataLogs

Container for the data logs of a model

• Simulink.SubsysDataLogs

Container for the data logs of a subsystem

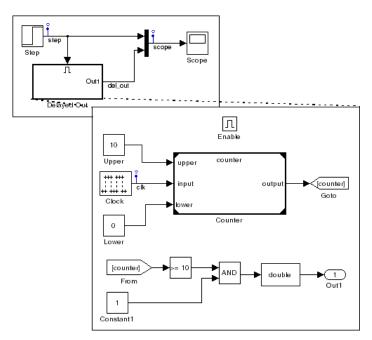
• Simulink.ScopeDataLogs

Container for the data logs of Scope signal viewers

• Simulink.Timeseries

Data log for any signal except a mux or bus signal

• Simulink.TsArray


Data log for a mux or bus signal

The names of the properties identify the data being logged as follows:

- For signal data logs, the name of the signal
- For a subsystem or model log container, the name of the subsystem or model, respectively
- For a scope viewer data log, the name specified on the viewer's parameter dialog box

Note If a name contains spaces, the ModelDataLogs objects specifies its name as ('name') where name is the actual name, e.g., ('Brake Subsystem'). See "Handling Spaces and Newlines in Logged Names" for more information.

Consider, for example, the following model.

As indicated by the testpoint icons, this model specifies that Simulink software should log the signals named step and scope in the model's root system and the signal named clk in the subsystem named Delayed Out. After simulation of this model, the MATLAB workspace contains the following variable:

>> logsout		
logsout =		
Simulink.ModelDataLogs Name	(siglgex): Elements	Simulink Class
scope step ('Delayed Out')	2 1 2	TsArray Timeseries SubsysDataLogs

The logsout variable contains the signal data logged during the simulation. You can use fully qualified object names or the Simulink unpack command to access the signal data stored in logsout. For example, to access the amplitudes of the clk signal in the Delayed Out subsystem, enter

>> data = logsout.('Delayed Out').clk.Data;

or

```
>> logsout.unpack('all');
>> data = clk.Data;
```

You can use a custom logging name or signal name when logging a signal. If you use the signal name, and that name occupies more than one line, include an $sprintf('\n')$ between the lines of the signal name when accessing the logged data. For example, to access the signal in the following model:

Use the following syntax:

```
logsout.(['scope' sprintf('\n') '(delayed out)'])
```

See "Handling Spaces and Newlines in Logged Names" for more information.

See Also "Importing and Exporting Data", Simulink.SubsysDataLogs, Simulink.ScopeDataLogs, Simulink.Timeseries, Simulink.TsArray, who, whos, unpack

Purpose	Describe model workspace
---------	--------------------------

Description Instances of this class describe model workspaces. Simulink software creates an instance of this class for each model that you open during a Simulink session. See "Using Model Workspaces" in *Simulink User's Guide* for more information.

Property	Name	Access	Description
Summary	DataSource	RW	Specifies the source used to initialize this workspace. Valid values are
			• 'MDL-File'
			• 'MAT-File'
			• 'M-Code'
	FileName	RW	Specifies the name of the MAT-file used to initialize this workspace. Simulink software ignores this property if DataSource is not 'MAT-File'.
	MCode	RW	A string specifying M code used to initialize this workspace. Simulink software ignores this property if DataSource is not 'M-Code'.

Method Summary

Name	Description
"assignin"	Assign a value to a variable in the model's workspace.
"clear"	Clear the model's workspace.
"evalin"	Evaluate an expression in the model's workspace.

Name	Description
"reload"	Reload the model workspace from the workspace's data source.
"save"	Save the model's workspace to a specified MAT-file.
"saveToSource"	Save the workspace to the MAT-file that the workspace designates as its data source.
"whos"	List the variables in the model workspace.

Methods

assignin

Purpose

Assign a value to a variable in the model's workspace.

Syntax

assignin('varname', varvalue)

Arguments

varname

Name of the variable to be assigned a value.

varvalue

Value to be assigned the variable.

Description

This method assigns the value specified by varvalue to the variable whose name is varname.

See also

"evalin"

clear

Purpose

Clear the model's workspace.

Syntax

clear

Description

This method empties the workspace of its variables.

evalin

Purpose

Evaluate an expression in the model's workspace.

Syntax

evalin('expression')

Arguments

expression

A MATLAB expression to be evaluated.

Description

This method evaluates expression in the model workspace.

See also

"assignin"

reload

Purpose

Reload the model workspace from the workspace's data source.

Syntax

reload

Description

This method reloads the model workspace from the data source specified by its DataSource parameter.

See also

"saveToSource"

save

Purpose

Save the model's workspace to a specified MAT-file.

Syntax

save('filename')

Arguments

filename

Name of a MAT-file.

Description

This method saves the model's workspace to the MAT-file specified by filename.

Note This method allows you to save the workspace to a file other than the file specified by the workspace's FileName property. If you want to save the model workspace to the file specified by the file's FileName property, it is simpler to use the workspace's saveToSource method.

Example

```
hws = get_param('mymodel', 'modelworkspace')
hws.DataSource = 'MAT-File';
hws.FileName = 'workspace';
hws.assignin('roll', 30);
hws.saveToSource;
hws.assignin('roll', 40);
hws.save('workspace test.mat');
```

See also

"reload", "saveToSource"

saveToSource

Purpose

Save the workspace to the MAT-file that it designates as its data source.

Syntax

saveToSource

Description

This method saves the model workspace designated by its FileName property.

Example

```
hws = get_param('mymodel','modelworkspace')
hws.DataSource = 'MAT-File';
hws.FileName = 'params';
hws.assignin('roll', 30);
hws.saveToSource;
```

See also

"save", "reload"

whos

Purpose

List the variables in the model workspace.

Syntax

whos

Description

This method lists the variables in the model's workspace. The listing includes the size and class of the variables.

Example

	signin('k',	nymodel','modelworkspa 2);	ce');
Name	Size	Bytes	Class
k	1x1	8	double array

Simulink.MSFcnRunTimeBlock

Purpose	Get run-time information about Level-2 M-file S-function block		
Description	This class allows a Level-2 M-file S-function or other M program to obtain information from Simulink software and provide information to Simulink software about a Level-2 M-file S-function block. Simulink software creates an instance of this class for each Level-2 M-file S-function block in a model. Simulink software passes the object to the callback methods of Level-2 M-File S-Functions when it updates or simulates a model, allowing the callback methods to get and provide block-related information to Simulink software. See "Writing Level-2 M-File S-Functions" in <i>Writing S-Functions</i> for more information.		
	You can also use instances of this class is obtain information about Level-2 M-File simulation. See "Accessing Block Data De <i>User's Guide</i> for more information.	S-Function blocks during a	
	The Level-2 M-file S-Function template matlabroot/toolbox/simulink/blocks, to use a number of the following methods	/msfuntmpl.m shows how	
Parent Class	Simulink.RunTimeBlock		
Derived Classes	None		
Property	Name	Description	
Summary	"AllowSignalsWithMoreThan2D"	Enable Level-2 M-file S-function to use multidimensional signals.	

Name	Description
"DialogPrmsTunable"	Specifies which of the S-function's dialog parameters are tunable.
"NextTimeHit"	Time of the next sample hit for variable sample time S-functions.

Method Summary

Name	Description
"AutoRegRuntimePrms"	Register this block's dialog parameters as run-time parameters.
"AutoUpdateRuntimePrms"	Update this block's run-time parameters.
"IsDoingConstantOutput"	Determine whether the current simulation stage is the constant sample time stage.
"IsMajorTimeStep"	Determine whether the current simulation time step is a major time step.
"IsSampleHit"	Determine whether the current simulation time is one at which a task handled by this block is active.
"IsSpecialSampleHit"	Determine whether the current simulation time is one at which multiple tasks handled by this block are active.

Name	Description
"RegBlockMethod"	Register a callback method for this block.
"RegisterDataTypeFxpBinaryPoint"	Register fixed-point data type with binary point-only scaling.
"RegisterDataTypeFxpFSlopeFixExpBias"	Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional slope, fixed exponent, and bias.
"RegisterDataTypeFxpSlopeBias"	Register data type with [Slope Bias] scaling.
"SetAccelRunOnTLC"	Specify whether to use this block's TLC file to generate the simulation target for the model that uses it.
"SetPreCompInpPortInfoToDynamic"	Set precompiled attributes of this block's input ports to be inherited.
"SetPreCompOutPortInfoToDynamic"	Set precompiled attributes of this block's output ports to be inherited.
"SetPreCompPortInfoToDefaults"	Set precompiled attributes of this block's ports to the default values.

Name	Description
"SetSimViewingDevice"	Specify whether block is a viewer.
"WriteRTWParam"	Write custom parameter information to Real-Time Workshop file.

Properties

AllowSignalsWithMoreThan2D

Description

Allow Level-2 M-file S-functions to use multidimensional signals. You must set the AllowSignalsWithMoreThan2D property in the setup method.

Data Type

Boolean

Access

RW

DialogPrmsTunable

Description

Specifies whether a dialog parameter of the S-function is tunable. Tunable parameters are registered as run-time parameters when you call the "AutoRegRuntimePrms" method. Note that SimOnlyTunable parameters are not registered as run-time parameters. For example, the following lines initializes three dialog parameters where the first is tunable, the second in not tunable, and the third is tunable only during simulation.

```
block.NumDialogPrms = 3;
block.DialogPrmsTunable = {'Tunable','Nontunable','SimOnlyTunable'};
```

Data Type

array

Access

RW

NextTimeHit

Description

Time of the next sample hit for variable sample-time S-functions.

Data Type

double

Access

RW

Methods

AutoRegRuntimePrms

Purpose

Register a block's tunable dialog parameters as run-time parameters.

Syntax

AutoRegRuntimePrms;

Description

Use in the PostPropagationSetup method to register this block's tunable dialog parameters as run-time parameters.

AutoUpdateRuntimePrms

Purpose

Update a block's run-time parameters.

Syntax

AutoRegRuntimePrms;

Description

Automatically update the values of the run-time parameters during a call to ProcessParameters.

See the S-function

matlabroot/toolbox/simulink/simdemos/adapt_lms.m in the Simulink model sldemo_msfcn_lms.mdl for an example.

IsDoingConstantOutput

Purpose

Determine whether this is in the constant sample time stage of a simulation.

Syntax

bVal = IsDoingConstantOutput;

Description

Returns true if this is the constant sample time stage of a simulation, i.e., the stage at the beginning of a simulation where Simulink software computes the values of block outputs that cannot change during the simulation (see "Constant Sample Time" in the *Simulink User's Guide*). Use this method in the Outputs method of an S-function with port-based sample times to avoid unnecessarily computing the outputs of ports that have constant sample time, i.e., [inf, 0].

function Outputs(block)

```
if block.IsDoingConstantOutput
   ts = block.OutputPort(1).SampleTime;
   if ts(1) == Inf
   %% Compute port's output.
   end
   end
   .
   %% end of Outputs
```

See "Specifying Port-Based Sample Times" in *Writing S-Functions* for more information.

IsMajorTimeStep

Purpose.

Determine whether current time step is a major or a minor time step.

Syntax

bVal = IsMajorTimeStep;

Description

Returns true if the current time step is a major time step; false, if it is a minor time step. This method can be called only from the Outputs or Update methods.

IsSampleHit

Purpose

Determine whether the current simulation time is one at which a task handled by this block is active.

Syntax

bVal = IsSampleHit(stIdx);

Arguments

stIdx

Global index of the sample time to be queried.

Description

Use in Outputs or Update block methods when the M-file S-function has multiple sample times to determine whether a sample hit has occurred at stIdx. The sample time index stIdx is a global index for the Simulink model. For example, consider a model that contains three sample rates of 0.1, 0.2, and 0.5, and an M-file S-function block that contains two rates of 0.2 and 0.5. In the M-file S-function, block.IsSampleHit(0) returns true for the rate 0.1, not the rate 0.2.

This block method is similar to ssIsSampleHit for C-MEX S-functions, however ssIsSampleHit returns values based on only the sample times contained in the S-function. For example, if the model described above contained a C-MEX S-function with sample rates of 0.2 and 0.5, ssIsSampleHit(S,0,tid) returns true for the rate of 0.2.

Use port-based sample times to avoid using the global sample time index for multi-rate systems (see Simulink.BlockPortData).

IsSpecialSampleHit

Purpose

Determine whether the current simulation time is one at which multiple tasks implemented by this block are active.

Syntax

bVal = IsSpecialSampleHit(stIdx1,stIdx1);

Arguments

stIdx1

Index of sample time of first task to be queried.

stIdx2

Index of sample time of second task to be queried.

Description

Use in Outputs or Update block methods to ensure the validity of data shared by multiple tasks running at different rates. Returns true if a sample hit has occurred at stIdx1 and a sample hit has also occurred at stIdx2 in the same time step (similar to ssIsSpecialSampleHit for C-Mex S-functions).

RegBlockMethod

Purpose

Register a block callback method.

Syntax

RegBlockMethod(methName, methHandle);

Arguments

methName

Name of method to be registered.

methHandle

MATLAB function handle of the callback method to be registered.

Description

Registers the block callback method specified by methName and methHandle. Use this method in the setup function of a Level-2 M-file S-function to specify the block callback methods that the S-function implements.

RegisterDataTypeFxpBinaryPoint

Purpose

Register fixed-point data type with binary point-only scaling.

Syntax

```
dtID = RegisterDataTypeFxpBinaryPoint(isSigned, wordLength,
fractionalLength, obeyDataTypeOverride);
```

Arguments

isSigned

true if the data type is signed.

false if the data type is unsigned.

wordLength

Total number of bits in the data type, including any sign bit.

fractionalLength

Number of bits in the data type to the right of the binary point.

obeyDataTypeOverride

true indicates that the **Data Type Override** setting for the subsystem is to be obeyed. Depending on the value of **Data Type Override**, the resulting data type could be True Doubles, True Singles, ScaledDouble, or the fixed-point data type specified by the other arguments of the function.

false indicates that the **Data Type Override** setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data type ID. The data type ID can be used to specify the data types of input and output ports, run-time parameters, and DWork states. It can also be used with all the standard data type access methods defined for instances of this class, such as "DatatypeSize".

Use this function if you want to register a fixed-point data type with binary point-only scaling. Alternatively, you can use one of the other fixed-point registration functions:

- Use "RegisterDataTypeFxpFSlopeFixExpBias" to register a data type with [Slope Bias] scaling by specifying the word length, fractional slope, fixed exponent, and bias.
- Use "RegisterDataTypeFxpSlopeBias" to register a data type with [Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Simulink Fixed Point license is checked out.

RegisterDataTypeFxpFSlopeFixExpBias

Purpose

Register fixed-point data type with [Slope Bias] scaling specified in terms of fractional slope, fixed exponent, and bias

Syntax

dtID = RegisterDataTypeFxpFSlopeFixExpBias(isSigned, wordLength, fractionalSlope, fixedExponent, bias, obeyDataTypeOverride);

Arguments

```
isSigned
```

true if the data type is signed.

false if the data type is unsigned.

wordLength

Total number of bits in the data type, including any sign bit.

fractionalSlope

Fractional slope of the data type.

fixedExponent

Exponent of the slope of the data type.

bias

Bias of the scaling of the data type.

obeyDataTypeOverride

true indicates that the **Data Type Override** setting for the subsystem is to be obeyed. Depending on the value of **Data Type Override**, the resulting data type could be True Doubles, True Singles, ScaledDouble, or the fixed-point data type specified by the other arguments of the function.

false indicates that the **Data Type Override** setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data type ID. The data type ID can be used to specify the data types of input and output ports, run-time parameters, and DWork states. It can also be used with all the standard data type access methods defined for instances of this class, such as "DatatypeSize".

Use this function if you want to register a fixed-point data type by specifying the word length, fractional slope, fixed exponent, and bias. Alternatively, you can use one of the other fixed-point registration functions:

- Use "RegisterDataTypeFxpBinaryPoint" to register a data type with binary point-only scaling.
- Use "RegisterDataTypeFxpSlopeBias" to register a data type with [Slope Bias] scaling.

If the registered data type is not one of the Simulink built-in data types, a Simulink Fixed Point license is checked out.

RegisterDataTypeFxpSlopeBias

Purpose

Register data type with [Slope Bias] scaling.

Syntax

```
dtID = RegisterDataTypeFxpSlopeBias(isSigned, wordLength,
totalSlope, bias, obeyDataTypeOverride);
```

Arguments

isSigned

true if the data type is signed.

false if the data type is unsigned.

wordLength

Total number of bits in the data type, including any sign bit.

totalSlope

Total slope of the scaling of the data type.

bias

Bias of the scaling of the data type.

obeyDataTypeOverride

true indicates that the **Data Type Override** setting for the subsystem is to be obeyed. Depending on the value of **Data Type Override**, the resulting data type could be True Doubles, True Singles, ScaledDouble, or the fixed-point data type specified by the other arguments of the function.

false indicates that the **Data Type Override** setting is to be ignored.

Description

This method registers a fixed-point data type with Simulink software and returns a data type ID. The data type ID can be used to specify the data types of input and output ports, run-time parameters, and DWork states. It can also be used with all the standard data type access methods defined for instances of this class, such as "DatatypeSize" on page 7-135.

Use this function if you want to register a fixed-point data type with [Slope Bias] scaling. Alternatively, you can use one of the other fixed-point registration functions:

- Use "RegisterDataTypeFxpBinaryPoint" to register a data type with binary point-only scaling.
- Use "RegisterDataTypeFxpFSlopeFixExpBias" to register a data type by specifying the word length, fractional slope, fixed exponent, and bias

If the registered data type is not one of the Simulink built-in data types, a Simulink Fixed Point license is checked out.

SetAccelRunOnTLC

Purpose

Specify whether to use block's TLC file to generate code for the Accelerator mode of Simulink software.

Syntax

SetAccelRunOnTLC(bVal);

Arguments

bVal

May be 'true' (use TLC file) or 'false' (run block in interpreted mode).

Description

Specify if the block should use its TLC file to generate code that runs with the accelerator. If this option is 'false', the block runs in interpreted mode. See the S-function *matlabroot*/toolbox/simulink/blocks/msfcn_times_two.m in the Simulink model msfcndemo_timestwo.mdl for an example.

SetPreCompInpPortInfoToDynamic

Purpose

Set precompiled attributes of this block's input ports to be inherited.

Syntax

SetPreCompInpPortInfoToDynamic;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling mode) of this block's input ports to be inherited. See the S-function matlabroot/toolbox/simulink/simdemos/adapt_lms.m in the Simulink model sldemo_msfcn_lms.mdl for an example.

SetPreCompOutPortInfoToDynamic

Purpose

Set precompiled attributes of this block's output ports to be inherited.

Syntax

SetPreCompOutPortInfoToDynamic;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling mode) of the block's output ports to be inherited. See the S-function matlabroot/toolbox/simulink/simdemos/adapt_lms.m in the Simulink model sldemo_msfcn_lms.mdl for an example.

SetPreCompPortInfoToDefaults

Purpose

Set precompiled attributes of this block's ports to the default values.

Syntax

SetPreCompPortInfoToDefaults;

Description

Initialize the compiled information (dimensions, data type, complexity, and sampling mode) of the block's ports to the default values. By default, a port accepts a real scalar sampled signal with a data type of double.

SetSimViewingDevice

Purpose

Specify whether this block is a viewer.

Syntax

SetSimViewingDevice(bVal);

Arguments

bVal

May be 'true' (is a viewer) or 'false' (is not a viewer).

Description

Specify if the block is a viewer/scope. If this flag is specified, the block will be used only during simulation and automatically stubbed out in generated code.

WriteRTWParam

Purpose

Write a custom parameter to the Real-Time Workshop information file used for code generation.

Syntax

WriteRTWParam(pType, pName, pVal)

Arguments

рТуре

Type of the parameter to be written. Valid values are 'string' and 'matrix'.

pName

Name of the parameter to be written.

pVal

Value of the parameter to be written.

Description

Use in the WriteRTW method of the M-file S-function to write out custom parameters. These parameters are generally settings used to determine

how code should be generated in the TLC file for the S-function. See the S-function *matlabroot*/toolbox/simulink/simdemos/adapt_lms.m in the Simulink model sldemo_msfcn_lms.mdl for an example.

Simulink.NumericType

Purpose	Specify data type		
Description	This class lets you specify a data type. To do this,		
	1 Create an instance of this class in the MATLAB base workspace. If you attempt to create a numeric type in a model workspace, Simulink software displays an error.		
	2 Set object's properties to the properties of the custom data type		
	3 Assign the data type to all signals and parameters of your model that you want to conform to the data type.		
	Assigning a data type in this way allows you to change the data types of the signals and parameters in your model by changing the properties of the object that describe them. You do not have to change the model itself.		
Property	Simulink.NumericType: x		
Dialog Box	Data type mode: Double		
DOX	🗖 Is alias		
	Header file:		
	Description:		

Data type mode

Data type of this numeric type. The options are

Option	Description
Boolean	Same as the MATLAB boolean type.
Double	Same as the MATLAB double type.
Single	Same as the MATLAB single type.
Fixed-point: unspecified scaling	A fixed-point data type with unspecified scaling.
Fixed-point: binary point scaling	A fixed-point data type with binary-point scaling.
Fixed-point: slope and bias scaling	A fixed-point data type with slope and bias scaling.

Selecting a category causes Simulink software to disable other controls on the dialog box (see below) that apply to the category and to disable controls that do not apply. Selecting a fixed-point category may, depending on the other dialog box options that you select, cause the model to run only on systems that have a Simulink Fixed Point option installed.

Is alias

If this option is selected for a workspace object of this type, Simulink software uses the name of the object as the data type for all objects that specify the object as its data type. Otherwise, Simulink software uses the category of the data type as its name, or, if the category is a fixed-point category, Simulink software generates a name that encodes the type's properties, using the encoding specified by the Simulink Fixed Point product.

Header file

Name of a user-supplied C header file that defines a data type having the same name as this numeric type (i.e., as the MATLAB variable that references this object). If this field is not empty, code generated from this model defines the numeric type by including the specified header file. If this field is empty, the generated code defines the numeric type itself.

Description

Description of this data type. This field is intended for use in documenting this data type. Simulink software ignores it.

Simulink.NumericType: x		
Data type mode:	Fixed-point: unspecified scaling	
Signedness:	Signed 💌	
Word length:	16	
🔲 Is alias		
Header file:		
Description:		

Signedness

Specifies whether the data type is signed or unsigned, or inherits its signedness. Set the option to Signed, Unsigned, or Auto. This option is enabled only for fixed-point data type categories.

Word-Length

Word length in bits of the fixed-point data type. This option is enabled only for fixed-point data type categories.

Fraction length

Number of bits to the right of the binary point. This option is enabled only if the data type category is Fixed-point: binary point scaling.

Simulink.Numer	ісТуре: х
Data type mode:	Fixed-point: binary point scaling
Signedness:	Signed
Word length:	16
Fraction length:	0
🗖 Is alias	
Header file:	
Description:	

Slope

Slope for slope and bias scaling. This option is enabled only if the data type category is Fixed-point: slope and bias scaling.

Simulink.NumericType: x		
Data type mode:	Fixed-point: slope and bias scaling	
Signedness:	Signed	
Word length:	16	
Slope:	2^0	
Bias:	0	
🗖 Is alias		
Header file:		
Description:		
1		

Bias

Bias for slope and bias scaling. This option is enabled only if the data type category is Fixed-point: slope and bias scaling. See the preceding figure.

Properties

Name	Access	Description
Bias	RW	Bias used for slope and bias scaling of a fixed-point data type. This field is intended for use by the Simulink Fixed Point product. (Bias)

Name	Access	Description
DataTypeMode	RW	String that specifies the data type of this numeric type. Valid values are 'Double', 'Boolean', 'Single', 'Fixed-point: unspecified scaling', 'Fixed-point: binary point scaling', and 'Fixed-point: slope and bias scaling'. (Data type mode)
Description	RW	Description of this data type. (Description)
FixedExponent	RW	Exponent used for binary point scaling. This property equals -FractionLength. Setting this property causes Simulink software to set the FractionLength and Slope properties accordingly, and vice versa. This property applies only if the data type category is Fixed-point: binary point scaling or Fixed-point: slope and bias scaling. It does not appear on the object's Property dialog box, but can be accessed from the MATLAB command prompt.
FractionLength	RW	Integer that specifies the size in bits of the fractional portion of the fixed-point number. This property equals -FixedExponent. Setting this property causes Simulink software to set the FixedExponent property accordingly, and vice versa. This field is intended for use by the Simulink Fixed Point product. (Fraction length)

Name	Access	Description
IsAlias	RW	Integer that specifies whether to use the name of this object as the name of the data type that it specifies. Valid values are 1 (yes) or 0 (no). (Is alias)
Signedness	RW	Boolean that specifies whether this data type is signed, unsigned, or inherits its signedness. Valid values are 1 (signed), 0 (unsigned), or Auto (inherit signedness). (Signedness)
Slope	RW	Slope for slope and bias scaling of fixed-point numbers. This property equals SlopeAdjustmentFactor * 2^FixedExponent. If SlopeAdjustmentFactor is 1.0, Simulink software displays the value of this field as 2^SlopeAdjustmentFactor. Otherwise, it displays it as a numeric value. Setting this property causes Simulink software to set the FixedExponent and SlopeAdjustmentFactor properties accordingly, and vice versa. This property appears only if Category is Fixed-point: slope and bias scaling. (Slope)

Name	Access	Description
SlopeAdjustmentFactor	RW	Slope for slope and bias scaling of fixed-point numbers. Setting this property causes Simulink software to adjust the Slope property accordingly, and vice versa. This property applies only if Category is Fixed-point: slope and bias scaling. It does not appear on the object's Property dialog box, but can be accessed from the MATLAB command prompt.
WordLength	RW	Integer that specifies the word size of this data type. This field is intended for use by the Simulink Fixed Point product. This property appears only if Category is Fixed-point. (Word Length)

Purpose Specify value, value range, data type, and other properties of block parameter

Description This class enables you to create workspace objects that you can then use as the values of block parameters, e.g., the value of a Gain block's Gain parameter. You can create a Simulink.Parameter object in the base MATLAB workspace or a model workspace. However, to create the object in a model workspace, you must set the object's storage class to Auto.

Parameter objects let you specify not only the value of a parameter but also other information about the parameter, such as the parameter's purpose, its dimensions, its minimum and maximum values, etc. Some Simulink products use this information. For example, Simulink and Real-Time Workshop products use information specified by Simulink.Parameter objects to determine whether the parameter is tunable (see "Changing the Values of Block Parameters During Simulation" in *Simulink User's Guide*).

The Simulink software performs range checking of parameter values. The software alerts you when the parameter object's value lies outside a range that corresponds to its specified minimum and maximum values and data type. Property Dialog Box

Simulink.Pa	arameter: Param			
Value:	[]			
Data type:	auto		•	>>
Dimensions:	[0 0]	Complexity:	real	
Minimum:	-Inf	Maximum:	Inf	
Units:				
Code gene	ration options			
Storage cla	ass: Auto			•
Alias:				
Description:				
1				
		Revert	Help	Apply

Value

Value of the parameter. You can use MATLAB expressions to specify the numeric type, dimensions, and data type of the parameter (see "Data Types Supported by Simulink"). You can also specify fixed-point values for block parameters (see "Specifying Fixed-Point Values Directly" in the Simulink Fixed Point documentation). The following examples illustrate this syntax.

Expression	Description
<pre>single(1.0)</pre>	Specifies a single-precision value of 1.0

Expression	Description
int8(2)	Specifies an 8-bit integer of value 2
int32(3+2i)	Specifies a complex value whose real and imaginary parts are 32-bit integers
fi(2.3,true,16,3)	Specifies a signed fixed-point numeric object having a value of 2.3, a word length of 16 bits, and a fraction length of 3.

Note If you specify a typed expression as the parameter object's **Value** property, it overrides the current setting of the **Data type** property.

Data type

Data type of the parameter. You can either select a data type from the adjacent pulldown menu or enter a string. If you select auto (the default), the block that references the parameter object determines the data type of the variable used to represent this parameter in code generated from the model. If you enter a string, it must evaluate to one of the following:

- A built-in data type that Simulink software supports (see "Data Types Supported by Simulink").
- A Simulink.NumericType object
- A Simulink.AliasType object

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Data type** parameter. (See "Using the Data Type Assistant" in *Simulink User's Guide.*)

Note If you specify a parameter object's data type using the **Data type** property, it overrides any typed expression in the **Value** property and changes the value to be untyped.

Units

Measurement units in which this value is expressed, e.g., inches. This field is intended for use in documenting this parameter. Simulink software ignores it.

Dimensions

Dimensions of the parameter. Simulink software determines the dimensions from the entry in the **Value** field of this parameter. You cannot set this field yourself.

Complexity

Numeric type (i.e., real or complex) of the parameter. Simulink software determines the numeric type of this parameter from the entry in the **Value** field of this parameter. You cannot set this field yourself.

Minimum

Minimum value that the parameter can have. Specify a value that evaluates to a scalar, real number with double data type. The Simulink software generates a warning if the parameter value is less than the minimum value or if the minimum value is outside the range of the parameter data type. When updating the diagram or starting a simulation, Simulink generates an error in these cases.

Maximum

Maximum value that the parameter can have. Specify a value that evaluates to a scalar, real number with double data type. The Simulink software generates a warning if the parameter value is greater than the maximum value or if the maximum value is outside the range of the parameter data type. When updating the diagram or starting a simulation, Simulink generates an error in these cases.

Storage class

Storage class of this parameter. Simulink code generation products use this property to allocate memory for this parameter in generate code. See "Tunable Parameter Storage Classes" in *Real-Time Workshop User's Guide* for more information.

Alias

Alternate name for this parameter. Simulink software ignores this setting.

Description

Description of this parameter. This field is intended for use in documenting this parameter. Simulink software ignores it.

Properties

Name	Access	Description
Value	RW	Value of this parameter. (Value)
RTWInfo	RW	Information used by Real-Time Workshop software for generating code for this parameter. The value of this property is an object of Simulink.ParamRTWInfo class.
Description	RW	String that describes this parameter. This property is intended for user use. Simulink software itself does not use it. (Description)
DataType	RW	String specifying the data type of this parameter. (Data type)
Min	RW	Minimum value that this parameter can have. (Minimum)
Max	RW	Maximum value that this parameter can have. (Maximum)
DocUnits	RW	Measurement units in which this parameter's value is expressed. (Units)

Name	Access	Description
Complexity	RO	String specifying the numeric type of this parameter. Valid values are 'real' or 'complex'. (Complexity)
Dimensions	RO	Vector specifying the dimensions of this parameter. (Dimensions)

Simulink.ParamRTWInfo

Purpose Specify information needed to generate code for parameter

Description Simulink software creates an instance of this class for each instance of a Simulink.Parameter object that it creates. Simulink software uses the Simulink.ParamRTWInfo object to store information needed to generate code for the parameter specified by the Simulink.Parameter object.

You can set the properties of an instance of this class via the RTWInfo property or the property dialog box of the Simulink.Parameter object that uses it. For example, the following MATLAB expression sets the StorageClass property of a Simulink.ParamRTWInfo object used by a parameter object name myparam.

myparam.RTWInfo.StorageClass = 'ExportedGlobal';

PropertyUse the Code Generation Options section of the Simulink.ParameterDialogproperty dialog box to set the StorageClass and Alias properties of
objects of this class.

Properties

Name	Description
Alias	Alternate name for this parameter.
CustomAttributes	Custom storage class attributes of this parameter. See "Using Custom Storage Classes" in the Real-Time Workshop Embedded Coder documentation for more information.
CustomStorageClass	Custom storage class of this parameter.
StorageClass	Storage class of this parameter. See "Parameter Storage, Interfacing, and Tuning" in the Real-Time Workshop documentation for more information.

Purpose	Allow Level-2 M-file S-function and other M-file programs to get information about block while simulation is running			
Description	This class allows a Level-2 M-file S-function or other M program to obtain information about a block. Simulink software creates an instance of this class or a derived class for each block in a model. Simulink software passes the object to the callback methods of Level-2 M-file S-functions when it updates or simulates a model, allowing the callback methods to get block-related information from and provide such information to Simulink software. See "Writing Level-2 M-File S-Functions" in Writing S-Functions for more information. You can also use instances of this class in M-file programs to obtain information about blocks during a simulation. See "Accessing Block Data During Simulation" in the Simulink documentation for more information. Note Simulink.RunTimeBlock objects do not support MATLAB sparse matrices. For example, the following line of code attempts to assign a sparse identity matrix to the run-time object's output port data. This line of code in a Level-2 M-file S-function produces an error: block.Outport(1).Data = speye(10);			
Parent Class	None			
Derived Classes	Simulink.MSFcnRunTimeBlock			
Property	Name	Description		
Summary	"BlockHandle"	Block's handle.		
	"CurrentTime"	Current simulation time.		

Name	Description
"NumDworks"	Number of discrete work vectors used by the block.
"NumOutputPorts"	Number of block output ports.
"NumContStates"	Number of block's continuous states.
"NumDworkDiscStates"	Number of block's discrete states
"NumDialogPrms"	Number of parameters that can be entered on S-function block's dialog box.
"NumInputPorts"	Number of block's input ports.
"NumRuntimePrms"	Number of run-time parameters used by block.
"SampleTimes"	Sample times at which block produces outputs.

Method Summary

Name	Description
"ContStates"	Get a block's continuous states.
"DataTypeIsFixedPoint"	Determine whether a data type is fixed point.
"DatatypeName"	Get name of a data type supported by this block.
"DatatypeSize"	Get size of a data type supported by this block.
"Derivatives"	Get a block's continuous state derivatives.
"DialogPrm"	Get a parameter entered on an S-function block's dialog box.
"Dwork"	Get one of a block's DWork vectors.

Name	Description
"FixedPointNumericType"	Determine the properties of a fixed-point data type.
"InputPort"	Get one of a block's input ports.
"OutputPort"	Get one of a block's output ports.
"RuntimePrm"	Get one of the run-time parameters used by a block.

Properties

BlockHandle

Description

Block's handle.

Access

RO

CurrentTime

Description

Current simulation time.

Access

RO

NumDworks

Description

Number of data work vectors.

Access

RW

See Also

ssGetNumDWork

NumOutputPorts

Description Number of output ports.

Access

RW

See Also

ssGetNumOutputPorts

NumContStates

Description

Number of continuous states.

Access RW

See Also ssGetNumContStates

NumDworkDiscStates

Description

Number of discrete states. In an M-file S-function, you need to use DWorks to set up discrete states.

Access

RW

See Also

ssGetNumDiscStates

NumDialogPrms

Description

Number of parameters declared on the block's dialog. In the case of the S-function, it returns the number of parameters listed as a comma-separated list in the **S-function parameters** dialog field.

Access

RW

See Also

ssGetNumSFcnParams

NumInputPorts

Description Number of input ports.

Access

RW

See Also

ssGetNumInputPorts

NumRuntimePrms

Description

Number of run-time parameters used by this block. See "Run-Time Parameters" for more information.

Access

RW

See Also

ssGetNumSFcnParams

SampleTimes

Description

Block's sample times.

Access

 RW for M-file S-functions, RO for all other blocks.

Methods

ContStates

Purpose Get a block's continuous states.

Syntax
states = ContStates();

Description Get vector of continuous states.

See Also ssGetContStates

DataTypeIsFixedPoint

Purpose Determine whether a data type is fixed point.

Syntax
bVal = DataTypeIsFixedPoint(dtID);

Arguments

dtID

Integer value specifying the ID of a data type.

Description

Returns true if the specified data type is a fixed-point data type.

DatatypeName

Purpose

Get the name of a data type.

Syntax

name = DatatypeName(dtID);

Arguments

dtID

Integer value specifying ID of a data type.

Description

Returns the name of the data type specified by dtID.

See Also

"DatatypeSize"

DatatypeSize

Purpose

Get the size of a data type.

Syntax

size = DatatypeSize(dtID);

Arguments

dtID

Integer value specifying the ID of a data type.

Description

Returns the size of the data type specified by dtID.

See Also

"DatatypeName"

Derivatives

Purpose

Get derivatives of a block's continuous states.

Syntax

derivs = Derivatives();

Description

Get vector of state derivatives.

See Also

ssGetdX

DialogPrm

Purpose

Get an S-function's dialog parameters.

Syntax

param = DialogPrm(pIdx);

Arguments

pIdx

Integer value specifying the index of the parameter to be returned.

Description

Get the specified dialog parameter. In the case of the S-function, each DialogPrm corresponds to one of the elements in the comma-separated list of parameters in the S-function parameters dialog field.

See Also

ssGetSFcnParam, "RuntimePrm"

Dwork

Purpose

Get one of a block's DWork vectors.

Syntax

dworkObj = Dwork(dwIdx);

Arguments

dwIdx

Integer value specifying the index of a work vector.

Description

Get information about the DWork vector specified by dwIdx where dwIdx is the index number of the work vector. This method returns an object of type Simulink.BlockCompDworkData.

See Also

ssGetDWork

FixedPointNumericType

Purpose

Get the properties of a fixed-point data type.

Syntax

eno = FixedPointNumericType(dtID);

Arguments

dtID

Integer value specifying the ID of a fixed-point data type.

Description

Returns an object of Embedded.Numeric class that contains the attributes of the specified fixed-point data type.

Note Embedded.Numeric is also the class of the numerictype objects created by Fixed-Point Toolbox software. For information on the properties defined by Embedded.Numeric class, see numerictype Object Properties in the "Property Reference" in the *Fixed-Point Toolbox User's Guide*.

InputPort

Purpose

Get an input port of a block.

Syntax

port = InputPort(pIdx);

Arguments

pIdx

Integer value specifying the index of an input port.

Description

Get the input port specified by pIdx, where pIdx is the index number of the input port. For example,

```
port = rto.InputPort(1)
```

returns the first input port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreComp-InputPortData or Simulink.BlockCompInputPortData, depending on whether the model that contains the port is uncompiled or compiled. You can use this object to get and set the input port's uncompiled or compiled properties, respectively.

See Also

ssGetInputPortSignalPtrs, Simulink.BlockPreCompInputPortData, Simulink.BlockCompInputPortData, "OutputPort"

OutputPort

Purpose

Get an output port of a block.

Syntax

port = OutputPort(pIdx);

Arguments

pIdx

Integer value specifying the index of an output port.

Description

Get the output port specified by pIdx, where pIdx is the index number of the output port. For example,

port = rto.InputPort(1)

returns the first output port of the block represented by the run-time object rto.

This method returns an object of type Simulink.BlockPreComp-OutputPortData or Simulink.BlockCompOutputPortData, depending on whether the model that contains the port is uncompiled or compiled, respectively. You can use this object to get and set the output port's uncompiled or compiled properties, respectively.

See Also

ssGetInputPortSignalPtrs, Simulink.BlockPreComp-OutputPortData, Simulink.BlockCompOutputPortData

RuntimePrm

Purpose

Get an S-function's run-time parameters.

Syntax

param = RuntimePrm(pIdx);

Arguments

pIdx

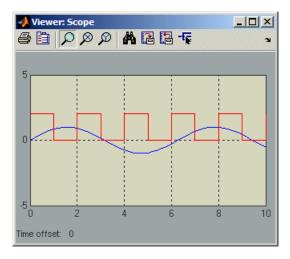
Integer value specifying the index of a run-time parameter.

Description

Get the run-time parameter whose index is pIdx.


See Also

ssGetRunTimeParamInfo


Purpose Store data logged by Scope signal viewer

Description Simulink software creates instances of this class to log data displayed on Scope viewers (see "Visualizing Simulation Results"). In particular, if you have enabled data logging for a model, Simulink software creates an instance of this class for each scope viewer enabled for logging in the model and assigns it to a property of the model's Simulink.ModelDataLogs object. The instance created for each viewer has a Name property whose value is the name specified on the History pane of the viewer's parameter dialog box (see Scope for more information). The instance also has an axes property for each of the scope's axes labeled Axes1, Axes2, etc. The value of each axes property is itself a Simulink.ScopeDataLogs object that contains Simulink.Timeseries objects, one for each signal displayed on the axes. The time series objects contain the signal data displayed on the axes.

Consider, for example, the following model:

This model displays signals out1 and out2 on a scope viewer that has only one set of axes.

The model enables data logging for the scope viewer under the variable name ScopeData and for the model as a whole under the default variable name logsout.

Viewe	r: Scope' pa	rameters		_ 🗆 🗡
General	History	erformance	Tip: right cl	ick on axes
🔽 Limit d	ata points to	last: 7500		
🔽 Save	to model sign	al logging obje	ect (logsout)	
Logging I	Name: Scopel	Data		
		1		
	OK	Cancel	Help	Apply

After simulation of the model, the MATLAB workspace contains a Simulink.ModelDataLogs object named logsout containing a Simulink.ScopeDataLogs object that in turn contains a Simulink.ScopeDataLogs object that contains Simulink.Timeseries objects that contain the times series data for signals out1 and out 2.

You can use Simulink data object dot notation to access the data, e.g.,

	<pre>>> logsout.ScopeData.axes1</pre>				
	ans =				
	Simulink.ScopeDat	U ()			
	Name	Elements	Simulink Class		
	out1	1	Timeseries		
	out2	1	Timeseries		
e Also	"Importing and Export	ing Data", Simulink	.ModelDataLogs,		

See Also "Importing and Exporting Data", Simulink.ModelDataLogs Simulink.SubsysDataLogs, Simulink.Timeseries, Simulink.TsArray, who, whos, unpack

Purpose Specify attributes of signal

Description

This class enables you to create workspace objects that you can use to assign or validate the attributes of a signal or discrete state, such as its data type, numeric type, dimensions, and so on. You can create a Simulink.Signal object in the MATLAB workspace or in a model workspace. If you create the object in a model workspace, you must set the object's storage class to Auto.

Objects of this class allow you to assign or validate signal or discrete state attributes by giving the signal or discrete state the same name as the workspace variable that references the Simulink.Signal object. For brevity, the rest of section refers only to specifying and validating signal attributes. The same techniques work with discrete states also.

You can use a variety of techniques to associate a signal object with a signal. For examples, see "Using Signal Objects to Initialize Signals and Discrete States", "Using Signal Objects to Tune Initial Values", and "Applying CSCs to Parameters and Signals".

Multiple Signal Objects

A given signal object can be associated with more than one signal only if the storage class of the signal object is Auto. If the object's storage class is other than Auto, it can be associated with at most one signal.

A given signal can be associated with at most one signal object under any circumstances. The signal can refer to the object more that once, but every reference must resolve to exactly the same object. A different signal object that has exactly the same properties will not meet the requirement for uniqueness.

A compile-time error occurs if a model associates more than one signal object with any signal. To prevent the error, decide which object the signal will use, then delete or reconfigure all references to any other signal objects, so that all remaining references resolve to the chosen signal object. See "Displaying Signal Sources and Destinations" for a description of techniques that you can use to trace the full extent of a signal.

Using Signal Objects to Assign Signal Attributes

You can use a signal object to assign values to signal attributes that are left unassigned (have a value of -1 or auto) by the signal source. To use a signal object to assign signal attribute values:

- Create a Simulink.Signal object that has the same name as the signal.
- Set the properties of the object that correspond to the attributes left unspecified by the signal source.
- Enable explicit or implicit signal resolution:
 - **Explicit resolution:** In the signal's Signal Properties dialog box, enable **Signal name must resolve to Simulink signal object**. This is the preferred technique. See "Explicit and Implicit Symbol Resolution" for more information.
 - Implicit resolution: Set the model's Configuration Parameters > Diagnostics > Data Validity > Signal resolution option to Explicit and implicit or Explicit and warn implicit. The MathWorks recommends using explicit resolution only.

The signal object then provides the value of each signal attribute to which the signal source assigns a value of -1 or auto. (The same object could also validate any attribute to which the signal source assigns a specific value, rather than -1 or auto, as described in "Using Signal Objects to Validate Signal Attributes" on page 7-147.)

Using a Signal Specification Block

You can use a Signal Specification block rather than a Simulink.Signal object to assign properties left unspecified by a signal source. Each technique has advantages and disadvantages:

• Using a signal object simplifies the model and allows you to change signal property values without editing the model, but does not show signal property values directly in the block diagram.

• Using a Signal Specification block displays signal property values directly in the block diagram, but complicates the model and requires editing it to change signal property values.

The following model illustrates the respective advantages of the two ways of assigning attributes to a signal.

🌇 Model Explorer				
File Edit View Tools Add	Help			
	🗒 🛨 🎭 玛 🗐 🖉 🛔		🌒 🎦 🗒 👘 🖓 🚺	【幸 淊
Search: by Name	Name:		Search	
Contents of: Base Workspace	Simulink.Signal: \$1			
Name	Data type: single			<u>,</u>
-€ s1	Dimensions: -1	Com	plexity: auto	•
	Sample time: 2	Sam	ple mode: auto	•
	Minimum: Inf	Maxi	imum: Inf	
	Initial value:	Units	s:	
	, ┌─ Code generation options—		,	
	Storage class: Auto			
	Alias:			
	Description:			
· · ·	1		Revert H	elp Apply
Contents Search Results		-	110101	
<u> </u>				
`\				
\mathbf{X}				
\sim		6		
(1) single			→(1)	
In1		Gain	Out1	
Ts = -1 Dt = Inherit: auto		Cam		
uint8 👞 🔽	uint8	ufix16_Eni	7 .	
Ts = -1	al Specification	Gain1	034	
	s:4 Dt:uint8 al Specification	▶ 1 ufix16_Eni Gain1	7 2 Out2	

In this example, the signal object named s1 specifies the sample time and data type of the signal emitted by input port In1 and a Signal Specification block specifies the sample time and data type of the signal emitted by input port In2. As this example illustrates, you have to display the signal object in the Model Explorer to determine many of its properties whereas the Signal Specification block displays the property values on the diagram itself. On the other hand, using a signal object to specify the sample time and data type properties of signal s1 allows you to change the sample time or data type without having to edit the model. For example, you could use the Model Explorer, the MATLAB command line, or an M-file program to change these properties.

Using Signal Objects to Validate Signal Attributes

You can use a signal object to validate signal attributes whose values are explicitly assigned by the signal source. Such attributes have values other than -1 or auto. Successful validation guarantees that the signal has the attributes that you intended it to have. To use a signal object to validate signal attributes:

- Create a Simulink.Signal object that has the same name as the signal.
- Set properties of the object to the values that corresponding signal attributes must have.
- Enable explicit or implicit signal resolution:
 - **Explicit resolution:** In the signal's Signal Properties dialog box, enable **Signal name must resolve to Simulink signal object**. This is the preferred technique. See "Explicit and Implicit Symbol Resolution" for more information.
 - Implicit resolution: Set the model's Configuration Parameters > Diagnostics > Data Validity > Signal resolution option to Explicit and implicit or Explicit and warn implicit. The MathWorks recommends using explicit resolution only.

If the signal source assigns any value other than -1 or **auto** to a signal property, and the assigned value differs from the corresponding signal object value, the signal does not match the signal object and is therefore invalid. (The same object could also provide values for attributes that the signal source defines as -1 or **auto**, as described in "Using Signal Objects to Assign Signal Attributes" on page 7-144.)

The result when a signal does not match a signal object can depend on several factors. The Simulink engine can validate a signal property when you update the diagram, while you run a simulation, or both. When and how validation occurs can depend on internal rules that are subject to change, and sometimes on configuration parameter settings.

Not all signal validation compares signal source attributes with signal object properties. For example, if you specify Minimum and Maximum signal values using a signal object, the signal source must specify the same values as the signal object (or inherit the values from the object) but such validation relates only to agreement between the source and the object, not to enforcement of the Minimum and Maximum values during simulation.

If the value of **Configuration Parameters > Diagnostics > Data Validity > Simulation range checking** is none (the default) the Simulink engine does not enforce any signal's Minimum and Maximum values during simulation, even though a signal object provided or validated them. To enforce Minimum and Maximum signal values during simulation, you must set Simulation range checking to warning or error. See "Checking Signal Ranges" and "Diagnostics Pane: Data Validity" for more information.

Simulink.Signal

Property Dialog Box

Simulink.Signa	al: Sig			
Data type: auto)		•	>>
Dimensions: 1		Complexity:	auto	•
Sample time: -1		Sample mode:	auto	•
Minimum: -Ir	nf	Maximum:	Inf	
Initial value:		Units:		
Code generatio	on options			
Storage class:	Auto			•
Alias:	ļ			
Description:				
	_	Revert	Help	Apply

Data type

Data type of the signal. The default entry, auto, specifies that Simulink software should determine the data type. Use the adjacent pulldown list to specify built-in data types (e.g., uint8). To specify a custom data type, enter a MATLAB expression that specifies the type, e.g., a base workspace variable that references a Simulink.NumericType object.

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the

Data type parameter. (See "Using the Data Type Assistant" in *Simulink User's Guide*.)

Dimensions

Dimensions of this signal. Valid values are -1 (the default) specifying any dimensions, N specifying a vector signal of size N, or [M N] specifying an MxN matrix signal.

Complexity

Numeric type of the signal. Valid values are auto (determined by Simulink software), real, or complex.

Sample time

Rate at which the value of this signal should be computed. See "How to Specify the Sample Time" in the Simulink documentation for information on how to specify the sample time.

Sample mode

Sample mode of this signal. Simulink software ignores the setting of this field.

Minimum

Minimum value that the signal should have. Specify a value that evaluates to a scalar, real number with double data type. Simulink software uses this value in the following ways:

- When updating the diagram or starting a simulation, Simulink generates an error if the signal's initial value is less than the minimum value or if the minimum value is outside the range of the signal's data type.
- When the **Simulation range checking** diagnostic is enabled, Simulink alerts you during simulation if the signal's value is less than the minimum value (see "Simulation range checking").

Maximum

Maximum value that the signal should have. Specify a value that evaluates to a scalar, real number with double data type. Simulink software uses this value in the following ways:

- When updating the diagram or starting a simulation, Simulink generates an error if the signal's initial value is greater than the maximum value or if the maximum value is outside the range of the signal's data type.
- When the **Simulation range checking** diagnostic is enabled, Simulink alerts you during simulation if the signal's value is greater than the maximum value (see "Simulation range checking").

Initial value

Signal or state value before a simulation takes its first time step. You can specify any MATLAB string expression that evaluates to a double numeric scalar value or array.

Valid:

```
1.5
[1 2 3]
1+0.5
foo = 1.5;
s1.InitialValue = 'foo';
```

Invalid:

```
uint(1)
foo = '1.5';
s1.InitialValue = 'foo';
```

If necessary, Simulink software converts the initial value to ensure type, complexity, and dimension consistency with the corresponding block parameter value. If you specify an invalid value or expression, an error message appears when you update the model. Also, Simulink performs range checking of the initial value. The software alerts you when the signal's initial value lies outside a range that corresponds to its specified minimum and maximum values and data type. Initial value settings for signal objects that represent the following signals and states override the corresponding block parameter initial values if undefined (specified as [1):

- Output signals of conditionally executed subsystems and Merge blocks
- Block states

Units

Measurement units in which the value of this signal is expressed. e.g., inches. This field is intended for use in documenting this signal. Simulink software ignores it.

Storage class

Storage class of this signal. See "Tunable Parameter Storage Classes" in the Real-Time Workshop User's Guide for more information.

Alias

Alternate name for this signal. Simulink software ignores this setting. This property is used for code generation.

Description

Description of this signal. This field is intended for use in documenting this signal. This property is used by the Simulink Report Generator and for code generation.

operties	Name	Access	Description
	RTWInfo	RW	Information used by Real-Time Workshop software for generating code for this signal. The value of this property is an object of Simulink.SignalRTWInfo class.
	Description	RW	Description of this signal. This field is intended for use in documenting this signal. (Description)

Pro

Name	Access	Description
DataType	RW	String specifying the data type of this signal. (Data type)
Min	RW	Minimum value that this signal can have. (Minimum)
Max	RW	Maximum value that this signal can have. (Maximum)
DocUnits	RW	Measurement units in which this signal's value is expressed. (Units)
Dimensions	RW	Scalar or vector specifying the dimensions of this signal. (Dimensions)
Complexity	RW	String specifying the numeric type of this signal. Valid values are 'auto', 'real', or 'complex'. (Complexity)
SampleTime	RW	Rate at which this signal should be updated. (Sample time)
Sampling Mode	RW	Sampling mode of this signal. (Sample mode)
InitialValue	RW	Signal or state value before a simulation takes its first time step. (Initial Value)

Simulink.SignalRTWInfo

Purpose Specify information needed to generate code for signal

Description Simulink software creates an instance of this class for each instance of a Simulink.Signal object that it creates. Simulink software uses the Simulink.SignalRTWInfo object to store information needed to generate code for the signal specified by the Simulink.Signal object.

You can set the properties of an instance of this class via the RTWInfo property or the property dialog box of the Simulink.Signal object that uses it. For example, the following MATLAB expression sets the StorageClass property of a Simulink.SignalRTWInfo object used by a signal object name mysignal.

mysignal.RTWInfo.StorageClass = 'ExportedGlobal';

PropertyUse the Code Generation Options section of the Simulink.SignalDialogproperty dialog box to set the StorageClass and Alias properties of
objects of this class.

Properties

Name	Description
Alias	Alternate name for this signal.
CustomAttributes	Custom storage class attributes of this signal. See "Using Custom Storage Classes" in the Real-Time Workshop Embedded Coder documentation for more information.
CustomStorageClass	Custom storage class of this signal.
StorageClass	Storage class of this signal. See "Signal Storage, Optimization, and Interfacing"in the Real-Time Workshop documentation for more information.

Purpose	Describe	element o	f data	structur
rurpose	Describe	element o	i data	structur

Description Objects of this class describe elements of structures described by objects of the Simulink.StructType class.

Property Dialog	Simulink.S	tructElement: Stru	uctEleme	nt			
Dialog Box	Name:	a					
	Data Type:	double			-	>>	
	Dimensions:	1		Complexity:	real		-
				Revert	Help	Apply	y .

Name

Specify a name for the element.

Data type

Specify a data type for this element. You can either select a data type from the adjacent pulldown list or enter a string. If you enter a string, it must evaluate to one of the following:

- A built-in data type supported by Simulink software (see "Data Types Supported by Simulink")
- A Simulink.NumericType object
- A Simulink.AliasType object

Click the **Show data type assistant** button \longrightarrow to display the **Data Type Assistant**, which helps you set the **Data type** parameter. (See "Using the Data Type Assistant" in *Simulink User's Guide.*)

Dimensions

Specify a vector that represents the dimensions of the element.

Complexity

Specify the numeric type (i.e., real or complex) of this element.

Properties

Name	Access	Description
Name	RW	String specifying the name of this element. (Name)
DataType	RW	String that specifies the name of the data type of this element. (Data type)
Complexity	RW	String that specifies the numeric type ('real' or 'complex') of this element. (Complexity)
Dimensions	RW	A vector specifying the dimensions of this element. (Dimensions)

See Also

Simulink.StructType

Purpose Describe data structure used as value of signal or parameter

Description

An object of this class describes a signal whose values are data structures (i.e., aggregates of data of different types as opposed to arrays of values of the same type). This class is intended to support development and use of custom blocks (e.g., S-Function blocks) that accept or output data structures. The class allows users of such blocks to determine the structure of the signals connected to them.

You can use either the Model Explorer or the MATLAB command line to create an instance of this class. You must create structure types in the MATLAB workspace. If you attempt to create a structure type in a model workspace, Simulink software displays an error.

To define the elements of a structure, create an array of instances of Simulink.StructElement at the MATLAB command line and assign the array as the value of the structure's Elements property. For example, the following commands define a structure that contains a floating point and an integer element.

```
v = Simulink.StructElement;
v.Name = 'v';
v.DataType = 'single';
n = Simulink.StructElement;
n.Name = 'n';
n.DataType = 'uint8';
s = Simulink.StructType;
s.Elements = [v n];
```

You can use a structure type object to specify the data type of Inport and Signal Specification blocks. To do this, enter the name of the variable that references the structure type object as the data type in the block's parameter dialog box.

The Simulink S-function API lets you create S-functions capable of generating and manipulating signal structures (see the simstruc.h header file for more information). You can connect signal structures

created by S-function blocks to any standard Simulink block that accepts any data type. This includes virtual blocks and the Switch block configured to require the same data type on all its data inputs.

Property Dialog Box

roll double real pitch 1 double real yaw 1 double real	Name	Dimension	Data/Bus Type	Complexity
pitch 1 double real yaw 1 double real	velocity		1 single	real
yaw 1 double real	roll		1 double	real
ader file:	pitch		1 double	real
,	yaw		l double	real
	ader file:			
<u>R</u> evert <u>H</u> elp	,			

Struct elements

Table that displays the properties of the structure's elements. You cannot edit this table. To add or delete this structure's elements or change the properties of elements, you must use MATLAB commands, e.g.,

```
state.Elements(1).DataType = 'double';
```

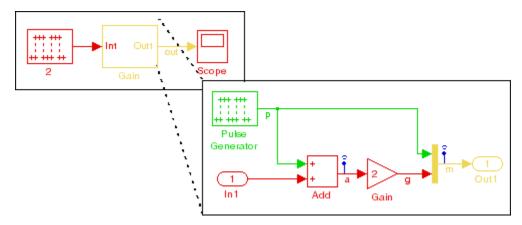
Header file

Name of a C header file that declares this structure. This field is intended for use by Real-Time Workshop software. Simulink software ignores it.

Description

Description of this structure. This field is intended for you to use to document this structure. Simulink software itself does not use this field.

Properties


Name	Access	Description
Elements	RW	An array of Simulink.StructElement objects that define the names, data types, dimensions, and numeric types of the structure's elements. The elements must have unique names. (Struct elements)
Description	RW	String that describes this structure. This property is intended for user use. Simulink software itself does not use it. (Description)
HeaderFile	RW	String that specifies the name of a C header file that declares this structure. (Header file)

See Also Simulink.StructElement

Purpose Container for subsystem's signal data logs

Description Simulink software creates instances of this class to contain logs for signals belonging to a subsystem (see "Logging Signals" in the Simulink documentation). Objects of this class have a variable number of properties. The first property, named Name, is the name of the subsystem whose log data this object contains. The remaining properties are signal log or signal log container objects containing the data logged for the subsystem specified by this object's Name property.

Consider, for example, the following model.

After simulation of this model, the MATLAB workspace contains a Simulink.ModelDataLogs object, named logsout, that contains a Simulink.SubsysDataLogs object, named Gain, that contains the log data for signals a and m in the subsystem named Gain.

```
>> logsout.Gain
ans =
Simulink.SubsysDataLogs (Gain):
Name Elements Simulink Class
```

а	1	Timeseries
m	2	TsArray

You can use either fully qualified log names or the unpack command to access the signal logs contained by a SubsysDataLogs object. For example, to access the amplitudes logged for signal a in the preceding example, you could enter the following at the MATLAB command line:

```
>> data = logsout.Gain.a.Data;
```

or

```
>> logsout.unpack('all');
data = a.Data;
```

See Also "Importing and Exporting Data", Simulink.ModelDataLogs, Simulink.ScopeDataLogs, Simulink.Timeseries, Simulink.TsArray, who, whos, unpack

Simulink.TimeInfo

Purpose	Provide information about time data in Simulink.Timeseries object
Description	Simulink software creates instances of these objects to describe the time data that it includes in Simulink.Timeseries objects.

Properties Name Access Description Units RW The units, e.g., 'seconds', in which the time series data are expressed in the associated Simulink. Timeseries object. Start RW If the associated signal is not in a conditionally executed subsystem, this field contains the simulation time of the first signal value recorded in the associated Simulink. Timeseries object. If the signal is in a conditionally executed subsystem, this field contains an array of times when the system became active. End RW If the associated signal is not in a conditionally executed subsystem, this field contains the simulation time of the last signal value recorded in the associated Simulink.Timeseries object. If the signal is in a conditionally executed subsystem, this field contains an array of times when the system became inactive.

Name	Access	Description
Increment	RW	The interval between simulation times at which signal data is logged in the associated Simulink.Timeseries object. If the signal is aperiodic (continuous signal with variable-step solver), this property has a value of NaN. A signal is periodic if it has a discrete sample time (not continuous or constant) or is continuous with a fixed-step solver.
Length	W	The number of signal samples recorded in the associated Simulink.Timeseries object, i.e., the length of the arrays referenced by the object's Time and Data properties.

See Also Simulink.Timeseries

Simulink.Timeseries

Purpose Store data for any signal except mux or bus signal

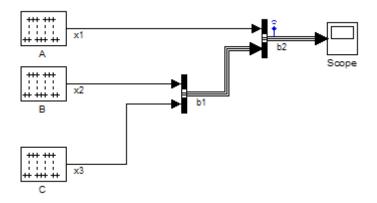
Description Simulink software creates instances of this class to store signal data that it logs for any signal except a mux or bus signal, which are stored in a Simulink.TsArray. See "Logging Signals" for more information. The MATLAB Time Series Tools can import and manipulate instances of this class, as described in Using Time Series Tools in the MATLAB Data Analysis documentation.

Properties

Name	Access	Description
Name	RW	Name of this signal log.
BlockPath	RW	Path of the block that output the signal logged in this signal log.
PortIndex	RW	Index of the output port that emitted the signal logged in this signal log.
SignalName	RW	Name of the signal logged in this signal log.
ParentName	RW	Name of the parent of the signal recorded in this log, if the signal is an element of a mux or a virtual bus; otherwise, the same as SignalName.
TimeInfo	RW	An object of Simulink.TimeInfo class that describes the time data in this log.
Time	RW	An array containing the simulation times at which signal data was logged.
Data	RW	An array containing the signal data.

See Also

"Importing and Exporting Data",


Simulink.TimeInfoSimulink.ModelDataLogs, Simulink.SubsysDataLogs, Simulink.ScopeDataLogs, Simulink.TsArray, who, whos, unpack

Purpose Store data for mux or bus signal

Description Simulink software creates instances of this class to contain the data that it logs for a mux or bus signal. Other types of signals are stored in a Simulink.Timeseries. See "Logging Signals" for more information.

Objects of the Simulink.TsArray class have a variable number of properties. The first property, called Name, specifies the log name of the logged signal. The remaining properties reference logs for the elements of the logged signal: Simulink.Timeseries objects for elementary signals and Simulink.TSArray objects for mux or bus signals. The name of each property is the log name of the corresponding signal.

For example, consider the following model.

This model specifies that Simulink software should log the values of the signal b2 during simulation. After simulation of this model, the MATLAB workspace contains a Simulink.ModelDataLogs object, named logsout, that contains a Simulink.TsArray object, named b2, that contains the logs for the elements of b2, i.e., for the elementary signal x1 and the bus signal b1. Entering the fully qualified name of the Simulink.TsArray object, i.e., logsout.b2, at the MATLAB command line reveals the structure of the signal log for this model.

>> logsout.b2

	Simulink.TsArray (unt	titled/Bus Crea	ator1):
	Name	Elements	Simulink Class
	x1	1	Timeseries
	b1	2	TsArray
	You can use either fully quito access the signal logs correxample, to access the amprexample, you could enter the >> data = logsout.b2	ntained by a Simu litudes logged for ne following at the	link.TsArray object. For signal x1 in the preceding
	<pre>>> logsout.unpack('ai data = x1.Data;</pre>	11');	
See Also	"Importing and Exporting Simulink.SubsysDataLogs Simulink.Timeseries,who	, Simulink.Scop	- ·

Model and Block Parameters

- "Model Parameters" on page 8-2
- "Common Block Parameters" on page 8-83
- "Block-Specific Parameters" on page 8-96
- "Mask Parameters" on page 8-218

Model Parameters

In this section ...

"About Model Parameters" on page 8-2

"Examples of Setting Model Parameters" on page 8-82

About Model Parameters

The following sections list parameters that you can set for Simulink models and blocks, using the set_param command.

This table lists and describes, in alphabetical order, parameters that describe a model. The table also includes model callback parameters (see "Using Callback Functions" in the Simulink User's Guide). The **Description** column indicates where you can set the value on a dialog box. For examples, see "Examples of Setting Model Parameters" on page 8-82.

Parameter values must be specified as quoted strings. The string contents depend on the parameter and can be numeric (scalar, vector, or matrix), a variable name, a filename, or a particular value. The **Values** column shows the type of value required, the possible values (separated with a vertical line), and the default value enclosed in braces.

Parameter	Description	Values
AbsTol	Specify the largest acceptable solver error, as the value of the measured state approaches zero.	<pre>string — {'auto'}</pre>
	Set by Absolute tolerance on the Solver pane of the Configuration Parameters dialog box.	

Model Parameters in Alphabetical Order

Parameter	Description	Values
AccelVerboseBuild	Controls the verbosity level during code generation for Simulink Accelerator mode, model reference Accelerator mode, and Rapid Accelerator mode.	<pre>string — {'off'} 'on'</pre>
	Set by Verbose accelerator builds on the Optimization pane of the Configuration Parameters dialog box.	
AlgebraicLoopMsg	Specifies diagnostic action to take when there is an algebraic loop.	string — 'none' {'warning'} 'error'
	Set by Algebraic loop on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
ArrayBoundsChecking	Select the diagnostic action to take when blocks write data to locations outside the memory allocated to them.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Array bounds exceeded on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ArtificialAlgebraic- LoopMsg	Specifies diagnostic action to take if algebraic loop minimization cannot be performed for a subsystem because an input port of that subsystem has direct feedthrough.	string — 'none' {'warning'} 'error'
	Set by Minimize algebraic loop on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
AssertControl	Enable model verification blocks in the current model either globally or locally. Set by Model Verification block enabling on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	<pre>string — {'UseLocalSettings'} 'EnableAll' 'DisableAll'</pre>
AutoInsertRateTranBlk	Specify whether Simulink software inserts hidden Rate Transition blocks between blocks that have different sample rates.	<pre>string — 'on' {'off'}</pre>
	Set by Automatically handle rate transition for data transfer on the Solver pane of the Configuration Parameters dialog box.	

Model Parameters	in	Alphabetical	Order	(Continued)
-------------------------	----	--------------	-------	-------------

Parameter	Description	Values
BlockDescription- StringDataTip	Specifies whether to display the user description string for a block as a data tip.	<pre>string — 'on' {'off'}</pre>
	Set by User Description String on the View > Block Data Tips Options menu of the Model Editor.	
BlockNameDataTip	Specifies whether to display the block name as a data tip. Set by Block Name on the View > Block Data Tips Options menu of the Model Editor.	<pre>string — 'on' {'off'}</pre>
BlockParametersDataTip	Specifies whether to display a block parameter in a data tip.	<pre>string — 'on' {'off'}</pre>
	Set by Parameter Names and Values on the View > Block Data Tips Options menu of the Model Editor.	
BlockPriorityViolationMsg	Select the diagnostic action to take if Simulink software detects a block priority specification error.	string — {'warning'} 'error'
	Set by Block priority violation on the Solver Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
BlockReduction	Enables block reduction optimization.	<pre>string — {'on'} 'off'</pre>
	Set by Block reduction on the Optimization pane of the Configuration Parameters dialog box.	
BlockReductionOpt	See BlockReduction parameter for more information.	
BooleanDataType	Enable Boolean mode.	string — {'on'} 'off'
	Set by Implement logic signals as boolean data (vs. double) on the Optimization pane of the Configuration Parameters dialog box.	
BrowserLookUnderMasks	Show masked subsystems in the Model Browser.	<pre>string — 'on' {'off'}</pre>
	Set by Show Masked Subsystems on the View > Model Browser Options menu of the Model Editor.	
BrowserShowLibraryLinks	Show library links in the Model Browser.	<pre>string — 'on' {'off'}</pre>
	Set by Show Library Links on the View > Model Browser Options menu of the Model Editor.	
BufferReusableBoundary	For internal use.	

Parameter	Description	Values
BufferReuse	Enable reuse of block I/O buffers.	string — {'on'} 'off'
	Set by Reuse block outputs on the Optimization pane of the Configuration Parameters dialog box.	
BusObjectLabelMismatch	Select the diagnostic action to take if the name of a bus element does not match the name specified by the corresponding bus object.	string — 'none' {'warning'} 'error'
	Set by Element name mismatch on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
CheckExecutionContext- PreStartOutputMsg	Specify whether to display a warning if Simulink software detects potential initial output differences from previous releases.	<pre>string — 'on' {'off'}</pre>
	Set by Check preactivation output of execution context on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
CheckExecutionContext- RuntimeOutputMsg	Specify whether to display a warning if Simulink software detects potential output differences from previous releases.	<pre>string — 'on' {'off'}</pre>
	Set by Check runtime output of execution context on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
CheckForMatrixSingularity	See CheckMatrixSingularityMsg parameter for more information.	
CheckMatrixSingularityMsg	Select the diagnostic action to take if the Product block detects a singular matrix while inverting one of its inputs in matrix multiplication mode.	string — {'none'} 'warning' 'error'
	Set by Division by singular matrix on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
CheckModelReference- TargetMessage	Select the diagnostic action to take if Simulink software detects a target that needs to be rebuilt.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Never rebuild targets diagnostic on the Model Referencing pane of the Configuration Parameters dialog box.	
CheckSSInitialOutputMsg	Enable checking for undefined initial subsystem output.	string — { 'on ' } 'off'
	Set by Check undefined subsystem initial output on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
CloseFcn	Set the close callback function, which can be a command or a variable.	string — { ' ' }
	Set by Model close function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	

Parameter	Description	Values
ConditionallyExecute- Inputs	Enable conditional input branch execution optimization.	<pre>string — {'on'} 'off'</pre>
	Set by Conditional input branch execution on the Optimization pane of the Configuration Parameters dialog box.	
ConfigurationManager	Configuration manager for this model.	<pre>string — {'None'}</pre>
ConsecutiveZCsStepRelTol	Relative tolerance associated with the time difference between zero-crossing events.	string — { '10*128*eps ' }
	Set by Time tolerance on the Solver pane of the Configuration Parameters dialog box.	
ConsistencyChecking	Select the diagnostic action to take if S-functions have continuous sample times, but do not produce consistent results when executed multiple times.	string — {'none'} 'warning' 'error'
	Set by Solver data inconsistency on the Solver Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
CovCompData	If CovHTMLOptions is set to off and CovCumulativeReport is set to on, this parameter specifies cvdata objects containing additional model coverage data to include in the model coverage report.	string — {''}
	Set by Additional data to include in report (cvdata objects) on the Report pane of the Coverage Settings dialog box.	
CovCumulativeReport	If CovHTMLReporting is set to on, this parameter allows the CovCumulativeReport and CovCompData parameters to specify the number of coverage results displayed in the model coverage report.	<pre>string — 'on' {'Off'}</pre>
	If set to on, the Simulink Verification and Validation software displays the coverage results from successive simulations in the report. If set to off, the Simulink Verification and Validation software displays the coverage results for the last simulation in the report.	
	Set by the radial buttons Cumulative runs (on) / Last run (off) on the Report pane of the Coverage Settings dialog box.	

Parameter	Description	Values
CovCumulativeVarName	If CovSaveCumulativeTo- WorkspaceVar is set to on, the Simulink Verification and Validation software saves the results of successive simulations in the workspace variable specified by this property.	<pre>string — {'covCumulativeData'}</pre>
	Set by cvdata object name below the selected Save cumulative results in workspace variable check box on the Results pane of the Coverage Settings dialog box.	
CovHTMLOptions	If CovHTMLReporting is set to on, use this parameter to select from a set of display options for the resulting model coverage report. On the Report pane of the Coverage Settings dialog box, select Settings to open a dialog box for selecting these options.	<pre>String of appended character sets separated by a space. HTML options are enabled or disabled through a value of 1 or 0, respectively, in the following character sets (default values shown): • '-aTS=1' Include each test in the model summary • '-bRG=1' Produce bar graphs in the model summary • '-bTC=0' Use two color bar graphs (red, blue) • '-hTR=0'</pre>

Parameter	Description	Values
		 Display hit/count ratio in the model summary '-nFC=0' Do not report fully covered model objects '-scm=1' Include cyclomatic complexity numbers in summary '-bcm=1' Include cyclomatic complexity numbers in block details
CovHTMLReporting	Set to on to tell the Simulink Verification and Validation software to create an HTML report containing the coverage data in the MATLAB Help browser at the end of simulation. Set by Generate HTML report on the Report pane of the Coverage Settings dialog box.	<pre>string — {'on'} 'off'</pre>

Parameter	Description	Values
CovMetricSettings	Selects coverage metrics for a coverage report.Coverage metrics are enabled by selecting the check boxes for individual coverages in the Coverage metrics section of the Coverage metrics section of the Coverage pane of the Coverage Settings dialog box.Options 's' and 'w' are enabled by selecting Treat Simulink Logic blocks as short-circuited and Warn when unsupported blocks exist in model, respectively, on the Options pane of the Coverage Settings dialog box.Option 'e' is disabled by selecting Display coverage results using model coloring on the Results pane of the Coverage Settings dialog box.	<pre>string — { 'dw' } Each order-independent character in the string enables a coverage metric or option as follows: 'd' Enable decision coverage 'c' Enable condition coverage 'm' Enable MCDC coverage 't' Enable lookup table coverage 'r' Enable signal range coverage</pre>
		 's' Treat Simulink logic blocks as short-circuited 'w' Warn when unsupported blocks exist in model 'e' Eliminate model coloring for coverage results

Parameter	Description	Values	
CovModelRefEnable	If CovModelRefEnable is set to on or all, the Simulink Verification and Validation software generates coverage data for the entire model.	<pre>string — 'on' {'off'} 'all' 'filtered'</pre>	
	Set by Coverage for referenced models on the Coverage pane of the Coverage Settings dialog box.		
CovModelRefExcluded	If CovModelRefEnable is set to filtered, this parameter stores a comma-separated list of referenced models for which coverage is disabled.	string — { ' ' }	
	Set by selecting Coverage for referenced models on the Coverage pane of the Coverage Settings dialog box and then clicking Select Models .		
CovNameIncrementing	If CovSaveSingleToWorkspace- Var is set to on, setting CovNameIncrementing to on causes the Simulink Verification and Validation software to append numerals to the workspace variable names for results so that earlier results are not overwritten (for example, covdata1, covdata2, etc.)	<pre>string — 'on' {'off'}</pre>	
	Set by Increment variable name with each simulation		

Model Parameters	in	Alphabetical Orde	er (Continued)
-------------------------	----	--------------------------	----------------

Parameter	Description	Values
	below the selected Save last run in workspace variable check box on the Results pane of the Coverage Settings dialog box.	
CovPath	Model path of the subsystem for which the Simulink Verification and Validation software gathers and reports coverage data.	string — { ' / ' }
	Set by selecting Coverage for this model: <model name=""></model> on the Coverage pane of the Coverage Settings dialog box and then clicking Select Subsystem .	
CovReportOnPause	Specifies that when you pause during simulation, the model coverage report appears in updated form, with coverage results up to the current pause or stop time.	<pre>string — {'on'} 'off'</pre>
	Set by Update results on pause on the Results pane of the Coverage Settings dialog box.	

Parameter	Description	Values
CovSaveCumulativeTo- WorkspaceVar	If set to on, the Simulink Verification and Validation software accumulates and saves the results of successive simulations in the workspace variable specified by CovCumulativeVarName.	string — {'on'} 'off'
	Set by Save cumulative results in workspace variable on the Results pane of the Coverage Settings dialog box.	
CovSaveName	If CovSaveSingleToWorkspace- Var is set to on, the Simulink Verification and Validation software saves the results of the last simulation run in the workspace variable specified by this property.	string — {'covdata'}
	Set by cvdata object name below the selected Save last run in workspace variable check box on the Results pane of the Coverage Settings dialog box.	

Parameter	Description	Values
CovSaveSingleTo- WorkspaceVar	If set to on, the Simulink Verification and Validation software saves the results of the last simulation run in the workspace variable specified by CovSaveName.	<pre>string — {'on'} 'off'</pre>
	Set by Save last run in workspace variable on the Results pane of the Coverage Settings dialog box.	
Created	Date and time model was created.	string
	Set by Created on on the History pane of the Model Properties dialog box.	
	See "Model History Controls" in the Simulink User's Guide for more information.	
Creator	Name of model creator.	string
	Set by Created by on the History pane of the Model Properties dialog box.	
	See "Model History Controls" in the Simulink User's Guide for more information.	
CurrentBlock	For internal use.	
CurrentOutputPort	For internal use.	

Parameter	Description	Values
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
Decimation	Specify that Simulink software output only every N points, where N is the specified decimation factor.	string — { '1'}
	Set by Decimation on the Data Import/Export pane of the Configuration Parameters dialog box.	
DeleteChildFcn	Delete child callback function.	string — { ' ' }
	Created on the Callbacks pane of the Block Properties dialog box.	
	See "Creating Block Callback Functions" in the Simulink User's Guide for more information.	
Description	Description of this model.	string — { ' ' }
	Set by Model description on the Description pane of the Model Properties dialog box.	
Dirty	If the parameter is on, the model has unsaved changes.	<pre>string — 'on' {'off'}</pre>

Parameter	Description	Values
DiscreteInherit- ContinuousMsg	Specifies diagnostic action to take when a Unit Delay block inherits a continuous sample time.	string — 'none' {'warning'} 'error'
	Set by Discrete used as continuous on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.	
DisplayBdSearchResults	For internal use.	
DisplayBlockIO	For internal use.	
DisplayCallgraph- Dominators	For internal use	
DisplayCompileStats	For internal use.	
DisplayCondInputTree	For internal use.	
DisplayCondStIdTree	For internal use.	
DisplayErrorDirections	For internal use.	
DisplayInvisibleSources	For internal use.	
DisplaySortedLists	For internal use.	
DisplayVectorAnd- FunctionCounts	For internal use.	
DisplayVect- PropagationResults	For internal use.	
Echo	For internal use.	
EnableOverflowDetection	For internal use.	

Parameter	Description	Values
ExecutionContextIcon	Toggles display of execution context icons on this model's block diagram.	<pre>string — 'on' {'off'}</pre>
	Set by Execution Context Indicator on the Format > Block Displays menu of the Model Editor.	
ExpressionFolding	Enables expression folding.	<pre>string — {'on'} 'off'</pre>
	Set by Eliminate superfluous local variables (Expression folding) on the Optimization pane of the Configuration Parameters dialog box.	
ExternalInput	Names of MATLAB workspace variables used to designate data and times to be loaded from the workspace.	<pre>scalar or vector — {'[t, u]'}</pre>
	Set by the Input field on the Data Import/Export pane of the Configuration Parameters dialog box.	
ExtMode	Parameters whose names start with ExtMode apply to Simulink External Mode.	
	See External Mode in the Real-Time Workshop User's Guide for more information.	

Parameter	Description	Values
ExtrapolationOrder	Extrapolation order of the ode14x implicit fixed-step solver.	integer — 1 2 3 {4}
	Set by Extrapolation order on the Solver pane of the Configuration Parameters dialog box.	
FcnCallInpInside- ContextMsg	Specifies diagnostic action to take when Simulink software must compute any function-call subsystem inputs directly or indirectly during execution of a call to a function-call subsystem.	string — {'Use local settings'} 'Enable All' 'Disable All'
	Set by Context-dependent inputs on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
FileName	For internal use.	
FinalStateName	Names of final states to save to the workspace after a simulation ends.	<pre>string — {'xFinal'}</pre>
	Set by the Final states field on the Data Import/Export pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
FixedStep	Fixed-step size.	<pre>string — { 'auto' }</pre>
	Set by Fixed step size (fundamental sample time) on the Solver pane of the Configuration Parameters dialog box.	
FixPtInfo	For internal use.	
FollowLinksWhen- OpeningFromGotoBlocks	Specifies whether to search for Goto tags in libraries referenced by the model when opening the From block dialog box.	<pre>string — 'on' {'off'}</pre>
ForceArrayBoundsChecking	For internal use.	
ForceConsistencyChecking	For internal use.	
ForceModelCoverage	For internal use.	
ForwardingTable	Specifies the forwarding table for this library.	<pre>string — {{'old_path_1', 'new_path_1'}</pre>
	See "Forwarding Tables" in the Simulink User's Guide for more information.	{'old_path_n', 'new_path_n'}}
ForwardingTableString	For internal use.	
GridSpacing	Spacing of the Model Editor grid in pixels.	integer — {20}
Handle	Handle of the block diagram for this model.	double
HiliteAncestors	For internal use.	

Parameter	Description	Values
HiliteFcnCallInp- InsideContext	Enables highlighting of Function-Call Subsystem blocks when one or more inputs depend on source blocks that appear in their own calling context.	<pre>string — 'on' {'off'}</pre>
IgnoreBidirectionalLines	For internal use.	
InheritedTsInSrcMsg	Message behavior when the sample time is inherited.	string — 'none' {'warning'} 'error'
	Set by Source block specifies -1 sample time on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.	
InitFcn	Function that is called when this model is first compiled for simulation.	string — { ' ' }
	Set by Model initialization function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	
InitialState	Initial state name or values.	variable or vector —
	Set by the Initial state field on the Data Import/Export pane of the Configuration Parameters dialog box.	{'xInitial'}

Model Parameters	in	Alphabetical	Order	(Continued)
-------------------------	----	--------------	-------	-------------

Parameter	Description	Values
InitialStep	Initial step size.	<pre>string — { 'auto ' }</pre>
	Set by Initial step size on the Solver pane of the Configuration Parameters dialog box.	
InlineParams	Enable inline of parameters in generated code.	<pre>string — 'on' {'off'}</pre>
	Set by Inline parameters on the Optimization pane of the Configuration Parameters dialog box.	
InsertRTBMode	Control whether the Rate Transition block parameter Ensure deterministic data transfer (maximum delay) is set for auto-inserted Rate Transition blocks.	string — 'Always' {'Whenever possible'} 'Never (minimum delay)'
	Set by Deterministic data transfer on the Solver pane of the Configuration Parameters dialog box.	
InspectSignalLogs	Enable Simulink software to display logged signals in the MATLAB Time Series Tools viewer at the end of a simulation or whenever you pause the simulation.	<pre>string — 'on' {'off'}</pre>
	Set by Inspect signal logs when simulation is paused/stopped on the Data Import/Export pane of the	

Parameter	Description	Values
	Configuration Parameters dialog box.	
Int32ToFloatConvMsg	Specify message behavior when a 32-bit integer is converted to a single-precision float.	string — 'none' {'warning'}
	Set by 32-bit integer to single precision float conversion on the Type Conversion Diagnostics pane of the Configuration Parameters dialog box.	
IntegerOverflowMsg	Specify message behavior when an integer overflow occurs.	string — 'none' {'warning'} 'error'
	Set by Detect overflow in the Signals section on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
InvalidFcnCallConnMsg	Specify message behavior when an invalid function-call connection exists.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Invalid function-call connection on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
Jacobian	For internal use.	
LastModifiedBy	User name of the person who last modified this model.	string
LastModifiedDate	Date used for version control.	string

Parameter	Description	Values
LibraryLinkDisplay	Shows which blocks in the model are linked or have disabled or modified links.	string — {'none'} 'user' 'all'
	Set by Library Link Display on the Format menu of the Model Editor.	
LibraryType	For internal use.	
LifeSpan	Specify how long (in days) an application that contains blocks depending on elapsed or absolute time should be able to execute before timer overflow.	string — {'inf'} any positive, nonzero scalar value
	Set by Application lifespan (days) on the Optimization pane of the Configuration Parameters dialog box.	
LimitDataPoints	Specify that the number of data points exported to the MATLAB workspace be limited to the number specified.	<pre>string — {'on'} 'off'</pre>
	Set by the Limit data points to last check box on the Data Import/Export pane of the Configuration Parameters dialog box.	
LinearizationMsg	For internal use.	
Lines	For internal use.	

Parameter	Description	Values
LoadExternalInput	Load input from workspace.	<pre>string — 'on' {'off'}</pre>
	Set by the Input check box on the Data Import/Export pane of the Configuration Parameters dialog box.	
LoadInitialState	Load initial state from workspace.	<pre>string — 'on' {'off'}</pre>
	Set by the Initial state check box on the Data Import/Export pane of the Configuration Parameters dialog box.	
Location	For internal use.	
Lock	Lock or unlock a block library. Setting this parameter to on prevents a user from inadvertently changing a library.	<pre>string — 'on' {'off'}</pre>
MaxConsecutiveMinStep	Maximum number of minimum step size violations allowed during simulation. This option appears when the solver type is Variable-step and the solver is an ode one.	string — {'1'}
	Set by Number of consecutive min steps on the Solver pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
MaxConsecutiveZCs	Maximum number of consecutive zero crossings allowed during simulation. This option appears when the solver type is Variable-step and the solver is an ode one.	string — {'1000'}
	Set by Number of consecutive zero crossings on the Solver pane of the Configuration Parameters dialog box.	
MaxConsecutiveZCsMsg	Specifies diagnostic action to take when Simulink software detects the maximum number of consecutive zero crossings allowed. This option appears when the solver type is Variable-step and the solver is an ode one.	string — 'none' 'warning' {'error'}
	Set by Consecutive zero crossings violation on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
MaxDataPoints	Maximum number of output data points to save.	string — { '1000 ' }
	Set by the Limit data points to last field on the Data Import/Export pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
MaxNumMinSteps	Maximum number of times the solver uses the minimum step size.	string — { ' - 1 ' }
MaxOrder	Maximum order for ode15s. Set by Maximum order on the Solver pane of the Configuration Parameters dialog box.	string — '1' '2' '3' '4' {'5'}
MaxStep	Maximum step size. Set by Max step size on the Solver pane of the Configuration Parameters dialog box.	<pre>string — {'auto'}</pre>
MdlSubVersion	For internal use	
MergeDetectMultiDriving- BlocksExec	Select the diagnostic action to take when the software detects a Merge block with more than one driving block executing at the same time step.	string — {'none'} 'warning' 'error'
	Set by Detect multiple driving blocks executing at the same time step on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
MinMaxOverflowArchiveData	For internal use	
MinMaxOverflowArchiveMode	Logging type for fixed-point logging.	<pre>string — {'Overwrite'} 'Merge'</pre>
	Set by Overwrite or merge results in the Fixed-Point Tool.	

Model Parameters	in	Alphabetical	Order	(Continued)
-------------------------	----	--------------	-------	-------------

Parameter	Description	Values
MinMaxOverflowLogging	Setting for fixed-point logging.	string —
	Set by Logging mode in the Fixed-Point Tool.	{'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'
MinStep	Minimum step size for the solver.	<pre>string — {'auto'}</pre>
	Set by Min step size on the Solver pane of the Configuration Parameters dialog box.	
MinStepSizeMsg	Message shown when minimum step size is violated.	<pre>string — {'warning'} 'error'</pre>
	Set by Min step size violation on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
ModelBrowserVisibility	Show the Model Browser.	<pre>string — 'on' {'off'}</pre>
	Set by Model Browser on the View > Model Browser Options menu of the Model Editor.	
ModelBrowserWidth	Width of the Model Browser pane in the model window. To display the Model Browser pane, see the ModelBrowserVisibility parameter.	integer — {200}
ModelDataFile	For internal use.	string — { ' ' }

Parameter	Description	Values
ModelDependencies	List of model dependencies.	string — { ' ' }
	Set by Model dependencies on the Model Referencing pane of the Configuration Parameters dialog box.	
ModelReferenceCS- MismatchMessage	Message shown when there is a model configuration mismatch.	string — {'none'} 'warning' 'error'
	Set by Model configuration mismatch on the Model Referencing Diagnostics pane of the Configuration Parameters dialog box.	
ModelReferenceData- LoggingMessage	Message shown when there is unsupported data logging.	string — 'none' {'warning'} 'error'
	Set by Unsupported data logging on the Model Referencing Diagnostics pane of the Configuration Parameters dialog box.	
ModelReferenceExtra- NoncontSigs	Specifies diagnostic action to take when a discrete signal appears to pass through a Model block to the input of a block with continuous states.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Extraneous discrete derivative signals on the Solver Diagnostics pane of the Configuration Parameters dialog box.	

Model Parameters	in Alphabetical Order	(Continued)
-------------------------	-----------------------	-------------

Parameter	Description	Values
ModelReferenceIO- MismatchMessage	Message shown when there is a port and parameter mismatch.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Port and parameter mismatch on the Model Referencing Diagnostics pane of the Configuration Parameters dialog box.	
ModelReferenceIOMsg	Message shown when there is an invalid root Inport or Outport block connection.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Invalid root Inport/Outport block connection on the Model Referencing Diagnostics pane of the Configuration Parameters dialog box.	
ModelReferenceMin- AlgLoopOccurrences	Toggles the minimization of algebraic loop occurrences.	<pre>string — 'on' {'off'}</pre>
	Set by Minimize algebraic loop occurrences on the Model Referencing pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ModelReferenceNum- InstancesAllowed	Total number of model reference instances allowed per top model.	string — 'Zero' 'Single' {'Multi'}
	Set by Total number of instances allowed per top model on the Model Referencing pane of the Configuration Parameters dialog box.	
ModelReferencePass- RootInputsByReference	Toggles the passing of scalar root inputs by value.	<pre>string — {'on'} 'off'</pre>
	Set by Pass scalar root inputs by value on the Model Referencing pane of the Configuration Parameters dialog box.	
ModelReferenceSim- TargetVerbose	This parameter is deprecated and has no effect. Use AccelVerboseBuild instead.	
ModelReferenceSymbol- NameMessage	For internal use.	
ModelReferenceTargetType	For internal use.	
ModelReferenceVersion- MismatchMessage	Message shown when there is a model block version mismatch.	string — {'none'} 'warning' 'error'
	Set by Model block version mismatch on the Model Referencing Diagnostics pane of the Configuration Parameters dialog box.	
ModelVersion	Version number of model.	string — { '1.1 ' }

Model Parameters	in in	Alphabetical	Order	(Continued)
-------------------------	-------	--------------	-------	-------------

Parameter	Description	Values
ModelVersionFormat	Format of model's version number.	<pre>string — {'1.%<autoincrement:< pre=""></autoincrement:<></pre>
	Set by Model version on the History pane of the Model Properties dialog box.	0>'}
	See "Model History Controls" in the Simulink User's Guide for more information.	
ModelWorkspace	References this model's model workspace object.	an instance of the Simulink.ModelWorkspace class
ModifiedBy	Last person to modify this model.	string
ModifiedByFormat	Format for the display of last modifier.	<pre>string — {'%<auto>'}</auto></pre>
	Set by Last saved by on the History pane of the Model Properties dialog box.	
	See "Model History Controls" in the Simulink User's Guide for more information.	
	Can also be set by Last saved by on the Model history field on the History pane of the Model Explorer.	
ModifiedComment	Field for user comments.	string — { ' ' }

Model Parameters	in Alphabetical Order	(Continued)
-------------------------	-----------------------	-------------

Parameter	Description	Values
ModifiedDate	Date of last model modification.	string
ModifiedDateFormat	Format of modified date.	<pre>string — {'%<auto>'}</auto></pre>
	Set by Last saved on on the History pane of the Model Properties dialog box.	
	See "Model History Controls" in the Simulink User's Guide for more information.	
ModifiedHistory	Area for keeping notes about the history of the model.	string — { ' ' }
	Set by the Model history field on the History pane of the Model Properties dialog box.	
	See "Model History Controls" in the Simulink User's Guide for more information.	
	Can also be set by the Model history field on the History pane of the Model Explorer.	

Parameter	Description	Values
MultiTaskCondExecSysMsg	Select the diagnostic action to take if Simulink software detects a subsystem that might cause data corruption or nondeterministic behavior.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Multitask conditionally executed subsystem on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.	
MultiTaskDSMMsg	Specifies diagnostic action to take when one task reads data from a Data Store Memory block to which another task writes data.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Multitask data store on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
MultiTaskRateTransMsg	Specifies diagnostic action to take when an invalid rate transition takes place between two blocks operating in single-tasking mode.	string — 'warning' {'error'}
	Set by Multitask rate transition on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.	
Name	Model name.	string

Parameter	Description	Values
NumberNewtonIterations	Number of Newton's method iterations performed by the ode14x implicit fixed-step solver.	integer — {1}
	Set by Number Newton's iterations on the Solver pane of the Configuration Parameters dialog box.	
ObjectParameters	Names and attributes of model parameters.	structure
Open	For internal use.	
OptimizeBlockIOStorage	Enables signal storage reuse optimization.	<pre>string — {'on'} 'off'</pre>
	Set by Signal storage reuse on the Optimization pane of the Configuration Parameters dialog box.	
OutputOption	Time step output options for variable-step solvers.	string — 'AdditionalOutputTimes'
	Set by Output options on the Data Import/Export pane of the Configuration Parameters dialog box.	{'RefineOutputTimes'} 'SpecifiedOutputTimes'
OutputSaveName	Workspace variable to store the model outputs.	<pre>string — { 'yout ' }</pre>
	Set by the Output field on the Data Import/Export pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
OutputTimes	Output times set when Output options on the Data Import/Export pane of the Configuration Parameters dialog box is set to Produce additional output.	string — {'[]'}
	Set by Output times on the Data Import/Export pane of the Configuration Parameters dialog box.	
PaperOrientation	Printing paper orientation.	string — 'portrait' {'landscape'} 'rotated'
PaperPosition	When PaperPositionMode is set to manual, this parameter determines the position and size of a diagram on paper and the size of the diagram exported as a graphic file in the units specified by PaperUnits.	vector — [left, bottom, width, height]
PaperPositionMode	 Paper position mode. auto When printing, Simulink software sizes the diagram to fit the printed page. When exporting a diagram as a graphic image, Simulink software sizes the exported image to be the same size as the diagram's normal size on screen. manual 	string — {'auto'} 'manual' 'tiled'

Parameter	Description	Values
	 When printing, Simulink software positions and sizes the diagram on the page as indicated by PaperPosition. When exporting a diagram as a graphic image, Simulink software sizes the exported graphic to have the height and width specified by PaperPosition. tiled Enables tiled printing. See "Tiled Printing" in the Simulink User's Guide for more information. 	
PaperSize	Size of PaperType in PaperUnits.	<pre>vector — [width height] (read only)</pre>
PaperType	Printing paper type.	<pre>string — 'usletter' 'uslegal' 'a0' 'a1' 'a2' 'a3' 'a4' 'a5' 'b0' 'b1' 'b2' 'b3' 'b4' 'b5' 'arch-A' 'arch-B' 'arch-C' 'arch-D' 'arch-E' 'A' 'B' 'C' 'D' 'E' 'tabloid'</pre>
PaperUnits	Printing paper size units.	<pre>string — 'normalized' {'inches'} 'centimeters' 'points'</pre>

Parameter	Description	Values
ParameterArgumentNames	List of parameters used as arguments when this model is called as a reference.	string — { ' ' }
	Set by Model arguments (for referencing this model) in the Model Workspace pane of the Model Explorer.	
ParameterDowncastMsg	Specifies diagnostic action to take when a parameter downcast occurs during simulation.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Detect downcast on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
ParameterOverflowMsg	Specifies diagnostic action to take when a parameter overflow occurs during simulation.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by Detect overflow on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
ParameterPrecisionLossMsg	Specifies diagnostic action to take when parameter precision loss occurs during simulation.	string — 'none' {'warning'} 'error'
	Set by Detect precision loss on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ParameterTunabilityLossMsg	Specifies diagnostic action to take when a parameter cannot be tuned because it uses unsupported functions or operators.	string — 'none' {'warning'} 'error'
	Set by Detect loss of tunability on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
ParameterUnderflowMsg	Specifies diagnostic action to take when a parameter underflow occurs during simulation.	string — {'none'} 'warning' 'error'
	Set by Detect underflow on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
ParamWorkspaceSource	For internal use.	
Parent	Name of the model or subsystem that owns this object. The value of this parameter for a model is an empty string.	string — {''}

Parameter	Description	Values
PositivePriorityOrder	Choose the appropriate priority ordering for the real-time system targeted by this model. The Real-Time Workshop software uses this information to implement asynchronous data transfers.	<pre>string — 'on' {'off'}</pre>
	Set by Higher priority value indicates higher task priority on the Solver pane of the Configuration Parameters dialog box.	
PostLoadFcn	Function invoked just after this model is loaded.	string — { ' ' }
	Set by Model post-load function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	
PostSaveFcn	Function invoked just after this model is saved to disk.	string — { ' ' }
	Set by Model post-save function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	

Parameter	Description	Values
PreLoadFcn	Preload callback.	string — { ' ' }
	Set by Model pre-load function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	
PreSaveFcn	Function invoked just before this model is saved to disk.	string — { ' ' }
	Set by Model pre-save function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	
ProdBitPerChar	Describes the length in bits of the C char data type supported by the production hardware to be used by this model.	integer — {8}
	Set by char in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ProdBitPerInt	Describes the length in bits of the C int data type supported by the production hardware to be used by this model.	integer — {32}
	Set by int in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	
ProdBitPerLong	Describes the length in bits of the C long data type supported by the production hardware to be used by this model.	integer — {32}
	Set by long in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	
ProdBitPerShort	Describes the length in bits of the C short data type supported by the production hardware to be used by this model.	integer — {16}
	Set by short in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ProdEndianess	Describes the significance of the first byte of a data word of the production hardware to be used by this model.	string — {'Unspecified'} 'LittleEndian' 'BigEndian'
	Set by Byte ordering in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	
ProdEqTarget	Specifies that the hardware used to test the code generated from this model is the same as the production hardware or has the same characteristics.	<pre>string — {'on'} 'off'</pre>
	Set by None in the Emulation hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	
ProdHWDeviceType	Predefined hardware device to specify the C language constraints for your microprocessor.	<pre>string — {'32-bit Generic'}</pre>
	Set by Device type in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	

Model Parameters	in Alphabetical Order	(Continued)
-------------------------	-----------------------	-------------

Parameter	Description	Values
ProdIntDivRoundTo	Describes how the C compiler that will create production code for this model rounds the result of dividing one signed integer by another to produce a signed integer quotient.	string — 'Floor' 'Zero' {'Undefined'}
	Set by Signed integer division rounds to in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	
ProdShiftRightIntArith	Describes whether the C compiler that will create production code for this model implements a signed integer right shift as an arithmetic right shift.	<pre>string — {'on'} 'off'</pre>
	Set by Shift right on a signed integer as arithmetic shift in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ProdWordSize	Describes the word length in bits of the production hardware to be used by this model.	integer — {32}
	Set by native word size in the Embedded hardware section on the Hardware Implementation pane of the Configuration Parameters dialog box.	
Profile	Enables the simulation profiler for this model.	<pre>string — 'on' {'off'}</pre>
	Set by Profiler on the Tools menu of the Model Editor.	
ReadBeforeWriteMsg	Specifies diagnostic action to take when the model attempts to read data from a data store before it has stored data at the current time step.	string — {'UseLocalSettings'} 'DisableAll' 'EnableAllAsWarning' 'EnableAllAsError'
	Set by Detect read before write on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
RecordCoverage	A value of on causes Simulink software to gather and report model coverage data during simulation. The format of this report is controlled by the values of the following parameters:	<pre>string — 'on' {'off'}</pre>
	CovCompData	
	CovCumulativeReport	
	CovCumulativeVarName	
	CovHTMLOptions	
	CovHTMLReporting	
	CovMetricSettings	
	CovModelRefEnable	
	CovModelRefExcluded	
	CovNameIncrementing	
	CovPath	
	CovReportOnPause	
	CovSaveCumulativeToWork- SpaceVar	
	CovSaveName	
	CovSaveSingleToWorkspace- Var	
	If the value is off, no model coverage data is collected or reported and the preceding coverage report parameters have no effect.	

Model Parameters	in	Alphabetical Orde	er (Continued)
-------------------------	----	--------------------------	----------------

Parameter	Description	Values
	Set by Coverage for this model: <model name=""></model> on the Coverage pane of the Coverage Settings dialog box.	
Refine	Refine factor.	string — { '1 ' }
	Set by Refine factor on the Data Import/Export pane of the Configuration Parameters dialog box.	
RelTol	Relative error tolerance.	string — { '1e-3 ' }
	Set by Relative tolerance on the Solver pane of the Configuration Parameters dialog box.	
ReportName	Name of the associated file for the Report Generator.	<pre>string — {'simulink-default.rpt'}</pre>
ReqHilite	Highlights all the blocks in the Simulink diagram that have requirements associated with them.	<pre>string — 'on' {'off'}</pre>
	Set by Highlight model on the Tools > Requirements menu of the Model Editor.	
RequirementInfo	For internal use.	

Parameter	Description	Values
RootOutportRequire- BusObject	Specifies diagnostic action to take when a bus enters a root model Outport block for which a bus object has not been specified.	string — 'none' {'warning'} 'error'
	Set by Unspecified bus object at root Outport block on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
RTPrefix	Specifies diagnostic action to take when Simulink software encounters an object name that begins with rt.	<pre>string — 'none' 'warning' {'error'}</pre>
	Set by "rt" prefix for identifiers on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
RTW	See the Real-Time Workshop documentation for more information on parameters whose names begin with RTW.	
SampleTimeAnnotations	Set by Annotations on the Format > Sample Time Display menu of the Model Editor.	<pre>string — 'on' {'off'}</pre>
SampleTimeColors	Set by Colors on the Format > Sample Time Display menu of the Model Editor.	<pre>string — 'on' {'off'}</pre>

Parameter	Description	Values
SampleTimeConstraint	This option appears when the solver type is Fixed-step.	<pre>string — {'Unconstrained'} 'STIndependent' </pre>
	Set by Periodic sample time constraint on the Solver pane of the Configuration Parameters dialog box.	'Specified'
SampleTimeProperty	Specifies and assigns priorities to the sample times implemented by the model. This option appears when Periodic sample time constraint is set to Specified.	Structure containing the fields SampleTime, Offset, and Priority
	Set by Sample time properties on the Solver pane of the Configuration Parameters dialog box.	
SavedCharacterEncoding	Specifies the character set used to encode this model. See the slCharacterEncoding command for more information.	string
SaveDefaultBlockParams	For internal use.	
SaveFinalState	Save final states to workspace.	<pre>string — 'on' {'off'}</pre>
	Set by the Final states check box on the Data Import/Export pane of the Configuration Parameters dialog box.	

Model Parameters	; in	Alphabetical	Order	(Continued)
-------------------------	------	--------------	-------	-------------

Parameter	Description	Values
SaveFormat	Format used to save data to the MATLAB workspace. Set by Format on the Data Import/Export pane of the Configuration Parameters dialog box.	string — {'Array'} 'Structure' 'StructureWithTime'
SaveOutput	Save simulation output to workspace.	<pre>string — {'on'} 'off'</pre>
	Set by the Output check box on the Data Import/Export pane of the Configuration Parameters dialog box.	
SaveState	Save states to workspace. Set by the States check box on the Data Import/Export pane of the Configuration Parameters dialog box.	<pre>string — 'on' {'off'}</pre>
SaveTime	Save simulation time to workspace.	<pre>string — {'on'} 'off'</pre>
	Set by the Time check box on the Data Import/Export pane of the Configuration Parameters dialog box.	

Model Parameters in A	Alphabetical Ord	ler (Continued)
-----------------------	------------------	-----------------

Parameter	Description	Values
SaveWithDisabledLinksMsg	Specifies diagnostic action to take when saving a block diagram having disabled library links.	string — 'none' {'warning'} 'error'
	Set by Block diagram contains disabled library links on the Saving Diagnostics pane of the Configuration Parameters dialog box.	
SaveWithParameterized- LinksMsg	Specifies diagnostic action to take when saving a block diagram having parameterized library links.	string — 'none' {'warning'} 'error'
	Set by Block diagram contains parameterized library links on the Saving Diagnostics pane of the Configuration Parameters dialog box.	
ScreenColor	Background color of the model window.	string — 'black' {'white'} 'red'
	Set by Screen Color on the Format menu of the Model Editor.	'green' 'blue' 'cyan' 'magenta' 'yellow' 'gray' 'lightBlue' 'orange' 'darkGreen' [r,g,b,a] where r, g, b, and a are the red, green, blue, and alpha values of the color normalized to the range 0.0 to 1.0. The alpha value is ignored.
Scrollbar0ffset	For internal use.	

Parameter	Description	Values
SFcnCompatibilityMsg	See SfunCompatibilityCheckMsg parameter for more information.	
SFSimEcho	Enables output to appear in the MATLAB Command Window during simulation of a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	<pre>string — {'on'} 'off'</pre>
	Set by Echo expressions without semicolons on the Simulation Target pane of the Configuration Parameters dialog box.	
SFSimEnableDebug	Enables debugging and animation during simulation of a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks. Set by Enable debugging(animation	<pre>string — {'on'} 'off'</pre>
	debugging/animation on the Simulation Target pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
SFSimOverflowDetection	Enables overflow detection of data during simulation of a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks. Overflow occurs for data when a value assigned to it exceeds the numeric capacity of the data type.	<pre>string — {'on'} 'off'</pre>
	Note To enable this option, you must also select the Data Range check box in the Stateflow Debugger window.	
	Set by Enable overflow detection (with debugging) on the Simulation Target pane of the Configuration Parameters dialog box.	
SfunCompatibilityCheckMsg	Specifies diagnostic action to take when S-function upgrades are needed.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by S-function upgrades needed on the Compatibility Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ShapePreserveControl	At each time step, use derivative information to improve integration accuracy.	<pre>string — 'EnableAll' {'DisableAll'}</pre>
	Set by Shape preservation on the Solver pane of the Configuration Parameters dialog box.	
ShowGrid	Show the Model Editor grid.	<pre>string — 'on' {'off'}</pre>
ShowLinearization- Annotations	Toggles linearization icons in the model.	string — {'on'} 'off'
ShowLineDimensions	Show signal dimensions on this model's block diagram.	<pre>string — 'on' {'off'}</pre>
	Set by Signal Dimensions on the Format > Port/Signal Displays menu of the Model Editor.	
ShowLineDimensionsOnError	For internal use.	
ShowLineWidths	Deprecated. Use ShowLineDimensions instead.	
ShowLoopsOnError	Highlight invalid loops graphically.	string — { 'on ' } 'off'
ShowModelReferenceBlockIO	Toggles display of I/O mismatch on block.	<pre>string — 'on' {'off'}</pre>
	Set by Model Block I/O Mismatch on the Format > Block Displays menu of the Model Editor.	

Parameter	Description	Values
ShowModelReference- BlockVersion	Toggles display of version on block.	<pre>string — 'on' {'off'}</pre>
	Set by Model Block Version on the Format > Block Displays menu of the Model Editor.	
Shown	For internal use.	
ShowPageBoundaries	Toggles display of page boundaries on the Model Editor's canvas.	<pre>string — 'on' {'off'}</pre>
	Set by Show Page Boundaries on the View menu of the Model Editor.	
ShowPortDataTypes	Show data types of ports on this model's block diagram.	<pre>string — 'on' {'off'}</pre>
	Set by Port Data Types on the Format > Port/Signal Displays menu of the Model Editor.	
ShowPortDataTypesOnError	For internal use.	
ShowStorageClass	Show storage classes of signals on this model's block diagram.	<pre>string — 'on' {'off'}</pre>
	Set by Storage Class on the Format > Port/Signal Displays menu of the Model Editor.	

Parameter	Description	Values
ShowTestPointIcons	Show test point icons on this model's block diagram.	<pre>string — {'on'} 'off'</pre>
	Set by Testpoint/Logging Indicators on the Format > Port/Signal Displays menu of the Model Editor.	
ShowViewerIcons	Show viewer icons on this model's block diagram.	string — { 'on ' } 'off'
	Set by Viewer Indicators on the Format > Port/Signal Displays menu of the Model Editor.	
SignalInfNanChecking	Specifies diagnostic action to take when the value of a block output is Inf or NaN at the current time step.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Inf or NaN block output on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
SignalLabelMismatchMsg	Specifies diagnostic action to take when a signal label mismatch occurs.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Signal label mismatch on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
SignalLogging	Globally enable signal logging for this model.	<pre>string — {'on'} 'off'</pre>
	Set by the Signal logging check box on the Data Import/Export pane of the Configuration Parameters dialog box.	
SignalLoggingName	Name for saving signal logging data to a workspace.	<pre>string — {'logsout'}</pre>
	Set by the Signal logging field on the Data Import/Export pane of the Configuration Parameters dialog box.	
SignalRangeChecking	Select the diagnostic action to take when signals exceed specified minimum or maximum values.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Simulation range checking on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
SignalResolutionControl	Control which named states and signals get resolved to Simulink signal objects.	<pre>string — {'UseLocalSettings'} 'TryResolveAll' </pre>
	Set by Signal resolution on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	'TryResolveAll- WithWarning'

Model Parameters	in	Alphabetical	Order	(Continued)
-------------------------	----	--------------	-------	-------------

Parameter	Description	Values
SigSpecEnsureSample- TimeMsg	Specifies diagnostic action to take when the sample time of the source port of a signal specified by a Signal Specification block differs from the signal's destination port.	string — 'none' {'warning'} 'error'
	Set by Enforce sample times specified by Signal Specification blocks on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.	
SimBuildMode	Specifies how you build the simulation target for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks. Set by Simulation target build mode on the Simulation Target pane of the Configuration Parameters dialog box.	<pre>string — {'sf_incremental_build'} 'sf_nonincremental_build' 'sf_make' 'sf_make_clean' 'sf_make_clean_objects'</pre>
SimCompilerOptimization	Specifies the compiler optimization level during acceleration code generation.	<pre>string — 'on' {'off'}</pre>
	Set by Compiler optimization level on the Optimization pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
SimCustomHeaderCode	Enter code lines to appear near the top of a generated header file for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}
	Set by Header file on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.	
SimCustomInitializer	Enter code statements that execute once at the start of simulation for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}
	Set by Initialize function on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.	
SimCustomSourceCode	Enter code lines to appear near the top of a generated source code file for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}
	Set by Source file on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
SimCustomTerminator	Enter code statements that execute at the end of simulation for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}
	Set by Terminate function on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.	
SimReservedNameArray	Enter the names of variables or functions in the generated code that match the names of variables or functions specified in custom code. This action prevents naming conflicts between identifiers in the generated code and in custom code for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string array — {{}}
	Set by Reserved names on the Simulation Target > Symbols pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
SimulationCommand	Executes a simulation command. Note You cannot use set_param to run a simulation in a MATLAB session that does not have a display, i.e., if you used matlab -nodisplay to start the session.	<pre>string — 'start' 'stop' 'pause' 'continue' 'step' 'update' 'WriteDataLogs' 'SimParamDialog' 'connect' 'disconnect' 'WriteExtModeParamVect' 'AccelBuild'</pre>
SimulationMode	Indicates whether Simulink software should run in Normal, Accelerator, Rapid Accelerator, or External mode. Set by the Simulation menu on the Model Editor.	<pre>string — {'normal'} 'accelerator' 'rapid' 'external'</pre>
SimulationStatus	Indicates simulation status.	<pre>string — {'stopped'} 'updating' 'initializing' 'running' 'paused' 'terminating' 'external'</pre>
SimulationTime	Current time value for the simulation.	double — {0}

Parameter	Description	Values
SimUserIncludeDirs	Enter a space-separated list of directory paths that contain files you include in the compiled target for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}
	Set by Include directories on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.	
SimUserLibraries	Enter a space-separated list of static libraries that contain custom object code to link into the target for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}
	Set by Libraries on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.	

Parameter	Description	Values	
SimUserSources	Enter a list of source files to compile and link into the target for a model that contains Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.	string — {''}	
	Set by Source files on the Simulation Target > Custom Code pane of the Configuration Parameters dialog box.		
SingleTaskRateTransMsg	Specifies diagnostic action to take when a rate transition takes place between two blocks operating in single-tasking mode.	string — {'none'} 'warning' 'error'	
	Set by Single task rate transition on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.		
Solver	Solver used for the simulation. Set by the Solver drop-down list on the Solver pane of the Configuration Parameters dialog box.	<pre>string — 'VariableStepDiscrete' {'ode45'} 'ode23' 'ode113' 'ode15s' 'ode23s' 'ode23t' 'ode23tb' 'FixedStepDiscrete' 'ode5' 'ode4' 'ode3' 'ode2' 'ode1' 'ode14x'</pre>	

Parameter	Description	Values
SolverMode	Solver mode for this model. This option appears when the solver type is Fixed-step.	string — {'Auto'} 'SingleTasking' 'MultiTasking'
	Set by Tasking mode for periodic sample times on the Solver pane of the Configuration Parameters dialog box.	
SolverName	Solver used for the simulation. See Solver parameter for more information.	
SolverPrmCheckMsg	 Enables diagnostics to control when Simulink software automatically selects solver parameters. This option notifies you if: Simulink software changes a user-modified parameter 	string — 'none' {'warning'} 'error'
	 to make it consistent with other model settings Simulink software automatically selects solver parameters for the model, 	
	such as FixedStepSize Set by Automatic solver parameter selection on the Solver Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
SolverResetMethod	This option appears when the solver type is Variable-step and the solver is ode15s (stiff/NDF), ode23t (Mod. stiff/Trapezoidal), or ode23tb (stiff/TR-BDF2).	string — {'Fast'} 'Robust'
	Set by Solver reset method on the Solver pane of the Configuration Parameters dialog box.	
SolverType	Solver type used for the simulation.	<pre>string — {'Variable-step'} 'Fixed-step'</pre>
	Set by Type on the Solver pane of the Configuration Parameters dialog box.	
SortedOrder	Show the sorted order of this model's blocks on the block diagram.	<pre>string — 'on' {'off'}</pre>
	Set by Sorted Order on the Format > Block Displays menu of the Model Editor.	
StartFcn	Start simulation callback.	string — { ' ' }
	Set by Simulation start function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	

Parameter	Description	Values
StartTime	Simulation start time.	string — { '0.0 ' }
	Set by Start time on the Solver pane of the Configuration Parameters dialog box.	
StateNameClashWarn	Select the diagnostic action to take when a name is used for more than one state in the model.	string — 'none' {'warning'}
	Set by State name clash on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
StateSaveName	State output name to be saved to workspace.	<pre>string — { 'xout ' }</pre>
	Set by the States field on the Data Import/Export pane of the Configuration Parameters dialog box.	
StatusBar	Show or hide the status bar on the Model Editor window.	<pre>string — {'on'} 'off'</pre>
	Set by Status Bar on the View menu of the Model Editor.	

Model Parameters in A	Alphabetical Ord	ler (Continued)
-----------------------	------------------	-----------------

Parameter	Description	Values
StopFcn	Stop simulation callback.	string — { ' ' }
	Set by Simulation stop function on the Callbacks pane of the Model Properties dialog box.	
	See "Creating Model Callback Functions" in the Simulink User's Guide for more information.	
StopTime	Simulation stop time.	string — { '10.0 ' }
	Set by Stop time on the Solver pane of the Configuration Parameters dialog box.	
StrictBusMsg	Specifies diagnostic action to take when Simulink software detects a signal that some blocks treat as a mux or vector, while other blocks treat the signal as a bus.	<pre>string — {'None'} 'Warning' 'ErrorLevel1' 'WarnOnBusTreatedAsVector' 'ErrorOnBusTreatedAsVector'</pre>
	Set by Mux blocks used to create bus signals and Bus signal treated as vector on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
	See "Avoiding Mux/Bus Mixtures" in the Simulink User's Guide for more information.	

Model Parameters in Alphabetical Order	· (Continued)
--	---------------

Parameter	Description	Values
Тад	User-specified text that is assigned to the model's Tag parameter and saved with the model.	string — {''}
TargetBitPerChar	Describes the length in bits of the C char data type supported by the hardware that will be used to test this model.	integer — {8}
	Set by char in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TargetBitPerInt	Describes the length in bits of the C int data type supported by the hardware that will be used to test this model.	integer — {32}
	Set by int in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TargetBitPerLong	Describes the length in bits of the C long data type supported by the hardware that will be used to test this model.	integer — {32}
	Set by long in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
TargetBitPerShort	Describes the length in bits of the C short data type supported by the hardware that will be used to test this model.	integer — {16}
	Set by short in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TargetEndianess	Describes the significance of the first byte of a data word of the hardware that will be used to test.	string — {'Unspecified'} 'LittleEndian' 'BigEndian'
	Set by Byte ordering in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TargetFcnLib	For internal use.	
TargetHWDeviceType	Describes the characteristics of the hardware that will be used to test this model.	<pre>string — {'32-bit Generic'}</pre>
	Set by Device type in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	

Model Parameters	in Alpł	nabetical	Order	(Continued)
-------------------------	---------	-----------	-------	-------------

Parameter	Description	Values
TargetIntDivRoundTo	Describes how the C compiler that will create test code for this model rounds the result of dividing one signed integer by another to produce a signed integer quotient.	string — 'Floor' 'Zero' {'Undefined'}
	Set by Signed integer division rounds to in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TargetShiftRightIntArith	Describes whether the C compiler that will create test code for this model implements a signed integer right shift as an arithmetic right shift.	<pre>string — {'on'} 'off'</pre>
	Set by Shift right on a signed integer as arithmetic shift in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TargetTypeEmulation WarnSuppressLevel	Specifies whether Real-Time Workshop software displays or suppresses warning messages when emulating integer sizes in rapid prototyping environments.	integer — {0}

Parameter	Description	Values
TargetWordSize	Describes the word length in bits of the hardware that will be used to test this model.	integer — {32}
	Set by native word size in the Emulation hardware section of the Hardware Implementation pane of the Configuration Parameters dialog box.	
TasksWithSamePriorityMsg	Specifies diagnostic action to take when tasks have equal priority.	string — 'none' {'warning'} 'error'
	Set by Tasks with equal priority on the Sample Time Diagnostics pane of the Configuration Parameters dialog box.	
TiledPageScale	Scales the size of the tiled page relative to the model.	string — { ' 1 ' }
TiledPaperMargins	Controls the size of the margins associated with each tiled page. Each element in the vector represents a margin at the particular edge.	<pre>vector — [left, top, right, bottom]</pre>

Parameter	Description	Values
TimeAdjustmentMsg	Specifies diagnostic action to take if Simulink software makes a minor adjustment to a sample hit time while running the model.	<pre>string — {'none'} 'warning'</pre>
	Set by Sample hit time adjusting on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
TimeSaveName	Simulation time name.	variable — { 'tout ' }
	Set by the Time field on the Data Import/Export pane of the Configuration Parameters dialog box.	
TLC	Parameters whose names begin with TLC are used for code generation. See the Real-Time Workshop documentation for more information.	
Toolbar	Show or hide the toolbar on the Model Editor window.	<pre>string — {'on'} 'off'</pre>
	Set by Toolbar on the View menu of the Model Editor.	
TryForcingSFcnDF	This flag is used for backward compatibility with user S-functions that were written prior to R12.	<pre>string — 'on' {'off'}</pre>

Model Parameters	in Alphabetical Order	(Continued)
-------------------------	-----------------------	-------------

Parameter	Description	Values
TunableVars	List of global (tunable) parameters.	string — { ' ' }
	Set in the Model Parameter Configuration dialog box.	
TunableVarsStorageClass	List of storage classes for their respective tunable parameters.	string — { ' ' }
	Set in the Model Parameter Configuration dialog box.	
TunableVarsTypeQualifier	List of storage type qualifiers for their respective tunable parameters.	string — { ' ' }
	Set in the Model Parameter Configuration dialog box.	
Туре	Simulink object type (read only).	<pre>string — {'block_diagram'}</pre>
UnconnectedInputMsg	Unconnected input ports diagnostic.	<pre>string — 'none' {'warning'} 'error'</pre>
	Set by Unconnected block input ports on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
UnconnectedLineMsg	Unconnected lines diagnostic.	string — 'none'
	Set by Unconnected line on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	{'warning'} 'error'

Model Parameters	in Alpł	nabetical	Order	(Continued)
-------------------------	---------	-----------	-------	-------------

Parameter	Description	Values
UnconnectedOutputMsg	Unconnected block output ports diagnostic.	<pre>string — 'none' {'warning'} 'error'</pre>
	Set by Unconnected block output ports on the Connectivity Diagnostics pane of the Configuration Parameters dialog box.	
UnderSpecifiedDataTypeMsg	Detect usage of heuristics to assign signal data types.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Underspecified data types on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
UnderspecifiedInitial- izationDetection	Select how Simulink software handles initialization of initial conditions for conditionally executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator blocks.	<pre>string — {'classic'} 'simplified'</pre>
	Set by Underspecified initialization detection on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
UniqueDataStoreMsg	Specifies diagnostic action to take when the model contains multiple Data Store Memory blocks that specify the same data store name.	string — {'none'} 'warning' 'error'
	Set by Duplicate data store names on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
UnknownTsInhSupMsg	Detect blocks that have not set whether they allow the model containing them to inherit a sample time.	string — 'none' {'warning'} 'error'
	Set by Unspecified inheritability of sample time on the Solver Diagnostics pane of the Configuration Parameters dialog box.	
UnnecessaryDatatype- ConvMsg	Detect unnecessary data type conversion blocks. Set by Unnecessary type conversions on the Type Conversion Diagnostics pane of the Configuration Parameters dialog box.	<pre>string — {'none'} 'warning'</pre>

Parameter	Description	Values
UpdateHistory	Specifies when to prompt the user about updating the model history.	string — {'UpdateHistoryNever'} 'UpdateHistoryWhenSave'
	Set by Prompt to update model history on the History pane of the Model Properties dialog box or Prompt to update model history on the History pane of the Model Explorer.	
	See "Model History Controls" in the Simulink User's Guide for more information.	
UpdateModelReference- Targets	Specify whether to rebuild simulation and Real-Time Workshop targets for referenced models before updating, simulating, or generating code from this model.	string — 'IfOutOfDate' 'Force' 'AssumeUpToDate' {'IfOutOfDateOrStructuralChang
	Set by Rebuild options on the Model Referencing pane of the Configuration Parameters dialog box.	
UseAnalysisPorts	For internal use.	

Parameter	Description	Values
VectorMatrixConversionMsg	Detect vector-to-matrix or matrix-to-vector conversions.	<pre>string — {'none'} 'warning' 'error'</pre>
	Set by Vector/matrix block input conversion on the Type Conversion Diagnostics pane of the Configuration Parameters dialog box.	
Version	Simulink version used to modify the model (read only).	release version number
WideLines	Draws lines that carry vector or matrix signals wider than lines that carry scalar signals.	<pre>string — 'on' {'off'}</pre>
	Set by Wide Nonscalar Lines on the Format > Port/Signal Displays menu of the Model Editor.	
WideVectorLines	Deprecated. Use WideLines instead.	
WriteAfterReadMsg	Specifies diagnostic action to take when the model attempts to store data in a data store after previously reading data from it in the current time step.	<pre>string — {'UseLocalSettings'} 'DisableAll' 'EnableAllAsWarning' 'EnableAllAsError'</pre>
	Set by Detect write after read on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
WriteAfterWriteMsg	Specifies diagnostic action to take when the model attempts to store data in a data store twice in succession in the current time step.	string — {'UseLocalSettings'} 'DisableAll' 'EnableAllAsWarning' 'EnableAllAsError'
	Set by Detect write after write on the Data Validity Diagnostics pane of the Configuration Parameters dialog box.	
ZCThreshold	Specifies the deadband region used during the detection of zero crossings. Signals falling within this region are defined as having crossed through zero.	string — { 'auto ' } any real number greater than or equal to zero
	Set by Signal threshold on the Solver pane of the Configuration Parameters dialog box.	
ZeroCross	For internal use.	
ZeroCrossAlgorithm	Specifies the algorithm to detect zero crossings when you select a variable-step solver.	<pre>string — {'Nonadaptive'} 'Adaptive'</pre>
	Set by Algorithm on the Solver pane of the Configuration Parameters dialog box.	

Parameter	Description	Values
ZeroCrossControl	Enable zero-crossing detection. Set by Zero-crossing control on the Solver pane of the Configuration Parameters dialog box.	string — {'UseLocalSettings'} 'EnableAll' 'DisableAll'
ZoomFactor	Zoom factor of the Model Editor window expressed as a percentage of normal (100%) or by the keywords FitSystem or FitSelection. Set by the zoom commands on the View menu of the Model Editor.	<pre>string — {'100'} 'FitSystem' 'FitSelection'</pre>

Examples of Setting Model Parameters

These examples show how to set model parameters for the mymodel system.

This command sets the simulation start and stop times.

```
set param('mymodel','StartTime','5','StopTime','100')
```

This command sets the solver to ode15s and changes the maximum order.

```
set_param('mymodel','Solver','ode15s','MaxOrder','3')
```

This command associates a SaveFcn callback.

set_param('mymodel','SaveFcn','my_save_cb')

Common Block Parameters

In this section...

"About Common Block Parameters" on page 8-83

"Examples of Setting Block Parameters" on page 8-94

About Common Block Parameters

This table lists the parameters common to all Simulink blocks, including block callback parameters (see "Using Callback Functions"). Examples of commands that change these parameters follow this table (see "Examples of Setting Block Parameters" on page 8-94).

Common Block Parameters

Parameter	Description	Values
AncestorBlock	Name of the library block that the block is linked to (for blocks with a disabled link).	string
AttributesFormatString	String format specified for block annotations in the Block Parameters dialog box.	string
BackgroundColor	Block background color.	RGB value array string [r,g,b,a] where r, g, b, and a are the red, green, blue, and alpha values of the color normalized to the range 0.0 to 1.0. The alpha value is ignored.
BlockDescription	Block description shown in the Block Properties dialog box.	string

Parameter	Description	Values
BlockType	Block type (read only).	string
ClipboardFcn	Function called when block is copied to the clipboard (Ctrl+C)	string
CloseFcn	Function called when close_system is run on block.	string
CompiledPort- ComplexSignals	Complexity of port signals after updating diagram.	structure array
CompiledPortDataTypes	Data types of port signals after updating diagram.	structure array
CompiledPortDimensions	Dimensions of port signals after updating diagram.	structure array
CompiledPortFrameData	Frame mode of port signals after updating diagram.	structure array
CompiledPortWidths	Structure of port widths after updating diagram.	structure array
CompiledSampleTime	Block sample time after updating diagram.	vector [sample time, offset time]
CopyFcn	Function called when block is copied.	string
DataTypeOverrideCompiled	For internal use.	

Parameter	Description	Values
DeleteFcn	Function called when block is deleted. If a block is graphically deleted, you can still undo the operation and call the block's UndoDeleteFcn. In addition, for graphically deleted blocks, the block's DestroyFcn is still called when the model is closed or any subsystem containing the block is destroyed using delete_block.	MATLAB expression
DestroyFcn	Function called when block is destroyed. If you run the delete_block command for a block, it first calls the block'sDeleteFcn, then calls the DestroyFcn for that block; no undo is possible. The DestroyFcn is also called when you close the model or invoke delete_block on a subsystem containing the block.	MATLAB expression
Description	Description of block. Set by the Description field in the General pane of the Block Properties dialog box.	text and tokens
Diagnostics	For internal use.	
DialogParameters	Names/attributes of parameters in block's parameter dialog box.	structure
DropShadow	Display drop shadow.	{'off'} 'on'

Parameter	Description	Values
ExtModeLoggingSupported	Enable a block to support uploading of signal data in external mode (for example, with a scope block).	{'off'} 'on'
ExtModeLoggingTrig	Enable a block to act as the trigger block for external mode signal uploading.	{'off'} 'on'
ExtModeUploadOption	Enable a block to upload signal data in external mode when the Select all check box on the External Signal & Triggering dialog box is not selected. A value of log indicates the block uploads signals. A value of none indicates the block does not upload signals. The value monitor is currently not in use. If the Select all check box on the External Signal & Triggering dialog box is selected, it overrides this parameter setting.	{'none'} 'log' 'monitor'
FontAngle	Font angle.	'normal' 'italic' 'oblique' {'auto'}
FontName	Font.	string
FontSize	Font size. A value of -1 specifies that this block inherits the font size specified by the DefaultBlockFontSize model parameter.	real {'-1'}
FontWeight	Font weight.	'light' 'normal' 'demi' 'bold' {'auto'}

Parameter	Description	Values
ForegroundColor	Foreground color of block's icon.	<pre>string { 'black ' } [r,g,b,a] where r, g, b, and a are the red, green, blue, and alpha values of the color normalized to the range 0.0 to 1.0. The alpha value is ignored.</pre>
Handle	Block handle.	real
HiliteAncestors	For internal use.	
InitFcn	Initialization function for a masked block. Created on the Callbacks pane of the Model Properties dialog box. See "Creating Model Callback Functions" in the Using Simulink documentation for further information.	MATLAB expression
InputSignalNames	Names of input signals.	cell array
IOSignalStrings		list
ІОТуре	Signal & Scope Manager type.	{'none'} 'viewer' 'siggen'
LineHandles	Handles of lines connected to block.	struct
LinkStatus	Link status of block. Updates out-of-date reference blocks when queried using get_param.	{'none'} 'resolved' 'unresolved' 'implicit' 'inactive' 'restore' 'propagate'
LoadFcn	Function called when block is loaded.	MATLAB expression
MinMaxOverflow- Logging_Compiled	For internal use.	

Parameter	Description	Values
ModelCloseFcn	Function called when model is closed. The ModelCloseFcn is called prior to the block's DeleteFcn and DestroyFcn callbacks, if either are set.	MATLAB expression
ModelParamTableInfo	For internal use.	
MoveFcn	Function called when block is moved.	MATLAB expression
Name	Block name.	string
NameChangeFcn	Function called when block name is changed.	MATLAB expression
NamePlacement	Position of block name.	{'normal'} 'alternate'
ObjectParameters	Names/attributes of block's parameters.	structure
OpenFcn	Function called when this block's Block Parameters dialog box is opened.	MATLAB expression
Orientation	Where block faces.	{'right'} 'left' 'up' 'down'
OutputSignalNames	Names of output signals.	cell array
Parent	Name of the system that owns the block.	<pre>string {'untitled'}</pre>
ParentCloseFcn	Function called when parent subsystem is closed. The ParentCloseFcn of blocks at the root model level is not called when the model is closed.	MATLAB expression

Parameter	Description	Values
PortConnectivity	The value of this parameter is an array of structures, each of which describes one of the block's input or output ports. Each port structure has the following fields:	structure array
	• Туре	
	Specifies the port's type and/or number. The value of this field can be:	
	 <i>n</i>, where <i>n</i> is the number of the port for data ports 	
	 'enable' if the port is an enable port 	
	 'trigger' if the port is a trigger port 	
	<pre> 'state' for state ports</pre>	
	 'ifaction' for action ports 	
	 'LConn#' for a left connection port where # is the port's number 	
	 'RConn#' for a right connection port where # is the port's number 	
	• Position	
	The value of this field is a two-element vector, [x y], that specifies the port's position.	

Parameter	Description	Values
	• SrcBlock	
	Handle of the block connected to this port. This field is null for output ports.	
	• SrcPort	
	Number of the port connected to this port. This field is null for output ports.	
	• DstBlock	
	Handle of the block to which this port is connected. This field is null for input ports.	
	• DstPort	
	Number of the port to which this port is connected. This field is null for input ports.	
PortHandles	The value of this parameter is a structure that specifies the handles of the block's ports. The structure has the following fields: • Inport	structure array
	Handles of the block's input ports.	
	• Outport	
	Handles of the block's output ports.	

Parameter	Description	Values
	• Enable	
	Handle of the block's enable port.	
	• Trigger	
	Handle of the block's trigger port.	
	• State	
	Handle of the block's state port.	
	• LConn	
	Handles of the block's left connection ports.	
	• RConn	
	Handles of the block's right connection ports.	
	• Ifaction	
	Handle of the block's action port.	

Common	Block	Parameters	(Continued)
--------	-------	-------------------	-------------

Parameter	Description	Values
Ports	The value of this parameter is a vector that specifies the numbers of each kind of port. The order of the vector's elements corresponds to the following port types: • Inport • Outport • Enable • Trigger • State • LConn • RConn • Ifaction	vector
Position	Position of block in model window.	vector [left top right bottom] not enclosed in quotation marks. The maximum value for a coordinate is 32767.
PostSaveFcn	Function called after the block is saved. Created on the Callbacks pane of the Model Properties dialog box. See "Creating Model Callback Functions" in the Using Simulink documentation for further information.	MATLAB expression

Parameter	Description	Values
PreCopyFcn	Function called before the block is copied. See "Block Callback Parameters" in the Using Simulink documentation for details.	MATLAB expression
PreDeleteFcn	Function called before the block is deleted. See "Block Callback Parameters" in the Using Simulink documentation for details.	MATLAB expression
PreSaveFcn	Function called before the block is saved.	MATLAB expression
Priority	Specifies the block's order of execution relative to other blocks in the same model. Set by the Priority field on the General pane of the Block Properties dialog box.	<pre>string { ' ' }</pre>
ReferenceBlock	Name of the library block that this block is linked to.	<pre>string { ' ' }</pre>
RequirementInfo	For internal use.	
RTWData	User specified data, used by Real-Time Workshop software.	
SampleTime	Value of the sample time parameter.	string
Selected	Status of whether or not block is selected.	{'on'} 'off'
ShowName	Display block name.	{'on'} 'off'

Parameter	Description	Values
StartFcn	Function called at the start of a simulation.	MATLAB expression
StatePerturbation- ForJacobian	State perturbation size to use during linearization. See "Linearizing Individual Blocks Using Block Perturbation" in the Simulink Control Design documentation for details.	string
StaticLinkStatus	Link status of block. Does not update out-of-date reference blocks when queried using get_param.	{'none'} 'resolved' 'unresolved' 'implicit' 'inactive' 'restore' 'propagate'
StopFcn	Function called at the termination of a simulation.	MATLAB expression
Tag	Text that appears in the block label that Simulink software generates. Set by the Tag field on the General pane of the Block Properties dialog box.	<pre>string { ' ' }</pre>
Туре	Simulink object type (read only).	'block'
UndoDeleteFcn	Function called when block deletion is undone.	MATLAB expression
UserData	User-specified data that can have any MATLAB data type.	{'[]'}
UserDataPersistent	Status of whether or not UserData will be saved in the model file.	'on' {'off'}

Examples of Setting Block Parameters

These examples illustrate how to change common block parameters.

This command changes the orientation of the Gain block in the mymodel system so it faces the opposite direction (right to left).

```
set_param('mymodel/Gain','Orientation','left')
```

This command associates an OpenFcn callback with the Gain block in the mymodel system.

```
set_param('mymodel/Gain','OpenFcn','my_open_cb')
```

This command sets the Position parameter of the Gain block in the mymodel system. The block is 75 pixels wide by 25 pixels high. The position vector is *not* enclosed in quotation marks.

```
set_param('mymodel/Gain', 'Position', [50 250 125 275])
```

Block-Specific Parameters

These tables list block-specific parameters for all Simulink blocks. The type of the block appears in parentheses after the block name. Some Simulink blocks are implemented as masked subsystems. The tables indicate masked blocks by adding the designation "masked" after the block type.

Note The type listed for nonmasked blocks is the value of the block's BlockType parameter (see "Common Block Parameters" on page 8-83); the type listed for masked blocks is the value of the block's MaskType parameter (see "Mask Parameters" on page 8-218).

The **Dialog Box Prompt** column indicates the text of the prompt for the parameter on the block's dialog box. The **Values** column shows the type of value required (scalar, vector, variable), the possible values (separated with a vertical line), and the default value (enclosed in braces).

- Continuous Library Block Parameters
- Discontinuities Library Block Parameters
- Discrete Library Block Parameters
- Logic and Bit Operations Library Block Parameters
- Lookup Tables Block Parameters
- Math Operations Library Block Parameters
- Model Verification Library Block Parameters
- Model-Wide Utilities Library Block Parameters
- Ports & Subsystems Library Block Parameters
- Signal Attributes Library Block Parameters
- Signal Routing Library Block Parameters
- Sinks Library Block Parameters
- Sources Library Block Parameters
- User-Defined Functions Library Block Parameters

- Additional Discrete Block Library Parameters
- Additional Math: Increment Decrement Block Parameters

Continuous Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values	
Derivative (Derivative)			
LinearizePole	Linearization Time Constant s/(Ns + 1)	<pre>string — {'inf'}</pre>	
Integrator (Integrator)	Integrator (Integrator)		
ExternalReset	External reset	<pre>string — {'none'} 'rising' 'falling' 'either' 'level' 'level hold'</pre>	
InitialConditionSource	Initial condition source	<pre>string — {'internal'} 'external'</pre>	
InitialCondition	Initial condition	scalar or vector — { '0' }	
LimitOutput	Limit output	<pre>string — {'off'} 'on'</pre>	
UpperSaturationLimit	Upper saturation limit	<pre>scalar or vector — { 'inf ' }</pre>	
LowerSaturationLimit	Lower saturation limit	<pre>scalar or vector — { ' - inf ' }</pre>	
ShowSaturationPort	Show saturation port	<pre>string — {'off'} 'on'</pre>	
ShowStatePort	Show state port	string — {'off'} 'on'	
AbsoluteTolerance	Absolute tolerance	<pre>scalar — {'auto'}</pre>	
IgnoreLimit	Ignore limit and reset when linearizing	<pre>string — {'off'} 'on'</pre>	
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>	
ContinuousStateAttributes	State Name	string — { ' ' } variable	
State-Space (StateSpace)			
A	А	matrix — { ' 1 ' }	
В	В	matrix — { '1 ' }	

Continuous Library Block Parameters (Continued)

Block (Type)/Parameter	Dialog Box Prompt	Values
С	С	matrix — { ' 1 ' }
D	D	matrix — { ' 1 ' }
X0	Initial conditions	vector — { '0 ' }
AbsoluteTolerance	Absolute tolerance	<pre>scalar — { 'auto' }</pre>
ContinuousStateAttributes	State Name	string — { ' ' } variable
Transfer Fcn (TransferFcn)		
Numerator	Numerator coefficient	vector or matrix — { ' [1] ' }
Denominator	Denominator coefficient	vector — { ' [1 1] ' }
AbsoluteTolerance	Absolute tolerance	<pre>scalar — {'auto'}</pre>
ContinuousStateAttributes	State Name	string — { ' ' } variable
Transport Delay (TransportDe	lay)	
DelayTime	Time delay	<pre>scalar or vector — { ' 1 ' }</pre>
InitialOutput	Initial output	scalar or vector — $ \{ 0' \} $
BufferSize	Initial buffer size	scalar — { '1024 ' }
FixedBuffer	Use fixed buffer size	<pre>string — {'off'} 'on'</pre>
TransDelayFeedthrough	Direct feedthrough of input during linearization	<pre>string — {'off'} 'on'</pre>
PadeOrder	Pade order (for linearization)	string — { '0 ' }
Variable Time Delay (VariableTimeDelay)		
VariableDelayType	Select delay type	<pre>string — 'Variable transport delay' {'Variable time delay'}</pre>
MaximumDelay	Maximum delay	scalar or vector — { $10'$ }
InitialOutput	Initial output	scalar or vector — $ \{ 0' \} $
MaximumPoints	Initial buffer size	scalar — { '1024 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
FixedBuffer	Use fixed buffer size	<pre>string — {'off'} 'on'</pre>
ZeroDelay	Handle zero delay	<pre>string — {'off'} 'on'</pre>
TransDelayFeedthrough	Direct feedthrough of input during linearization	<pre>string — {'off'} 'on'</pre>
PadeOrder	Pade order (for linearization)	string — { '0 ' }
ContinuousStateAttributes	State Name	<pre>string — { ' ' } variable</pre>
Variable Transport Delay (Variation	iableTransportDelay)	
VariableDelayType	Select delay type	string — {'Variable transport delay'} 'Variable time delay'
MaximumDelay	Maximum delay	scalar or vector — $\{ 10' \}$
InitialOutput	Initial output	scalar or vector — $\{ 0' \}$
MaximumPoints	Initial buffer size	scalar — { '1024 ' }
FixedBuffer	Use fixed buffer size	<pre>string — {'off'} 'on'</pre>
TransDelayFeedthrough	Direct feedthrough of input during linearization	<pre>string — {'off'} 'on'</pre>
PadeOrder	Pade order (for linearization)	string — { '0 ' }
AbsoluteTolerance	Absolute tolerance	<pre>scalar — { 'auto' }</pre>
ContinuousStateAttributes	State Name	string — { ' ' } variable
Zero-Pole (ZeroPole)		
Zeros	Zeros	vector — { ' [1] ' }
Poles	Poles	vector — { ' [0 -1] ' }
Gain	Gain	vector — { ' [1] ' }
AbsoluteTolerance	Absolute tolerance	<pre>scalar — {'auto'}</pre>
ContinuousStateAttributes	State Name	<pre>string — { ' ' } variable</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
Backlash (Backlash)		
BacklashWidth	Deadband width	scalar or vector — { ' 1 ' }
InitialOutput	Initial output	<pre>scalar or vector — { '0 ' }</pre>
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Coulomb & Viscous Friction (Coulombic and Viscous Friction) (masked subsystem)		
offset	Coulomb friction value (Offset)	string — {'[1 3 2 0]'}
gain	Coefficient of viscous friction (Gain)	string — { '1'}
Dead Zone (DeadZone)		
LowerValue	Start of dead zone	scalar or vector — $\{ -0.5 \}$
UpperValue	End of dead zone	scalar or vector — $\{ '0.5' \}$
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — 'off' {'on'}</pre>
LinearizeAsGain	Treat as gain when linearizing	<pre>string — 'off' {'on'}</pre>
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Dead Zone Dynamic (Dead Zo	ne Dynamic) (masked subsystem)	
Hit Crossing (HitCross)		
HitCrossingOffset	Hit crossing offset	<pre>scalar or vector — { '0 ' }</pre>
HitCrossingDirection	Hit crossing direction	string — 'rising' 'falling' {'either'}
ShowOutputPort	Show output port	<pre>string — 'off' {'on'}</pre>
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }

Discontinuities Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values	
Quantizer (Quantizer)			
QuantizationInterval	Quantization interval	scalar or vector — $ \{ 0.5' \} $	
LinearizeAsGain	Treat as gain when linearizing	<pre>string — 'off' {'on'}</pre>	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
Rate Limiter (RateLimiter)			
RisingSlewLimit	Rising slew rate	string — { '1'}	
FallingSlewLimit	Falling slew rate	string — { ' -1 ' }	
SampleTimeMode	Sample time mode	<pre>string — 'continuous' {'inherited'}</pre>	
InitialCondition	Initial condition	string — { '0' }	
LinearizeAsGain	Treat as gain when linearizing	<pre>string — 'off' {'on'}</pre>	
Rate Limiter Dynamic (Rate Limiter Dynamic) (masked subsystem)			
Relay (Relay)			
OnSwitchValue	Switch on point	<pre>string — { 'eps ' }</pre>	
OffSwitchValue	Switch off point	<pre>string — { 'eps ' }</pre>	
OnOutputValue	Output when on	string — { ' 1 ' }	
OffOutputValue	Output when off	string — { '0' }	
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
OutMin	Output minimum	string — { '[] '}	
OutMax	Output maximum	string — { '[] '}	

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'Inherit: All ports same datatype'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16)' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
Saturation (Saturate)		
UpperLimit	Upper limit	scalar or vector — $\{ '0.5' \}$
LowerLimit	Lower limit	scalar or vector — { ' -0.5 ' }
LinearizeAsGain	Treat as gain when linearizing	<pre>string — 'off' {'on'}</pre>
ZeroCross	Enable zero-crossing detection string — 'off' {'	
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'Inherit: Same as input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'

Saturation Dynamic (Saturation Dynamic) (masked subsystem)

		·
OutMin	Output minimum	string — { '[]'}
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Same as second input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
OutScaling	Deprecated	

Block (Type)/Parameter	Dialog Box Prompt	Values
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>
DoSatur	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Wrap To Zero (Wrap To Zero) (masked subsystem)		
Threshold	Threshold	string — { '255 ' }

Discrete Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Difference (Difference) (mask	xed subsystem)	
ICPrevInput	Initial condition for previous input	string — {'0.0'}
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
OutScaling	Deprecated	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Discrete Derivative (Discrete	Derivative) (masked subsystem	n)
gainval	Gain value	string — { '1.0 ' }
ICPrevScaledInput	Initial condition for previous weighted input K*u/Ts	string — {'0.0'}
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
OutScaling	Deprecated	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Discrete FIR Filter (Discrete	FIR Filter)	
CoefSource	Coefficient source	string — {'Dialog parameters'} 'Input port'
FirFiltStruct	Filter structure	<pre>string — {'Direct form'} 'Direct form symmetric' 'Direct form antisymmetric' 'Direct form transposed' 'Lattice MA' Note You must have a Signal</pre>
		Processing Blockset license to use a filter structure other than Direct form.
NumCoeffs	Numerator coefficient	vector — { '[0.5 0.5] '}

Block (Type)/Parameter	Dialog Box Prompt	Values
IC	Initial states scalar or vector — { '0 '	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
CoefMin	Coefficient minimum	string — { '[] '}
CoefMax	Coefficient maximum	string — { '[] '}
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] '}
CoefDataTypeStr	Coefficient data type	<pre>string — {'Inherit: Same word length as input'} 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16)' 'fixdt(1,16,0)'</pre>
ProductDataTypeStr	Product output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)'</pre>
AccumDataTypeStr	Accumulator data type	<pre>string — 'Inherit: Same as input' {'Inherit: Same as product output'} 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)'</pre>

Discrete	Library	Block	Parameters	(Continued)
----------	---------	-------	------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Same as input' {'Inherit: Same as accumulator'} 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)'</pre>
LockScale	Lock scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Discrete Filter (DiscreteFilte	er)	
Numerator	Numerator coefficient	vector — { ' [1] ' }
Denominator	Denominator coefficient	vector — { '[1 0.5] '}
IC	Initial states	string — { '0 ' }
SampleTime	Sample time (-1 for inherited)	string — { '1 ' }
a0EqualsOne	Leading denominator coefficient equals 1	<pre>string — {'off'} 'on'</pre>
NumCoefMin	Numerator coefficient minimum	string — { '[] ' }
NumCoefMax	Numerator coefficient maximum	string — { '[] '}
DenCoefMin	Denominator coefficient minimum	string — { '[] ' }
DenCoefMax	Denominator coefficient maximum	string — { '[] ' }

Block (Type)/Parameter	Dialog Box Prompt	Values	
OutMin	Output minimum	string — { '[] ' }	
OutMax	Output maximum	string — { '[]'}	
StateDataTypeStr	State data type	<pre>string — {'Inherit: Same as input'} 'int8' 'int16' 'int32' 'fixdt(1,16,0)'</pre>	
NumCoefDataTypeStr	Numerator coefficient data type	<pre>string — {'Inherit: Inherit via internal rule'} 'int8' 'int16' 'int32' 'fixdt(1,16)' 'fixdt(1,16,0)'</pre>	
DenCoefDataTypeStr	Denominator coefficient data type	<pre>string — {'Inherit: Inherit via internal rule'} 'int8' 'int16' 'int32' 'fixdt(1,16)' 'fixdt(1,16,0)'</pre>	
NumProductDataTypeStr	Numerator product output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'int8' 'int16' 'int32' 'fixdt(1,16,0)'</pre>	
DenProductDataTypeStr	Denominator product output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'int8' 'int16' 'int32' 'fixdt(1,16,0)'</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
NumAccumDataTypeStr	Numerator accumulator data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'Inherit: Same as product output' 'int8' 'int16' 'int32' 'fixdt(1,16,0)'</pre>
DenAccumDataTypeStr	Denominator accumulator data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'Inherit: Same as product output' 'int8' 'int16' 'int32' 'fixdt(1,16,0)'</pre>
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'int8' 'int16' 'int32' 'fixdt(1,16,0)'</pre>
LockScale	Lock scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnIntegerOverflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
StateIdentifier	State name	string — { ' ' }
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	string — {'off'} 'on'

Block (Type)/Parameter	Dialog Box Prompt	Values
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }
Discrete State-Space (Discrete	eStateSpace)	
A	А	matrix — { ' 1 ' }
В	В	matrix — { '1 ' }
C	С	matrix — { '1 ' }
D	D	matrix — { '1 ' }
X0	Initial conditions	vector — { '0' }
SampleTime	Sample time (-1 for inherited)	string — { ' 1 ' }
StateIdentifier	State name	string — { ' ' }
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }
Discrete Transfer Fcn (DiscreteTransferFcn)		
Numerator	Numerator coefficient	vector — { ' [1] ' }
Denominator	Denominator coefficient	vector — { '[1 0.5] '}
SampleTime	Sample time (-1 for inherited)	string { '1 ' }
StateIdentifier	State name	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }
Discrete Zero-Pole (DiscreteZe	eroPole)	
Zeros	Zeros	vector — { ' [1] ' }
Poles	Poles	vector — { '[0 0.5] ' }
Gain	Gain	string — { ' 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { '1 ' }
StateIdentifier	State name	string — { ' ' }
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }
Discrete-Time Integrator (DiscreteIntegrator)		

Block (Type)/Parameter	Dialog Box Prompt	Values
IntegratorMethod	Integrator method	<pre>string — {'Integration: Forward Euler'} 'Integration: Backward Euler' 'Integration: Trapezoidal' 'Accumulation: Forward Euler' 'Accumulation: Backward Euler' 'Accumulation: Trapezoidal'</pre>
gainval	Gain value	string — { '1.0 ' }
ExternalReset	External reset	<pre>string — {'none'} 'rising' 'falling' 'either' 'level' 'sampled level'</pre>
InitialConditionSource	Initial condition source	<pre>string — {'internal'} 'external'</pre>
InitialCondition	Initial condition	scalar or vector — { '0 ' }
InitialConditionMode	Use initial condition as initial and reset value for	<pre>string — 'State only (most efficient)' {'State and output'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' 1 ' }
LimitOutput	Limit output	<pre>string — {'off'} 'on'</pre>
UpperSaturationLimit	Upper saturation limit	<pre>scalar or vector — { 'inf ' }</pre>
LowerSaturationLimit	Lower saturation limit	<pre>scalar or vector — { ' - inf ' }</pre>
ShowSaturationPort	Show saturation port	<pre>string — {'off'} 'on'</pre>
ShowStatePort	Show state port	<pre>string — {'off'} 'on'</pre>
IgnoreLimit	Ignore limit and reset when linearizing	<pre>string — {'off'} 'on'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
StateIdentifier	State name	string — { ' ' }
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
First-Order Hold (First-Order Hold) (masked subsystem)		
Ts	Sample time	string — { '1 ' }
Integer Delay (S-Function) (Int	teger Delay) (masked subsyster	n)
vinit	Initial condition	string — { '0.0 ' }
samptime	Sample time	string — { ' -1 ' }
NumDelays	Number of delays	string — { '4 ' }
Memory (Memory)		
X0	Initial condition	scalar or vector — $\{ 0' \}$
InheritSampleTime	Inherit sample time	<pre>string — {'off'} 'on'</pre>
LinearizeMemory	Direct feedthrough of input during linearization	<pre>string — {'off'} 'on'</pre>
LinearizeAsDelay	Treat as a unit delay when linearizing with discrete sample time	<pre>string — {'off'} 'on'</pre>
StateIdentifier	State name	string — { ' ' }
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }
Tapped Delay (S-Function) (Tapped Delay Line) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
samptime	Sample time	string — { ' -1 ' }
NumDelays	Number of delays	string — { '4 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
DelayOrder	Order output vector starting with	<pre>string — {'Oldest'} 'Newest'</pre>
includeCurrent	Include current input in output vector	<pre>string — {'off'} 'on'</pre>
Transfer Fcn First Order (Firs	t Order Transfer Fcn) (maske	ed subsystem)
PoleZ	Pole (in Z plane)	string — {'0.95'}
ICPrevOutput	Initial condition for previous output	string — {'0.0'}
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Transfer Fcn Lead or Lag (Lead	d or Lag Compensator) (masked	d subsystem)
PoleZ	Pole of compensator (in Z plane)	string — {'0.95'}
ZeroZ	Zero of compensator (in Z plane)	string — {'0.75'}
ICPrevOutput	Initial condition for previous output	string — {'0.0'}
ICPrevInput	Initial condition for previous input	string — {'0.0'}
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
Transfer Fcn Real Zero (Transfer Fcn Real Zero) (masked subsystem)		
ZeroZ	Zero (in Z plane)	string — { '0.75 ' }
ICPrevInput	Initial condition for previous input	string — {'0.0'}
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Unit Delay (UnitDelay)		
X0	Initial conditions	scalar or vector — { ' 0 ' }
SampleTime	Sample time	string — { ' - 1 ' }
StateIdentifier	State name	string — { ' ' }
StateMustResolveTo SignalObject	State name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop storage type qualifier	string — { ' ' }
Zero-Order Hold (ZeroOrderHold)		
SampleTime	Sample time (-1 for inherited)	string — { ' 1 ' }

Logic and Bit Operations Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Bit Clear (Bit Clear) (masked subsystem)		

Block (Type)/Parameter	Dialog Box Prompt	Values
iBit	Index of bit (0 is least significant)	string — {'0'}
Bit Set (Bit Set) (masked subs	system)	
iBit	Index of bit (0 is least significant)	string — {'0'}
Bitwise Operator (S-Function)	(Bitwise Operator) (masked sub	osystem)
logicop	Operator	string — {'AND'} 'OR' 'NAND' 'NOR' 'XOR' 'NOT'
UseBitMask	Use bit mask	<pre>string — 'off' {'on'}</pre>
NumInputPorts	Number of input ports	string — { ' 1 ' }
BitMask	Bit Mask	string — {'bin2dec('11011001')'}
BitMaskRealWorld	Treat mask as	<pre>string — 'Real World Value' {'Stored Integer'}</pre>
Combinatorial Logic (Combinat	orialLogic)	
TruthTable	Truth table	string — {'[0 0;0 1;0 1;1 0;0 1;1 0;1 0;1 1]'}
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Compare To Constant (Compare	e To Constant) (masked subsyste	em)
relop	Operator	string — '==' '~=' '<' {'<='} '>=' '>'
const	Constant value	string — { '3.0 ' }
LogicOutDataTypeMode	Output data type mode	<pre>string — {'uint8'} 'boolean'</pre>
ZeroCross	Enable zero-crossing detection	<pre>string — {'off'} 'on'</pre>
Compare To Zero (Compare To Zero) (masked subsystem)		

Block (Type)/Parameter	Dialog Box Prompt	Values
relop	Operator	string '==' '~=' '<' {'<='} '>=' '>'
LogicOutDataTypeMode	Output data type mode	string — {'uint8'} 'boolean'
ZeroCross	Enable zero-crossing detection	<pre>string — {'off'} 'on'</pre>
Detect Change (Detect Change	e) (masked subsystem)	
vinit	Initial condition	string — { '0' }
Detect Decrease (Detect Decr	ease) (masked subsystem)	
vinit	Initial condition	string — { '0.0 ' }
Detect Fall Negative (Detect F	all Negative) (masked subsyste	em)
vinit	Initial condition	string — { '0' }
Detect Fall Nonpositive (Detec	t Fall Nonpositive)(masked s	ubsystem)
vinit	Initial condition	string — { '0' }
Detect Increase (Detect Increase) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
Detect Rise Nonnegative (Dete	ct Rise Nonnegative)(masked	subsystem)
vinit	Initial condition	string — { '0' }
Detect Rise Positive (Detect Rise Positive) (masked subsystem)		
vinit	Initial condition	string — { '0' }
Extract Bits (Extract Bits) (masked subsystem)		
bitsToExtract	Bits to extract	<pre>string — {'Upper half'} 'Lower half' 'Range starting with most significant bit' 'Range ending with least significant bit' 'Range of bits'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
numBits	Number of bits	string — { '8' }
bitIdxRange	Bit indices ([start end], 0-based relative to LSB)	string — {'[0 7]'}
outScalingMode	Output scaling mode fixed-point scaling 'Treat bit field integer'	
Interval Test (Interval Test)	(masked subsystem)	
IntervalClosedRight	Interval closed on right	<pre>string — 'off' {'on'}</pre>
uplimit	Upper limit	string — { '0.5 ' }
IntervalClosedLeft	Interval closed on left	<pre>string — 'off' {'on'}</pre>
lowlimit	Lower limit	string — { ' -0.5 ' }
LogicOutDataTypeMode	Output data type mode	<pre>string — 'uint8' {'boolean'}</pre>
Interval Test Dynamic (Interva	al Test Dynamic)(masked subsy	ystem)
IntervalClosedRight	Interval closed on right	<pre>string — 'off' {'on'}</pre>
IntervalClosedLeft	Interval closed on left	<pre>string — 'off' {'on'}</pre>
LogicOutDataTypeMode	Output data type mode	<pre>string — 'uint8' {'boolean'}</pre>
Logical Operator (Logic)		
Operator	Operator	string — {'AND'} 'OR' 'NAND' 'NOR' 'XOR' 'NXOR' 'NOT'
Inputs	Number of input ports	string — { '2' }
IconShape	Icon shape	<pre>string — {'rectangular'} 'distinctive'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values	
AllPortsSameDT	Require all inputs and output to have the same data type	<pre>string — {'off'} 'on'</pre>	
OutDataTypeStr	Output data type String — 'Inherit: Logical (see Configuration Paramet Optimization)' {'boolean'} 'fixdt(1,16)'		
Relational Operator (Relation	alOperator)		
Operator	Relational operator	string '==' '~=' '<' {'<='} '>=' '>'	
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>	
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Logical (see Configuration Parameters: Optimization)' {'boolean'} 'fixdt(1,16)'</pre>	
Shift Arithmetic (Shift Arithmetic) (masked subsystem)			
nBitShiftRight	Number of bits to shift right (use negative value to shift left)	string — { '8 ' }	
nBinPtShiftRight	Number of places by which binary point shifts right (use negative value to shift left)	string — {'0'}	

Lookup Tables Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values			
Cosine (Cosine) (masked subs	Cosine (Cosine) (masked subsystem)				
Formula	Output formula	<pre>string — 'sin(2*pi*u)' {'cos(2*pi*u)'} 'exp(j*2*pi*u)' 'sin(2*pi*u) and cos(2*pi*u)'</pre>			
NumDataPoints	Number of data points for lookup table	string — { '(2^5)+1 '}			
OutputWordLength	Output word length	string — { '16 ' }			
Direct Lookup Table (n-D) (S-I	Function) (LookupNDDirect) ((masked subsystem)			
maskTabDims	Number of table dimensions	string — '1' {'2'} '3' '4' 'More'			
explicitNumDims	Explicit number of table dimensions	string — { '1' }			
outDims	Inputs select this object from table	<pre>string — {'Element'} 'Column' '2-D Matrix'</pre>			
tabIsInput	Make table an input	<pre>string — {'off'} 'on'</pre>			
mxTable	Table data	string — {'[4 5 6;16 19 20;10 18 23]'}			
clipFlag	Action for out of range input	<pre>string — 'None' {'Warning'} 'Error'</pre>			
samptime	Sample time	string — { ' - 1 ' }			
Interpolation Using Prelookup	Interpolation Using Prelookup (Interpolation_n-D)				
NumberOfTableDimensions	Number of table dimensions	string — '1' {'2'} '3' '4'			
Table	Table data	<pre>string — {'sqrt([1:11]' * [1:11])'}</pre>			
InterpMethod	Interpolation method	<pre>string — 'None - Flat' {'Linear'}</pre>			

Block (Type)/Parameter	Dialog Box Prompt	Values
ExtrapMethod	Extrapolation method	<pre>string — 'None - Clip' {'Linear'}</pre>
RangeErrorMode	Action for out of range input	<pre>string — {'None'} 'Warning' 'Error'</pre>
CheckIndexInCode	Check index in generated code	<pre>string — 'off' {'on'}</pre>
ValidIndexMayReachLast	Valid index input may reach last index	string — {'off'} 'on'
NumSelectionDims	Number of sub-table selection dimensions	string — {'0'}
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'Inherit: Inherit from table data'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnIntegerOverflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>

Lookup	Tables	Block	Parameters	(Continued)
--------	--------	-------	-------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
TableMin	Table minimum	string — { '[] '}
TableMax	Table maximum	string — { '[] '}
TableDataTypeStr	Table data type	<pre>string — 'Inherit: Inherit from 'Table data'' {'Inherit: Same as output'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16)' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
IntermediateResultsDataT	y fæßtr mediate results data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as output' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
Lookup Table (Lookup)		
InputValues	Vector of input values	vector — { '[-5:5] ' }

InputValues	Vector of input values	vector — { ' [-5:5] ' }
Table	Table data	<pre>vector — { 'tanh([-5:5]) ' }</pre>
LookUpMeth	Lookup method	<pre>string — {'Interpolation-Extrapolation'} 'Interpolation-Use End Values' 'Use Input Nearest' 'Use Input Below' 'Use Input Above'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
OutMin	Output minimum	string — { '[] ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'Inherit: Same as input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Lookup Table (2-D) (Lookup2))	
RowIndex	Row index input values	string — { '[1:3] ' }
ColumnIndex	Column index input values	string — { '[1:3] '}
Table	Table data	string — {'[4 5 6;16 19 20;10 18 23]'}
LookUpMeth	Lookup method	string — {'Interpolation-Extrapolation'} 'Interpolation-Use End Values' 'Use Input Nearest' 'Use Input Below' 'Use Input Above'
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] ' }
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'Inherit: Same as first input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Lookup Table (n-D) (Lookup_n	-D))	
NumberOfTableDimensions	Number of table dimensions	string — '1' {'2'} '3' '4'
BreakpointsForDimension1	Breakpoints for dimension 1	string — { '[10,22,31] '}
BreakpointsForDimension2	Breakpoints for dimension 2	string — { '[10,22,31] '}
BreakpointsForDimension3	Breakpoints for dimension 3	string — { '[1:3] ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
BreakpointsForDimension4	Breakpoints for dimension 4	string — { '[1:3] ' }
BreakpointsForDimension5	Breakpoints for dimension 5	string — { '[1:3] ' }
IndexSearchMethod	Index search method	<pre>string — 'Evenly spaced points' 'Linear search' {'Binary search'}</pre>
BeginIndexSearchUsing	Begin index search using	<pre>string — {'off'} 'on'</pre>
PreviousIndexResult	previous index result	
UseOneInputPortForAll	Use one input port for all	string — {'off'} 'on'
InputData	input data	
ProcessOutOfRangeInput	Process out-of-range input	<pre>string — {'None'} 'Warning' 'Error'</pre>
Table	Table data	string — {'[4 5 6;16 19 20;10 18 23]'}
InterpMethod	Interpolation method	string — 'None - Flat' {'Linear'} 'Cubic spline'
ExtrapMethod	Extrapolation method	<pre>string — 'None - Clip' {'Linear'} 'Cubic spline'</pre>
UseLastTableValue	Use last table value for inputs at or above last breakpoint	<pre>string — {'off'} 'on'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all inputs to have the same data type	<pre>string — 'off' {'on'}</pre>
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] '}

Lookup Table:	5 Block	Parameters	(Continued)
---------------	---------	-------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' 'Inherit: Inherit from table data' {'Inherit: Same as first input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
FractionDataTypeStr	Fraction data type	<pre>string — {'Inherit: Inherit via internal rule'} 'double' 'single' 'fixdt(1,16,0)'</pre>

Lookup Table Dynamic (Lookup Table Dynamic) (masked subsystem)

LookUpMeth	Lookup Method	string — 'Interpolation-Extrapolation' {'Interpolation-Use End Values'} 'Use Input Nearest' 'Use Input Below' 'Use Input Above'
OutDataTypeStr	Output data type	<pre>string — {'fixdt('double')'} 'Inherit: Inherit via back propagation' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
OutScaling	Deprecated	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Prelookup (PreLookup)		
BreakpointsData	Breakpoint data	string — { '[10:10:110] '}
IndexSearchMethod	Index search method	<pre>string — 'Evenly spaced points' 'Linear search' {'Binary search'}</pre>
BeginIndexSearchUsing PreviousIndexResult	Begin index search using previous index result	<pre>string — {'off'} 'on'</pre>
OutputOnlyTheIndex	Output only the index	<pre>string — {'off'} 'on'</pre>
ProcessOutOfRangeInput	Process out-of-range input	<pre>string — 'Clip to range' {'Linear extrapolation'}</pre>
UseLastBreakpoint	Use last breakpoint for input at or above upper limit	<pre>string — {'off'} 'on'</pre>
ActionForOutOfRangeInput	Action for out of range input	<pre>string — {'None'} 'Warning' 'Error'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values	
IndexDataTypeStr	Index data type	<pre>string — 'int8' 'uint8' 'int16' 'uint16' 'int32' {'uint32'} 'fixdt(1,16)'</pre>	
FractionDataTypeStr	Fraction data type	<pre>string — {'Inherit: Inherit via internal rule'} 'double' 'single' 'fixdt(1,16,0)'</pre>	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>	
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'	
BreakpointMin	Breakpoint minimum	string — { '[] '}	
BreakpointMax	Breakpoint maximum	string — { '[] '}	
BreakpointDataTypeStr	Breakpoint data type	<pre>string — {'Inherit: Same as input'} 'Inherit: Inherit from 'Breakpoint data'' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16)' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>	
Sine (Sine) (masked subsystem)			
Formula	Output formula	<pre>string — {'sin(2*pi*u)'} 'cos(2*pi*u)' 'exp(j*2*pi*u)' 'sin(2*pi*u) and cos(2*pi*u)'</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
NumDataPoints	Number of data points for lookup table	string — { '(2^5)+1 '}
OutputWordLength	Output word length	string — { '16 ' }

Math Operations Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Abs (Abs)		
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via internal rule' 'Inherit: Inherit via back propagation' {'Inherit: Same as input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'

Math Operati	ons Library	Block Para	meters (Continued)
--------------	-------------	-------------------	--------------------

Block (Type)/Parameter	Dialog Box Prompt	Values
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Add (Sum)		
IconShape	Icon shape	<pre>string — {'rectangular'} 'round'</pre>
Inputs	List of signs	string — { ' ++ ' }
CollapseMode	Sum over	<pre>string — {'All dimensions'} 'Specified dimension'</pre>
CollapseDim	Dimension	string — { ' 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
AccumDataTypeStr	Accumulator data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutMin	Output minimum	string — { '[]'}
OutMax	Output maximum	string — { '[] '}

Block (Type)/Parameter	Dialog Box Prompt	Values	
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'Inherit: Same as accumulator' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>	
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'	
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>	
Algebraic Constraint (Algebraic Constraint) (masked subsystem)			
z0	Initial guess	string — { '0 ' }	
Assignment (Assignment)			
NumberOfDimensions	Number of output dimensions	string — { ' 1 ' }	
IndexMode	Index mode	<pre>string — 'Zero-based' {'One-based'}</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
OutputInitialize	Initialize output (Y)	<pre>string — {'Initialize using input port <y0>'} 'Specify size for each dimension in table'</y0></pre>
IndexOptionArray	Index Option	<pre>string — 'Assign all' {'Index vector (dialog)'} 'Index vector (port)' 'Starting index (dialog)' 'Starting index (port)'</pre>
IndexParamArray	Index	cell array
OutputSizeArray	Output Size	cell array
DiagnosticForDimensions	Action if any output element is not assigned	<pre>string — 'Error' 'Warning' {'None'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
IndexOptions	See IndexOptionArray parameter for more information.	
Indices	See IndexParamArray parameter for more information.	
OutputSizes	See OutputSizeArray parameter for more information.	
Bias (Bias)		
Bias	Bias	string — {'0.0'}
SaturateOnInteger	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>

Complex to Magnitude-Angle (ComplexToMagnitudeAngle)

Overflow

Block (Type)/Parameter	Dialog Box Prompt	Values
Output	Output	<pre>string — 'Magnitude' 'Angle' {'Magnitude and angle'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Complex to Real-Imag (Comple	exToRealImag)	
Output	Output	<pre>string — 'Real' 'Imag' {'Real and imag'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Divide (Product)		
Inputs	Number of inputs	string — { ' * / ' }
Multiplication	Multiplication	<pre>string — {'Element-wise(.*)'} 'Matrix(*)'</pre>
SampleTime	Sample time (-1 for inherited)	string {'-1'}
InputSameDT	Require all inputs to have same data type	<pre>string — {'off'} 'on'</pre>
OutMin	Output minimum	string — { '[]'}
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Dot Product (Dot Product)		
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all inputs to have same data type	<pre>string — 'off' {'on'}</pre>
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[]'}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
OutScaling	Deprecated	

Block (Type)/Parameter	Dialog Box Prompt	Values
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Gain (Gain)		
Gain	Gain	string — { ' 1 ' }
Multiplication	Multiplication	<pre>string — {'Element-wise(K.*u)'} 'Matrix(K*u)' 'Matrix(u*K)' 'Matrix(K*u) (u vector)'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
ParamMin	Parameter minimum	string — { '[]'}
ParamMax	Parameter maximum	string — { '[] '}
ParamDataTypeStr	Parameter data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16)' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
Magnitude-Angle to Complex (MagnitudeAngleToComplex)		
Input	Input	string — 'Magnitude' 'Angle' {'Magnitude and angle'}
ConstantPart	Magnitude or Angle	string — { '0' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Math Function (Math)		

Block (Type)/Parameter	Dialog Box Prompt	Values
Operator	Function	<pre>string — {'exp'} 'log' '10^u' 'log10' 'magnitude^2' 'square' 'sqrt' 'pow' 'conj' 'reciprocal' 'hypot' 'rem' 'mod' 'transpose' 'hermitian'</pre>
OutputSignalType	Output signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via internal rule' 'Inherit: Inherit via back propagation' {'Inherit: Same as first input'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — 'off' {'on'}</pre>
Matrix Concatenate (Concatena	ate)	
NumInputs	Number of inputs	string — { '2' }
Mode	Mode	string — 'Vector' {'Multidimensional array'}
ConcatenateDimension	Concatenate dimension	string — { '2' }
MinMax (MinMax)		
Function	Function	<pre>string — {'min'} 'max'</pre>
Inputs	Number of input ports	string — { '1 ' }
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
MinMax Running Resettable	(MinMax Running Resettable)(n	nasked subsystem)
Function	Function	<pre>string — {'min'} 'max'</pre>
vinit	Initial condition	string — { '0.0 ' }
Permute Dimensions (Permut	eDimensions)	
Order	Order	string — { '[2,1] ' }
Polynomial (Polyval)		
coefs	Polynomial Coefficients	<pre>string — {'[+2.081618890e-019, -1.441693666e-014, +4.719686976e-010, -8.536869453e-006, +1.621573104e-001, -8.087801117e+001]'}</pre>
Product (Product)		
Inputs	Number of inputs	string — { '2' }
Multiplication	Multiplication	<pre>string — {'Element-wise(.*)'} 'Matrix(*)'</pre>
CollapseMode	Multiply over	<pre>string — {'All dimensions'} 'Specified dimension'</pre>
CollapseDim	Dimension	string — { '1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
InputSameDT	Require all inputs to have same data type	<pre>string — {'off'} 'on'</pre>
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' 'Floor' 'Nearest' 'Round' 'Simplest' {'Zero'}
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Product of Elements (Product)		
Inputs	Number of inputs	string — { ' * ' }
Multiplication	Multiplication	string — {'Element-wise(.*)'} 'Matrix(*)'

Block (Type)/Parameter	Dialog Box Prompt	Values
CollapseMode	Multiply over	<pre>string — {'All dimensions'} 'Specified dimension'</pre>
CollapseDim	Dimension	string — { ' 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all inputs to have same data type	<pre>string — {'off'} 'on'</pre>
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Real-Imag to Complex (RealIm	agToComplex)	·

Block (Type)/Parameter	Dialog Box Prompt	Values
Input	Input	<pre>string — 'Real' 'Imag' {'Real and imag'}</pre>
ConstantPart	Real part or Imag part	string — { '0 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Reshape (Reshape)		
OutputDimensionality	Output dimensionality	<pre>string — {'1-D array'} 'Column vector (2-D)' 'Row vector (2-D)' 'Customize' 'Derive from reference input port'</pre>
OutputDimensions	Output dimensions	string — {'[1,1]'}
Rounding Function (Rounding)		
Operator	Function	<pre>string — {'floor'} 'ceil' 'round' 'fix'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Sign (Signum)		
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Sine Wave Function (Sin)		
SineType	Sine type	<pre>string — {'Time based'} 'Sample based'</pre>
TimeSource	Time (t)	<pre>string — 'Use simulation time' {'Use external signal'}</pre>
Amplitude	Amplitude	string — { ' 1 ' }
Bias	Bias	string — { '0' }
Frequency	Frequency (rad/sec)	string — { ' 1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values	
Phase	Phase (rad)	string — { '0 ' }	
Samples	Samples per period	string — { '10 ' }	
Offset	Number of offset samples	string — { '0' }	
SampleTime	Sample time	string — { '0 ' }	
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>	
Slider Gain (Slider Gain) (ma	sked subsystem)		
low	Low	string — { '0 ' }	
gain	Gain	string — { ' 1 ' }	
high	High	string — { '2' }	
Squeeze (Squeeze) (masked sub	Squeeze (Squeeze) (masked subsystem)		
None	None	None	
Subtract (Sum)			
IconShape	Icon shape	<pre>string — {'rectangular'} 'round'</pre>	
Inputs	List of signs	string — { '+- ' }	
CollapseMode	Sum over	<pre>string — {'All dimensions'} 'Specified dimension'</pre>	
CollapseDim	Dimension	string — { ' 1 ' }	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>	

Math Operations Library Block Parameters (C	Continued)
---	------------

Block (Type)/Parameter	Dialog Box Prompt	Values
AccumDataTypeStr	Accumulator data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'Inherit: Same as accumulator' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Sum (Sum)		
IconShape	Icon shape	<pre>string — 'rectangular' {'round'}</pre>
Inputs	List of signs	string — { ' ++ ' }
CollapseMode	Sum over	<pre>string — {'All dimensions'} 'Specified dimension'</pre>
CollapseDim	Dimension	string — { '1'}
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
AccumDataTypeStr	Accumulator data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'Inherit: Same as accumulator' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Sum of Elements (Sum)		
IconShape	Icon shape	<pre>string — {'rectangular'} 'round'</pre>
Inputs	List of signs	string — { '+' }
CollapseMode	Sum over	<pre>string — {'All dimensions'} 'Specified dimension'</pre>
CollapseDim	Dimension	string — { ' 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
InputSameDT	Require all inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
AccumDataTypeStr	Accumulator data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Same as first input' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'Inherit: Same as first input' 'Inherit: Same as accumulator' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Trigonometric Function (Trigo	nometry)	
Operator	Function	<pre>string — {'sin'} 'cos' 'tan' 'asin' 'acos' 'atan' 'atan2' 'sinh' 'cosh' 'tanh' 'asinh' 'acosh' 'atanh' 'sincos'</pre>
OutputSignalType	Output signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Unary Minus (Unary Minus) (m	nasked subsystem)	
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Vector Concatenate (Concatena	ite)	
NumInputs	Number of inputs	string — { '2 ' }
Mode	Mode	<pre>string — {'Vector'} 'Multidimensional array'</pre>
Weighted Sample Time Math (Sample Time Math) (masked subsystem)		
TsampMathOp	Operation	<pre>string — {'+'} '-' '*' '/' 'Ts Only' '1/Ts Only'</pre>
weightValue	Weight value	string — { '1.0 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
TsampMathImp	Implement using	<pre>string — {'Online Calculations'} 'Offline Scaling Adjustment'</pre>
OutputDataTypeScaling Mode	Output data type mode	string — {'Inherit via internal rule'} 'Inherit via back propagation'
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>

Model Verification Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values	
Assertion (Assertion)			
Enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>	
AssertionFailFcn	Simulation callback when assertion fails	string — { ' ' }	
StopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
Check Dynamic Gap (Checks_D	Check Dynamic Gap (Checks_DGap) (masked subsystem)		
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>	
callback	Simulation callback when assertion fails (optional)	string — { ' ' }	
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>
Check Dynamic Range (Checks	s_DRange) (masked subsystem)	
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>
callback	Simulation callback when assertion fails (optional)	string — { ' ' }
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>
Check Static Gap (Checks_SG	ap) (masked subsystem)	
max	Upper bound	string — { '100 ' }
max_included	Inclusive upper bound	<pre>string — 'off' {'on'}</pre>
min	Lower bound	string — { '0' }
min_included	Inclusive lower bound	<pre>string — 'off' {'on'}</pre>
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>
callback	Simulation callback when assertion fails (optional)	string — { ' ' }
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>
Check Static Range (Checks_SRange) (masked subsystem)		
max	Upper bound	string — { '100 ' }

		Values
Block (Type)/Parameter	Dialog Box Prompt	
max_included	Inclusive upper bound	<pre>string — 'off' {'on'}</pre>
min	Lower bound	string — { '0 ' }
min_included	Inclusive lower bound	<pre>string — 'off' {'on'}</pre>
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>
callback	Simulation callback when assertion fails (optional)	string — { ' ' }
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>
Check Discrete Gradient (Chec	cks_Gradient) (masked subsystem	n)
gradient	Maximum gradient	string — { ' 1 ' }
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>
callback	Simulation callback when assertion fails (optional)	string — { ' ' }
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>
Check Dynamic Lower Bound (Checks_DMin) (masked subsystem)		
Enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>
callback	Simulation callback when assertion fails (optional)	string — { ' ' }
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values	
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>	
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>	
Check Dynamic Upper Bound	(Checks_DMax) (masked subsystem	m)	
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>	
callback	Simulation callback when assertion fails (optional)	string — { ' ' }	
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>	
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>	
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>	
Check Input Resolution (Check	<pre>Ks_Resolution) (masked subsystem)</pre>	em)	
resolution	Resolution	string — { '1 ' }	
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>	
callback	Simulation callback when assertion fails (optional)	string — { ' ' }	
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>	
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>	
Check Static Lower Bound (Ch	Check Static Lower Bound (Checks_SMin) (masked subsystem)		
min	Lower bound	string — { '0 ' }	
min_included	Inclusive boundary	<pre>string — 'off' {'on'}</pre>	
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>	
callback	Simulation callback when assertion fails (optional)	string — { ' ' }	

Block (Type)/Parameter	Dialog Box Prompt	Values
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>
Check Static Upper Bound (Che	ecks_SMax) (masked subsystem)	
max	Upper bound	string — { '0' }
max_included	Inclusive boundary	<pre>string — 'off' {'on'}</pre>
enabled	Enable assertion	<pre>string — 'off' {'on'}</pre>
callback	Simulation callback when assertion fails (optional)	string — { ' ' }
stopWhenAssertionFail	Stop simulation when assertion fails	<pre>string — 'off' {'on'}</pre>
export	Output assertion signal	<pre>string — {'off'} 'on'</pre>
icon	Select icon type	<pre>string — {'graphic'} 'text'</pre>

Model-Wide Utilities Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Block Support Table (Block Support Table) (masked subsystem)		
DocBlock (DocBlock) (masked subsystem)		
ECoderFlag	Real-Time Workshop Embedded Coder Flag	string — { ' ' }
DocumentType	Document Type	<pre>string — {'Text'} 'RTF' 'HTML'</pre>
Model Info (CMBlock) (masked subsystem)		
InitialSaveTempField	InitialSaveTempField	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
InitialBlockCM	InitialBlockCM	<pre>string — { 'None ' }</pre>
BlockCM	BlockCM	<pre>string — { 'None ' }</pre>
Frame	Show block frame	<pre>string — 'off' {'on'}</pre>
SaveTempField	SaveTempField	string — { ' ' }
DisplayStringWithTags	DisplayStringWithTags	<pre>string — {'Model Info'}</pre>
MaskDisplayString	MaskDisplayString	<pre>string — {'Model Info'}</pre>
HorizontalTextAlignment	Horizontal text alignment	<pre>string — {'Center'}</pre>
LeftAlignmentValue	LeftAlignmentValue	string — { '0.5 ' }
SourceBlockDiagram	SourceBlockDiagram	<pre>string — { 'untitled' }</pre>
TagMaxNumber	TagMaxNumber	string — { '20 ' }
CMTag1	CMTag1	string — { ' ' }
CMTag2	CMTag2	string — { ' ' }
CMTag3	CMTag3	string — { ' ' }
CMTag4	CMTag4	string — { ' ' }
CMTag5	CMTag5	string — { ' ' }
CMTag6	CMTag6	string — { ' ' }
CMTag7	CMTag7	string — { ' ' }
CMTag8	CMTag8	string — { ' ' }
CMTag9	CMTag9	string — { ' ' }
CMTag10	CMTag10	string — { ' ' }
CMTag11	CMTag11	string — { ' ' }
CMTag12	CMTag12	string — { ' ' }
CMTag13	CMTag13	string — { ' ' }
CMTag14	CMTag14	string — { ' ' }
CMTag15	CMTag15	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
CMTag16	CMTag16	string — { ' ' }
CMTag17	CMTag17	string — { ' ' }
CMTag18	CMTag18	string — { ' ' }
CMTag19	CMTag19	string — { ' ' }
CMTag20	CMTag20	string — { ' ' }
Timed-Based Linearization (Timed Linearization) (masked subsystem)		
LinearizationTime	Linearization time	string — { ' 1 ' }
SampleTime	Sample time (of linearized model)	string — {'0'}
Trigger-Based Linearization (Triggered Linearization) (masked subsystem)		
TriggerType	Trigger type	string — {'rising'} 'falling' 'either' 'function-call'
SampleTime	Sample time (of linearized model)	string — {'0'}

Model-Wide Utilities Library Block Parameters (Continued)

Ports & Subsystems Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Action Port (ActionPort)		
InitializeStates	States when execution is resumed	<pre>string — {'held'} 'reset'</pre>
Atomic Subsystem (SubSystem)		

Block (Type)/Parameter	Dialog Box Prompt	Values
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
RTWSystemCode	Real-Time Workshop system code	string — {'Auto'} 'Inline' 'Function' 'Reusable function'
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'
IsSubsystemVirtual		boolean — {'Off'} 'on' Read-only

Block (Type)/Parameter	Dialog Box Prompt	Values
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
RTWSystemCode	Real-Time Workshop system code	<pre>string — 'Auto' 'Inline' 'Function' {'Reusable function'}</pre>
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — 'Auto' {'Use subsystem name'} 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — 'Auto' 'Use subsystem name' {'Use function name'} 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		<pre>boolean — {'off'} 'on' Read-only</pre>

Ports & Subsystems	Library Block Parameters	(Continued)
--------------------	--------------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	<pre>string — { 'self ' }</pre>
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — {'off'} 'on'</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values	
RTWSystemCode	Real-Time Workshop system code	string — {'Auto'} 'Inline' 'Function' 'Reusable function'	
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>	
RTWFcnName	Real-Time Workshop function name	string — { ' ' }	
RTWFileNameOpts	Real-Time Workshop filename options	string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'	
RTWFileName	Real-Time Workshop Workshop (no extension)	string — { ' ' }	
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>	
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>	
IsSubsystemVirtual		<pre>boolean — {'on'} 'off'</pre>	
		Read-only	
Enable (EnablePort)	Enable (EnablePort)		
StatesWhenEnabling	States when enabling	<pre>string — { 'held ' } 'reset '</pre>	
ShowOutputPort	Show output port	<pre>string — {'off'} 'on'</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
Enabled and Triggered Subsystem (SubSystem)		
ShowPortLabels	Show port labels	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' </pre>
	Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	'SignalName' 'off' 'on'
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
RTWSystemCode	Real-Time Workshop system code	string — {'Auto'} 'Inline' 'Function' 'Reusable function'
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
		<pre>boolean — {'off'} 'on'</pre>
IsSubsystemVirtual		

Ports & Subsystem	Library Block Parameters	(Continued)
-------------------	--------------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
RTWSystemCode	Real-Time Workshop system code	string — {'Auto'} 'Inline' 'Function' 'Reusable function'
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		<pre>boolean — {'off'} 'on'</pre>
		Read-only
For Iterator (ForIterator)		
ResetStates	States when starting	<pre>string — { 'held' } 'reset'</pre>
IterationSource	Iteration limit source	<pre>string — {'internal'} 'external'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values		
IterationLimit	Iteration limit	string — { '5 ' }		
ExternalIncrement	Set next i (iteration variable) externally	<pre>string — {'off'} 'on'</pre>		
ShowIterationPort	Show iteration variable	<pre>string — 'off' {'on'}</pre>		
IndexMode	Index mode	<pre>string — 'Zero-based' {'One-based'}</pre>		
IterationVariable DataType	Iteration variable data type	string — {'int32'} 'int16' 'int8' 'double'		
For Iterator Subsystem (SubSys	For Iterator Subsystem (SubSystem)			
ShowPortLabels	Show port labels	string — 'none' {'FromPortIcon'} 'FromPortBlockName'		
	Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	'SignalName' 'off' 'on'		
BlockChoice	Block choice	string — { ' ' }		
TemplateBlock	Template block	string — { ' ' }		
MemberBlocks	Member blocks	string — { ' ' }		
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>		
ErrorFcn	Name of error callback function	string — { ' ' }		
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>		

Block (Type)/Parameter	Dialog Box Prompt	Values
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
RTWSystemCode	Real-Time Workshop system code	string — {'Auto'} 'Inline' 'Function' 'Reusable function'
RTWFcnNameOpts	Real-Time Workshop function name options	string — {'Auto'} 'Use subsystem name' 'User specified'
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values	
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>	
IsSubsystemVirtual		<pre>boolean — {'off'} 'on'</pre>	
		Read-only	
Function-Call Generator (Funct	ion-Call Generator)(masked s	subsystem)	
sample_time	Sample time	string — { ' 1 ' }	
numberOfIterations	Number of iterations	string — { ' 1 ' }	
Function-Call Subsystem (SubSystem)			
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>	
BlockChoice	Block choice	string — { ' ' }	
TemplateBlock	Template block	string — { ' ' }	
MemberBlocks	Member blocks	string — { ' ' }	
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>	
ErrorFcn	Name of error callback function	string — { ' ' }	

Block (Type)/Parameter	Dialog Box Prompt	Values
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	string — {'off'} 'on'
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
RTWSystemCode	Real-Time Workshop system code	<pre>string — {'Auto'} 'Inline' 'Function' 'Reusable function'</pre>
RTWFcnNameOpts	Real-Time Workshop function name options	string — {'Auto'} 'Use subsystem name' 'User specified'
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		<pre>boolean — {'off'} 'on'</pre>
		Read-only
If (If)		
NumInputs	Number of inputs	string — { ' 1 ' }
IfExpression	If expression (e.g., $u1 \sim = 0$)	string — { 'u1 > 0 ' }
ElseIfExpressions	Elseif expressions (comma-separated list, e.g., u2 ~= 0, u3(2) < u2)	string — {''}
ShowElse	Show else condition	<pre>string — 'off' {'on'}</pre>
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
If Action Subsystem (SubSystem	n)	
ShowPortLabels	Show port labels	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' </pre>
	Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	'SignalName' 'off' 'on'
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
RTWSystemCode	Real-Time Workshop system code	<pre>string — {'Auto'} 'Inline' 'Function' 'Reusable function'</pre>
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }

	Ports & Subsystems	Library Block Paran	neters (Continued)
--	--------------------	---------------------	--------------------

Block (Type)/Parameter	Dialog Box Prompt	Values
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		<pre>boolean — {'off'} 'on'</pre>
		Read-only
In1 (Inport)		
Port	Port number	string — { ' 1 ' }
IconDisplay	Icon display	string — 'Signal name' {'Port number'} 'Port number and signal name'
LatchByDelaying OutsideSignal	Latch input by delaying outside signal	<pre>string — {'off'} 'on'</pre>
LatchByCopying InsideSignal	Latch input by copying inside signal	<pre>string — {'off'} 'on'</pre>
Interpolate	Interpolate data	<pre>string — 'off' {'on'}</pre>
UseBusObject	Specify properties via bus object	<pre>string — {'off'} 'on'</pre>
BusObject	Bus object for specifying bus properties	<pre>string — {'BusObject'}</pre>
BusOutputAsStruct	Output as nonvirtual bus	<pre>string — {'off'} 'on'</pre>
PortDimensions	Port dimensions (-1 for inherited)	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
OutMin	Minimum	string — { '[] ' }
OutMax	Maximum	string — { '[]'}
OutDataTypeStr	Data type	<pre>string — {'Inherit: auto'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
SignalType	Signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SamplingMode	Sampling mode	<pre>string — {'auto'} 'Sample based' 'Frame based'</pre>
Model (ModelReference)		
ModelName	Model name (without the .mdl extension)	<pre>string — {'<enter model="" name="">'}</enter></pre>
ParameterArgumentNames	Model arguments	string — { ' ' }
ParameterArgumentValues	Model argument values (for this instance)	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
SimulationMode	Simulation mode Note Specifies whether to simulate the model by generating and executing code or by interpreting the model in Simulink software.	<pre>string — {'Accelerator'} 'Normal' 'Processor-in-the-loop (PIL)'</pre>
AvailSigsInstanceProps		handle vector — { ' ' }
AvailSigsDefaultProps		handle vector — { ' ' }
DefaultDataLogging		<pre>string — {'off'} 'on'</pre>
Out1 (Outport)		
Port	Port number	string — { ' 1 ' }
IconDisplay	Icon display	string — 'Signal name' {'Port number'} 'Port number and signal name'
UseBusObject	Specify properties via bus object	<pre>string — {'off'} 'on'</pre>
BusObject	Bus object for specifying bus properties	<pre>string — {'BusObject'}</pre>
BusOutputAsStruct	Output as nonvirtual bus in parent model	<pre>string — {'off'} 'on'</pre>
PortDimensions	Port dimensions (-1 for inherited)	string — { ' - 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
OutMin	Minimum	string — { '[] '}
OutMax	Maximum	string — { '[]'}

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Data type	<pre>string — {'Inherit: auto'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
SignalType	Signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SamplingMode	Sampling mode	<pre>string — {'auto'} 'Sample based' 'Frame based'</pre>
OutputWhenDisabled	Output when disabled	<pre>string — { 'held' } 'reset'</pre>
InitialOutput	Initial output	string — { '[] ' }
Subsystem (SubSystem)		
ShowPortLabels	Show port labels	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' </pre>
	Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	'SignalName' 'off' 'on'
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — {'off'} 'on'</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
RTWSystemCode	Real-Time Workshop system code	<pre>string — {'Auto'} 'Inline' 'Function' 'Reusable function'</pre>
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string {''}
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		<pre>boolean — {'on'} 'off'</pre>
		Read-only
Virtual	For internal use	
Switch Case (SwitchCase)		
CaseConditions	Case conditions (e.g., $\{1, [2,3]\}$)	string — { ' { 1 } ' }
CaseShowDefault	Show default case	<pre>string — 'off' {'on'}</pre>
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Switch Case Action Subsystem	(SubSystem)	
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
RTWSystemCode	Real-Time Workshop system code	<pre>string — {'Auto'} 'Inline' 'Function' 'Reusable function'</pre>
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>
RTWFcnName	Real-Time Workshop function name	string — { ' ' }
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		<pre>boolean — {'off'} 'on'</pre>
		Read-only
Trigger (TriggerPort)		
TriggerType	Trigger type	string — {'rising'} 'falling' 'either' 'function-call'
StatesWhenEnabling	States when enabling	<pre>string — {'held'} 'reset' 'inherit'</pre>
ShowOutputPort	Show output port	<pre>string — {'off'} 'on'</pre>
OutputDataType	Output data type	<pre>string — {'auto'} 'double' 'int8'</pre>
SampleTimeType	Sample time type	<pre>string — {'triggered'} 'periodic'</pre>
SampleTime	Sample time	string — { ' 1 ' }
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
Triggered Subsystem (SubSyst	em)	

Ports & Subsystems	Library Block Parameters	(Continued)
--------------------	--------------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
ShowPortLabels	Show port labels Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' 'SignalName' 'off' 'on'</pre>
BlockChoice	Block choice	string — { ' ' }
TemplateBlock	Template block	string — { ' ' }
MemberBlocks	Member blocks	string — { ' ' }
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>
ErrorFcn	Name of error callback function	string — { ' ' }
PermitHierarchical Resolution	Permit hierarchical resolution	<pre>string — {'All'} 'ExplicitOnly' 'None'</pre>
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>
SystemSampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values	
RTWSystemCode	Real-Time Workshop system code	<pre>string — {'Auto'} 'Inline' 'Function' 'Reusable function'</pre>	
RTWFcnNameOpts	Real-Time Workshop function name options	<pre>string — {'Auto'} 'Use subsystem name' 'User specified'</pre>	
RTWFcnName	Real-Time Workshop function name	string — { ' ' }	
RTWFileNameOpts	Real-Time Workshop filename options	<pre>string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'</pre>	
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }	
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'	
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'	
IsSubsystemVirtual		<pre>boolean — {'off'} 'on'</pre>	
		Read-only	
While Iterator (WhileIterato	r)		
MaxIters	Maximum number of iterations (-1 for unlimited)	string — { '5 ' }	

Block (Type)/Parameter	Dialog Box Prompt	Values	
WhileBlockType	While loop type string — {'while'} 'do-while'		
ResetStates	States when starting	<pre>string — { 'held ' } 'reset '</pre>	
ShowIterationPort	Show iteration number port	<pre>string — {'off'} 'on'</pre>	
OutputDataType	Output data type	string — {'int32'} 'int16' 'int8' 'double'	
While Iterator Subsystem (Subs	System)		
ShowPortLabels	Show port labels	<pre>string — 'none' {'FromPortIcon'} 'FromPortBlockName' </pre>	
	Note The values 'off' and 'on' are for backward compatibility only and should not be used in new models or when updating existing models.	'SignalName' 'off' 'on'	
BlockChoice	Block choice	string — { ' ' }	
TemplateBlock	Template block	string — { ' ' }	
MemberBlocks	Member blocks	string — { ' ' }	
Permissions	Read/Write permissions	<pre>string — {'ReadWrite'} 'ReadOnly' 'NoReadOrWrite'</pre>	
ErrorFcn	Name of error callback function	string — { ' ' }	
PermitHierarchical Resolution	Permit hierarchical resolution	n string — {'All'} 'ExplicitOnly' 'None'	
TreatAsAtomicUnit	Treat as atomic unit	<pre>string — 'off' {'on'}</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values	
MinAlgLoopOccurrences	Minimize algebraic loop occurrences	<pre>string — {'off'} 'on'</pre>	
PropExecContext OutsideSubsystem	Propagate execution context across subsystem boundary	<pre>string — {'off'} 'on'</pre>	
CheckFcnCallInp InsideContextMsg	Warn if function-call inputs are context-specific	<pre>string — {'off'} 'on'</pre>	
SystemSampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
RTWSystemCode	Real-Time Workshop system code	string — {'Auto'} 'Inline' 'Function' 'Reusable function'	
RTWFcnNameOpts	Real-Time Workshop function name options	string — {'Auto'} 'Use subsystem name' 'User specified'	
RTWFcnName	Real-Time Workshop function name	string — { ' ' }	
RTWFileNameOpts	Real-Time Workshop filename options	string — {'Auto'} 'Use subsystem name' 'Use function name' 'User specified'	
RTWFileName	Real-Time Workshop filename (no extension)	string — { ' ' }	
DataTypeOverride	Specifies data type used to override fixed-point data types. Set by Data type override on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'ScaledDoubles' 'TrueDoubles' 'TrueSingles' 'ForceOff'</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
MinMaxOverflowLogging	Setting for fixed-point logging. Set by Logging mode on the Fixed-Point Tool.	<pre>string — {'UseLocalSettings'} 'MinMaxAndOverflow' 'OverflowOnly' 'ForceOff'</pre>
IsSubsystemVirtual		boolean — {'off'} 'on' Read-only

Signal Attributes Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values			
Bus to Vector (BusToVector)	Bus to Vector (BusToVector)				
Data Type Conversion (DataTyp	peConversion)				
OutMin	Output minimum	string — { '[] ' }			
OutMax	Output maximum	string — { '[] ' }			
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via back propagation'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>			
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>			
ConvertRealWorld	Input and output to have equal	<pre>string — {'Real World Value (RWV)'} 'Stored Integer (SI)'</pre>			

Signal Attributes Libra	ry Block Parameters (Continued)
-------------------------	---------------------------------

Block (Type)/Parameter	Dialog Box Prompt	Values	
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>	
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>	
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }	
Data Type Conversion Inherite	${ m d}$ (Conversion Inherited) (${ m mask}$	xed subsystem)	
ConvertRealWorld	Input and Output to have equal	string — {'Real World Value'} 'Stored Integer'	
RndMeth	Integer rounding mode	<pre>string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'</pre>	
DoSatur	Saturate to max or min when overflows occur	string — {'off'} 'on'	
Data Type Duplicate (Data Typ	e Duplicate) (masked subsyster	n)	
NumInputPorts	Number of input ports	string — { '2 ' }	
Data Type Propagation (Data 1	ype Propagation) (masked subs	ystem)	
PropDataTypeMode	1. Propagated data type	<pre>string — 'Specify via dialog' {'Inherit via propagation rule'}</pre>	
PropDataType	<pre>1.1. Propagated data type (e.g., fixdt(1,16), fixdt('single'))</pre>	<pre>string — {'fixdt(1,16)'}</pre>	
IfRefDouble	1.1. If any reference input is double, output is	<pre>string — {'double'} 'single'</pre>	
IfRefSingle	1.2. If any reference input is single, output is	<pre>string — 'double' {'single'}</pre>	

Signal Attributes	Library	Block	Parameters	(Continued)
--------------------------	---------	-------	-------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values	
IsSigned	1.3. Is-Signed	<pre>string — 'IsSigned1' 'IsSigned2' {'IsSigned1 or IsSigned2'} 'TRUE' 'FALSE'</pre>	
NumBitsBase	1.4.1. Number-of-Bits: Base	<pre>string — 'NumBits1' 'NumBits2' {'max([NumBits1 NumBits2])'} 'min([NumBits1 NumBits2])' 'NumBits2])' </pre>	
NumBitsMult	1.4.2. Number-of-Bits: Multiplicative adjustment	string — { '1' }	
NumBitsAdd	1.4.3. Number-of-Bits: Additive adjustment	<pre>string — { '0 ' }</pre>	
NumBitsAllowFinal	1.4.4. Number-of-Bits: Allowable final values	string — {'1:128'}	
PropScalingMode	2. Propagated scaling	<pre>string — 'Specify via dialog' {'Inherit via propagation rule'} 'Obtain via best precision'</pre>	
PropScaling	2.1. Propagated scaling: Slope or [Slope Bias] ex. 2 ⁻⁹	string — {'2^-10'}	
ValuesUsedBestPrec	2.1. Values used to determine best precision scaling	string — {'[5 -7]'}	

Block (Type)/Parameter	Dialog Box Prompt	Values
SlopeBase	2.1.1. Slope: Base	<pre>string — 'Slope1' 'Slope2' 'max([Slope1 Slope2])' {'min([Slope1 Slope2])'} 'Slope1*Slope2' 'Slope1/Slope2' 'PosRange1' 'PosRange2' 'max([PosRange1 PosRange2])' 'min([PosRange1 PosRange2])' 'PosRange1*PosRange2' 'PosRange1/PosRange2'</pre>
SlopeMult	2.1.2. Slope: Multiplicative adjustment	string — { '1'}
SlopeAdd	2.1.3. Slope: Additive adjustment	string — {'0'}
BiasBase	2.2.1. Bias: Base	<pre>string — {'Bias1'} 'Bias2' 'max([Bias1 Bias2])' 'min([Bias1 Bias2])' 'Bias1*Bias2' 'Bias1/Bias2' 'Bias1+Bias2' 'Bias1-Bias2'</pre>
BiasMult	2.2.2. Bias: Multiplicative adjustment	string — { '1' }
BiasAdd	2.2.3. Bias: Additive adjustment	<pre>string — {'0'}</pre>
Data Type Scaling Strip (Scali	ng Strip) (masked subsystem)	
IC (InitialCondition)		
Value	Initial value	string — { ' 1 ' }

Sample time (-1 for inherited)

string — { ' - 1 ' }

Signal Attributes Library Block Parameters (Continued)

SampleTime

Block (Type)/Parameter	Dialog Box Prompt	Values	
Probe (Probe)			
ProbeWidth	Probe width string — 'off' { 'on		
ProbeSampleTime	Probe sample time	<pre>string — 'off' {'on'}</pre>	
ProbeComplexSignal	Detect complex signal	<pre>string — 'off' {'on'}</pre>	
ProbeSignalDimensions	Probe signal dimensions	<pre>string — 'off' {'on'}</pre>	
ProbeFramedSignal	Detect framed signal	<pre>string — 'off' {'on'}</pre>	
ProbeWidthDataType	Data type for width	<pre>string — {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'Same as input'</pre>	
ProbeSampleTimeDataType	Data type for sample time	<pre>string — {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'Same as input'</pre>	
ProbeComplexityDataType	Data type for signal complexity	<pre>string — {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'Same as input'</pre>	
ProbeDimensionsDataType	Data type for signal dimensions	<pre>string — {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'Same as input'</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values	
ProbeFrameDataType	Data type for signal frames	<pre>string — {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'Same as input'</pre>	
Rate Transition (RateTransiti	on)		
Integrity	Ensure data integrity during data transfer	<pre>string — 'off' {'on'}</pre>	
Deterministic	Ensure deterministic data transfer (maximum delay)	<pre>string — 'off' {'on'}</pre>	
XO	Initial conditions	string — { '0 ' }	
OutPortSampleTimeOpt	Output port sample time options String — {'Specify'} 'Inherit' 'Multip input port sample t		
OutPortSampleTimeMultiple	Sample time multiple (>0) string — { '1 ' }		
OutPortSampleTime	Output port sample time	string — { ' - 1 ' }	
Signal Conversion (SignalConv	ersion)		
ConversionOutput	Output	<pre>string — {'Contiguous copy'} 'Bus copy' 'Virtual bus' 'Nonvirtual bus'</pre>	
OverrideOpt	Override optimizations and always copy signal	<pre>string — {'off'} 'on'</pre>	
Signal Specification (SignalSpe	cification)		
Dimensions	Dimensions (-1 for inherited) string — { ' -1 ' }		
SampleTime	Sample time (-1 for inherited) string — { ' -1 ' }		
OutMin	Minimum	string — { '[] ' }	
OutMax	Maximum string — { ' [] ' }		

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Data type	<pre>string — {'Inherit: auto'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
SignalType	Signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SamplingMode	Sampling mode	<pre>string — {'auto'} 'Sample based' 'Frame based'</pre>
Weighted Sample Time (Sample	e Time Math) (masked subsystem	h)
TsampMathOp	Operation	string — '+' '-' '*' '/' {'Ts Only'} '1/Ts Only'
weightValue	Weight value	string — { '1.0 ' }
TsampMathImp	Implement using	<pre>string — {'Online Calculations'} 'Offline Scaling Adjustment'</pre>
OutputDataTypeScaling Mode	Output data type mode	string — {'Inherit via internal rule'} 'Inherit via back propagation'
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'

Block (Type)/Parameter	Dialog Box Prompt	Values
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Width (Width)		
OutputDataTypeScaling Mode	Output data type mode	<pre>string — {'Choose intrinsic data type'} 'Inherit via back propagation' 'All ports same datatype'</pre>
DataType	Output data type	<pre>string — {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32'</pre>

Signal Routing Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Bus Assignment (BusAssignm	nent)	
AssignedSignals	Signals that are being assigned	string — { ' ' }
InputSignals	Signals in the bus	matrix — { ' { } ' }
Bus Creator (BusCreator)		
Inputs	Number of inputs. Can be an integer or a comma-separated list of signal names. For example, set_param(gcb, '''a'',''b''); sets the currently selected Bus Creator block two have two inputs named a and b.	string — {'2'}

Block (Type)/Parameter	Dialog Box Prompt	Values
DisplayOption		<pre>string — 'none' 'signals' {'bar'}</pre>
UseBusObject	Specify properties via bus object	<pre>string — {'off'} 'on'</pre>
BusObject	Bus object for specifying bus properties	<pre>string — {'BusObject'}</pre>
NonVirtualBus	Output as nonvirtual bus	<pre>string — {'off'} 'on'</pre>
Bus Selector (BusSelector)		
OutputSignals	Specifies the names of the input bus signals selected for output. Corresponds to the Selected signals list on the block's parameter dialog box.	<pre>string — {'signal1,signal2'}</pre>
OutputAsBus	Output as bus	<pre>string — {'off'} 'on'</pre>
InputSignals	Specifies the names of the signal elements of the bus connected to the Bus Selector's input port.	matrix — { ' { } ' }
Data Store Memory (DataSto	reMemory)	
DataStoreName	Data store name	string — { 'A' }
ReadBeforeWriteMsg	Detect read before write	<pre>string — 'none' {'warning'} 'error'</pre>
WriteAfterWriteMsg	Detect write after write	<pre>string — 'none' {'warning'} 'error'</pre>
WriteAfterReadMsg	Detect write after read	<pre>string — 'none' {'warning'} 'error'</pre>
InitialValue	Initial value	string — { '0' }

Block (Type)/Parameter	Dialog Box Prompt	Values
StateMustResolveTo SignalObject	Data store name must resolve to Simulink signal object	<pre>string — {'off'} 'on'</pre>
RTWStateStorageClass	Real-Time Workshop storage class	<pre>string — {'Auto'} 'ExportedGlobal' 'ImportedExtern' 'ImportedExternPointer'</pre>
RTWStateStorageType Qualifier	Real-Time Workshop type qualifier	string — { ' ' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
ShowAdditionalParam	Show additional parameters	<pre>string — {'off'} 'on'</pre>
OutMin	Minimum	string — { '[] '}
OutMax	Maximum	string — { '[] '}
OutDataTypeStr	Data type	<pre>string — {'Inherit: auto'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
SignalType	Signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
Data Store Read (DataStoreRead)		
DataStoreName	Data store name	string — { 'A' }
SampleTime	Sample time	string — { '0 ' }

Signal Routing Library Block Parameter	s (Continued)
---	---------------

Block (Type)/Parameter	Dialog Box Prompt	Values
Data Store Write (DataStoreWrite)		
DataStoreName	Data store name	string — { 'A' }
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Demux (Demux)		
Outputs	Number of outputs	string — { '2' }
DisplayOption	Display option	<pre>string — 'none' {'bar'}</pre>
BusSelectionMode	Bus selection mode	<pre>string — {'off'} 'on'</pre>
Environment Controller (Envi	ironment Controller)(maske	d subsystem)
From (From)		
GotoTag	Goto tag	string — { 'A' }
IconDisplay	Icon display	<pre>string — 'Signal name' {'Tag'} 'Tag and signal name'</pre>
Goto (Goto)		
GotoTag	Tag	string — { 'A' }
IconDisplay	Icon display	string — 'Signal name' {'Tag'} 'Tag and signal name'
TagVisibility	Tag visibility	<pre>string — {'local'} 'scoped' 'global'</pre>
Goto Tag Visibility (GotoTagVisibility)		
GotoTag	Goto tag	string — { 'A' }
Index Vector (Multi-Port Switch)		
Inputs	Number of inputs	string — { ' 1 ' }
zeroidx	Use zero-based indexing	<pre>string — 'off' {'on'}</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all data port inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Manual Switch (Manual Swit	ch) (masked subsystem)	
SW	Current setting	string — { '1'}
action	Action	string — { '0 ' }
Merge (Merge)		
Inputs	Number of inputs	string — { '2 ' }
InitialOutput	Initial output	string — { '[] ' }
AllowUnequalInput PortWidths	Allow unequal port widths	<pre>string — {'off'} 'on'</pre>
InputPortOffsets	Input port offsets	string — { '[] '}
Multiport Switch (Multi-Por	t Switch)	
Inputs	Number of inputs	string — { '3 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
zeroidx	Use zero-based indexing	<pre>string — {'off'} 'on'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all data port inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>
Mux (Mux)		
Inputs	Number of inputs	string — { '2 ' }
DisplayOption	Display option	<pre>string — 'none' 'signals' {'bar'}</pre>
UseBusObject	For internal use	

Block (Type)/Parameter	Dialog Box Prompt	Values
BusObject	For internal use	
NonVirtualBus	For internal use	
Selector (Selector)	·	
NumberOfDimensions	Number of input dimensions	string — { ' 1 ' }
IndexMode	Index mode	<pre>string — 'Zero-based' {'One-based'}</pre>
IndexOptionArray	Index Option	<pre>string — 'Select all' {'Index vector (dialog)'} 'Index vector (port)' 'Starting index (dialog)' 'Starting index (port)'</pre>
IndexParamArray	Index	cell array
OutputSizeArray	Output Size	cell array
InputPortWidth	Input port size	string — { ' 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
IndexOptions	See IndexOptionArray parameter for more information.	
Indices	See IndexParamArray parameter for more information.	
OutputSizes	See OutputSizeArray parameter for more information.	
Switch (Switch)		
Criteria	Criteria for passing first input	<pre>string — {'u2 >= Threshold'} 'u2 > Threshold' 'u2 ~= 0'</pre>
Threshold	Threshold	string — { '0 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
InputSameDT	Require all data port inputs to have the same data type	<pre>string — {'off'} 'on'</pre>
OutMin	Output minimum	string — { '[]'}
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit via internal rule'} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
SaturateOnInteger Overflow	Saturate on integer overflow	<pre>string — {'off'} 'on'</pre>

Sinks Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Display (Display)		

Sinks Libro	ary Block	Parameters	(Continued)
-------------	-----------	-------------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
Format	Format	<pre>string — {'short'} 'long' 'short_e' 'long_e' 'bank' 'hex (Stored Integer)' 'binary (Stored Integer)' 'decimal (Stored Integer)' 'octal (Stored Integer)'</pre>
Decimation	Decimation	string — { ' 1 ' }
Floating	Floating display	<pre>string — {'off'} 'on'</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
Floating Scope (Scope)		
Floating		<pre>string — 'off' {'on'}</pre>
Location		vector — {'[376 294 700 533]'}
Open		<pre>string — {'off'} 'on'</pre>
NumInputPorts		<pre>string {'1'}</pre>
TickLabels		<pre>string — 'on' 'off' {'OneTimeTick'}</pre>
ZoomMode		<pre>string — {'on'} 'xonly' 'yonly'</pre>
AxesTitles		string
Grid		<pre>string — 'off' {'on'} 'xonly' 'yonly'</pre>
TimeRange		<pre>string — { 'auto' }</pre>
YMin		string — { '-5 ' }
YMax		string — { '5 ' }
SaveToWorkspace		<pre>string — {'off'} 'on'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
SaveName		<pre>string — {'ScopeData'}</pre>
DataFormat		<pre>string — {'StructureWithTime'} 'Structure' 'Array'</pre>
LimitDataPoints		<pre>string — 'off' {'on'}</pre>
MaxDataPoints		string — { '5000 ' }
Decimation		string — { ' 1 ' }
SampleInput		string — {'off'} 'on'
SampleTime		string — { '0' }
Out1 (Outport)		
Port	Port number	string — { ' 1 ' }
IconDisplay	Icon display	<pre>string — 'Signal name' {'Port number'} 'Port number and signal name'</pre>
UseBusObject	Specify properties via bus object	<pre>string — {'off'} 'on'</pre>
BusObject	Bus object for specifying bus properties	<pre>string — {'BusObject'}</pre>
BusOutputAsStruct	Output as nonvirtual bus in parent model	<pre>string — {'off'} 'on'</pre>
PortDimensions	Port dimensions (-1 for inherited)	string — { ' -1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
OutMin	Minimum	string — { '[] ' }
OutMax	Maximum	string — { '[] '}

Block (Type)/Parameter	Dialog Box Prompt	Values
OutDataTypeStr	Data type	<pre>string — {'Inherit: auto'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
SignalType	Signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SamplingMode	Sampling mode	<pre>string — {'auto'} 'Sample based' 'Frame based'</pre>
OutputWhenDisabled	Output when disabled	<pre>string — {'held'} 'reset'</pre>
InitialOutput	Initial output	string — { '[] ' }
Scope (Scope)		
Floating		<pre>string — {'off'} 'on'</pre>
Location		vector — {'[188 390 512 629]'}
Open		<pre>string — {'off'} 'on'</pre>
NumInputPorts		string — { ' 1 ' }
TickLabels		<pre>string — 'on' 'off' {'OneTimeTick'}</pre>
ZoomMode		<pre>string — {'on'} 'xonly' 'yonly'</pre>
AxesTitles		string

Block (Type)/Parameter	Dialog Box Prompt	Values
Grid		<pre>string — 'off' {'on'} 'xonly' 'yonly'</pre>
TimeRange		<pre>string — { 'auto' }</pre>
YMin		string — { ' -5 ' }
YMax		string — { '5 ' }
SaveToWorkspace		<pre>string — {'off'} 'on'</pre>
SaveName		<pre>string — { 'ScopeData1 ' }</pre>
DataFormat		string — {'StructureWithTime'} 'Structure' 'Array'
LimitDataPoints		<pre>string — 'off' {'on'}</pre>
MaxDataPoints		string — { '5000 ' }
Decimation		string — { ' 1 ' }
SampleInput		<pre>string — {'off'} 'on'</pre>
SampleTime		string — { '0 ' }
Stop Simulation		
Terminator		
To File (ToFile)		
Filename	Filename	<pre>string — {'untitled.mat'}</pre>
MatrixName	Variable name	string — { 'ans ' }
Decimation	Decimation	string — { ' 1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }
To Workspace (ToWorkspace)		
VariableName	Variable name	<pre>string — {'simout'}</pre>
MaxDataPoints	Limit data points to last	<pre>string — {'inf'}</pre>
Decimation	Decimation	string — { '1'}

Block (Type)/Parameter	Dialog Box Prompt	Values	
SampleTime	Sample time (-1 for inherited)	string — { ' -1 ' }	
SaveFormat	Save format	string — 'Structure With Time' {'Structure'} 'Array'	
FixptAsFi	Log fixed-point data as an fi object	<pre>string — {'off'} 'on'</pre>	
XY Graph (XY scope) (masked	XY Graph (XY scope) (masked subsystem)		
xmin	x-min	string — { ' -1 ' }	
xmax	x-max	string — { ' 1 ' }	
ymin	y-min	string — { ' - 1 ' }	
ymax	y-max	string — { ' 1 ' }	
st	Sample time	string — { ' -1 ' }	

Sources Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values	
Band-Limited White Noise (Ban	d-Limited White Noise)(mask	ed subsystem)	
Cov	Noise power	string — { '[0.1] ' }	
Ts	Sample time	string — { '0.1 ' }	
seed	Seed	string — { '[23341] '}	
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>	
Chirp Signal (chirp) (masked subsystem)			
f1	Initial frequency (Hz)	string — { '0.1 ' }	
Т	Target time (secs)	string — { '100 ' }	
f2	Frequency at target time (Hz)	string — { ' 1 ' }	
VectorParams1D	Interpret vectors parameters as 1-D	<pre>string — 'off' {'on'}</pre>	

Block (Type)/Parameter	Dialog Box Prompt	Values
Clock (Clock)	- ·	
DisplayTime	Display time	<pre>string — {'off'} 'on'</pre>
Decimation	Decimation	string — { '10 ' }
Constant (Constant)		
Value	Constant value	string — { ' 1 ' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
SamplingMode	Sampling mode	<pre>string — {'Sample based'} 'Frame based'</pre>
OutMin	Output minimum	string — { '[] '}
OutMax	Output maximum	string — { '[] ' }
OutDataTypeStr	Output data type	<pre>string — {'Inherit: Inherit from 'Constant value''} 'Inherit: Inherit via back propagation' 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool string — {'off'}	
SampleTime	Sample time	<pre>string — { 'inf ' }</pre>
FramePeriod	Frame period string — { 'inf ' }	

Block (Type)/Parameter	Dialog Box Prompt	Values		
NumBits	Number of Bits	string — { '16 ' }		
tsamp	Sample time	string — { ' - 1 ' }		
Counter Limited (Counter Lim	ited) (masked subsystem)			
uplimit	Upper limit	string — { '7 ' }		
tsamp	Sample time	string — { ' - 1 ' }		
Digital Clock (DigitalClock)				
SampleTime	Sample time	string — { ' 1 ' }		
From File (FromFile)				
FileName	File name	<pre>string — {'untitled.mat'}</pre>		
SampleTime	Sample time	string — { '0 ' }		
From Workspace (FromWorkspa	ace)			
VariableName	Data	<pre>string — {'simin'}</pre>		
SampleTime	Sample time	string — { '0 ' }		
Interpolate	Interpolate data	<pre>string — 'off' {'on'}</pre>		
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>		
OutputAfterFinalValue	Form output after final data value by	string — {'Extrapolation'} 'Setting to zero' 'Holding final value' 'Cyclic repetition'		
Ground				
In1 (Inport)				
Port	Port number	string — { ' 1 ' }		
IconDisplay	Icon display	string — 'Signal name' {'Port number'} 'Port number and signal name'		
UseBusObject	Specify properties via bus object	<pre>string — {'off'} 'on'</pre>		

Sources	Library	Block	Parameters	(Continued)
---------	---------	-------	------------	-------------

Block (Type)/Parameter	Dialog Box Prompt	Values
BusObject	Bus object for specifying bus string — { 'BusObject ' properties	
BusOutputAsStruct	Output as nonvirtual bus	<pre>string — {'off'} 'on'</pre>
PortDimensions	Port dimensions (-1 for inherited)	string — { ' -1 ' }
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
OutMin	Minimum	string — { '[] ' }
OutMax	Maximum	string — { '[] '}
OutDataTypeStr	Data type	<pre>string — {'Inherit: auto'} 'double' 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'boolean' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)' 'Enum: <class name="">'</class></pre>
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
SignalType	Signal type	<pre>string — {'auto'} 'real' 'complex'</pre>
SamplingMode	Sampling mode	<pre>string — {'auto'} 'Sample based' 'Frame based'</pre>
LatchByDelaying OutsideSignal	Latch input by delaying outside signal	<pre>string — {'off'} 'on'</pre>
LatchByCopying InsideSignal	Latch input by copying inside signal	<pre>string — {'off'} 'on'</pre>
Interpolate	Interpolate data	<pre>string — 'off' {'on'}</pre>
Pulse Generator (DiscretePul	.seGenerator)	

Block (Type)/Parameter	Dialog Box Prompt	Values
PulseType	Pulse type	<pre>string — {'Time based'} 'Sample based'</pre>
TimeSource	Time (t)	<pre>string — {'Use simulation time'} 'Use external signal'</pre>
Amplitude	Amplitude	string — { ' 1 ' }
Period	Period	string — { '10 ' }
PulseWidth	Pulse width	string — { '5 ' }
PhaseDelay	Phase delay	string — { '0' }
SampleTime	Sample time	string — { ' 1 ' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
Ramp (Ramp) (masked subsyste	em)	
slope	Slope	string — { '1' }
start	Start time	string — { '0' }
XO	Initial output	string — { '0' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
Random Number (RandomNumb	er)	
Mean	Mean	string — { '0 ' }
Variance	Variance	string — { ' 1 ' }
Seed	Seed	string — { '0' }
SampleTime	Sample time	string — { '0.1 ' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
Repeating Sequence (Repeating table) (masked subsystem)		
rep_seq_t	Time values	string — { '[0 2] ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
rep_seq_y	Output values	string — { '[0 2] ' }
Repeating Sequence Interpolated (Repeating Sequence Interpolated) (masked subsystem)		olated) (masked subsystem)
OutValues	Vector of output values	string — {'[3 1 4 2 1].''}
TimeValues	Vector of time values	string — {'[0 0.1 0.5 0.6 1].''}
LookUpMeth	Lookup Method	string — {'Interpolation-Use End Values'} 'Use Input Nearest' 'Use Input Below' 'Use Input Above'
tsamp	Sample time	string — { '0.01 ' }
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
OutScaling	Deprecated	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
Repeating Sequence Stair (Repeating Sequence Stair) (masked subsystem)		

Block (Type)/Parameter	Dialog Box Prompt	Values
OutValues	Vector of output values	string — {'[3 1 4 2 1].''}
tsamp	Sample time	string — { ' -1 ' }
OutMin	Output minimum	string — { '[] ' }
OutMax	Output maximum	string — { '[] '}
OutDataTypeStr	Output data type	<pre>string — 'Inherit: Inherit via back propagation' {'double'} 'single' 'int8' 'uint8' 'int16' 'uint16' 'int32' 'uint32' 'fixdt(1,16)' 'fixdt(1,16,0)' 'fixdt(1,16,2^0,0)'</pre>
OutputDataTypeScaling Mode	Deprecated	
OutDataType	Deprecated	
ConRadixGroup	Deprecated	
OutScaling	Deprecated	
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
Signal Builder (Sigbuilder b	lock) (masked subsystem)	
Signal Generator (SignalGene	erator)	
WaveForm	Wave form	<pre>string — {'sine'} </pre>

Signal Gonorador (-gnaldonorador)		
WaveForm	Wave form	string — {'sine'} 'square' 'sawtooth' 'random'
TimeSource	Time (t)	<pre>string — {'Use simulation time'} 'Use external signal'</pre>
Amplitude	Amplitude	string — { ' 1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
Frequency	Frequency	string — { '1' }
Units	Units	string — 'rad/sec' {'Hertz'}
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
Sine Wave (Sin)		
SineType	Sine type	<pre>string — {'Time based'} 'Sample based'</pre>
TimeSource	Time (t)	<pre>string — {'Use simulation time'} 'Use external signal'</pre>
Amplitude	Amplitude	string — { '1' }
Bias	Bias	string — { '0' }
Frequency	Frequency (rad/sec)	string — { ' 1 ' }
Phase	Phase (rad)	string — { '0' }
Samples	Samples per period	string — { '10 ' }
Offset	Number of offset samples	string — { '0' }
SampleTime	Sample time	string — { '0' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>
Step (Step)		
Time	Step time	string — { ' 1 ' }
Before	Initial value	string — { '0' }
After	Final value	string — { ' 1 ' }
SampleTime	Sample time	string — { '0 ' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
ZeroCross	Enable zero-crossing detection	<pre>string — 'off' {'on'}</pre>
Uniform Random Number (Uni	formRandomNumber)	
Minimum	Minimum	string — { ' -1 ' }
Maximum	Maximum	string — { '1 ' }
Seed	Seed	string — { '0 ' }
SampleTime	Sample time	string — { '0 ' }
VectorParams1D	Interpret vector parameters as 1-D	<pre>string — 'off' {'on'}</pre>

User-Defined Functions Library Block Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Embedded MATLAB Fcn (Stateflow) (masked subsystem)		
Fcn (Fcn)		
Expr	Expression	<pre>string — {'sin(u(1)*exp(2.3*(-u(2))))'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
Level-2 M-file S-Function (M-S-Function)		
FunctionName	M-file name	<pre>string — { 'mlfile ' }</pre>
Parameters	Parameters	string — { ' ' }
MATLAB Fcn (MATLABFcn)		
MATLABFcn	MATLAB function	<pre>string — { 'sin' }</pre>
OutputDimensions	Output dimensions	string — { ' - 1 ' }
OutputSignalType	Output signal type	<pre>string — {'auto'} 'real' 'complex'</pre>

Block (Type)/Parameter	Dialog Box Prompt	Values
Output1D	Collapse 2-D results to 1-D	<pre>string — 'off' {'on'}</pre>
SampleTime	Sample time (-1 for inherited)	string — { ' - 1 ' }
S-Function (S-Function)		
FunctionName	S-function name	<pre>string — {'system'}</pre>
Parameters	S-function parameters	string — { ' ' }
SFunctionModules	S-function modules	string — { ' ' }
S-Function Builder (S-Function Builder) (masked subsystem)		
FunctionName	S-function name	<pre>string — {'system'}</pre>
Parameters	S-function parameters	string — { ' ' }
SFunctionModules	S-function modules	string — { ' ' }

User-Defined Functions Library Block Parameters (Continued)

Additional Discrete Block Library Parameters

Block (Type)/Parameter	Dialog Box Prompt	Values
Fixed-Point State-Space (Fixed	-Point State-Space) (masked s	ubsystem)
A	State Matrix A	<pre>string — { '[2.6020 -2.2793 0.6708; 1 0 0; 0 1 0] ' }</pre>
В	Input Matrix B	string — {'[1; 0; 0]'}
C	Output Matrix C	<pre>string — {'[0.0184 0.0024 0.0055]'}</pre>
D	Direct Feedthrough Matrix D	string — { '[0.0033] '}
XO	Initial condition for state	string — { '0.0 ' }
InternalDataType	Data type for internal calculations	<pre>string — {'fixdt('double')'}</pre>
StateEqScaling	Scaling for State Equation AX+BU	string — {'2^0'}

Block (Type)/Parameter	Dialog Box Prompt	Values
OutputEqScaling	Scaling for Output Equation CX+DU	string — {'2^0'}
LockScale	Lock output scaling against changes by the autoscaling tool	<pre>string — {'off'} 'on'</pre>
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Transfer Fcn Direct Form II (Transfer Fcn Direct Form II) (masked subsystem)		
NumCoefVec	Numerator coefficients	string — {'[0.2 0.3 0.2]'}
DenCoefVec	Denominator coefficients excluding lead (which must be 1.0)	string — {'[-0.9 0.6]'}
vinit	Initial condition	string — { '0.0 ' }
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Transfer Fcn Direct Form II Time Varying (Transfer Fcn Direct Form II Time Varying) (masked subsystem)		

Additional Discrete Block Library Parameters (Continued)

(masked subsystem)		
vinit	Initial condition	string — {'0.0'}
RndMeth	Integer rounding mode	string — 'Ceiling' 'Convergent' {'Floor'} 'Nearest' 'Round' 'Simplest' 'Zero'

Additional Discrete Block Library Parameters (Continued)

Block (Type)/Parameter	Dialog Box Prompt	Values
DoSatur	Saturate to max or min when overflows occur	<pre>string — {'off'} 'on'</pre>
Unit Delay Enabled (Unit Dela	y Enabled) (masked subsystem)	
vinit	Initial condition	string — {'0.0'}
tsamp	Sample time	string — { ' -1 ' }
Unit Delay Enabled External IG (masked subsystem)	${ m C}$ (Unit Delay Enabled Externa	al Initial Condition)
tsamp	Sample time	string — { ' -1 ' }
Unit Delay Enabled Resettable	(Unit Delay Enabled Resettab	le) (masked subsystem)
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' -1 ' }
Unit Delay Enabled Resettable External IC (Unit Delay Enabled Resettable External Initial Condition) (masked subsystem)		
tsamp	Sample time	string — { ' - 1 ' }
Unit Delay External IC (Unit D	elay External Initial Condi	tion) (masked subsystem)
tsamp	Sample time	string — { ' -1 ' }
Unit Delay Resettable (Unit Delay Resettable) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' - 1 ' }
Unit Delay Resettable External IC (Unit Delay Resettable External Initial Condition) (masked subsystem)		
tsamp	Sample time	string — { ' -1 ' }
Unit Delay With Preview Enabled (Unit Delay With Preview Enabled) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' -1 ' }

Block (Type)/Parameter	Dialog Box Prompt	Values
Unit Delay With Preview Enabled Resettable (Unit Delay With Preview Enabled Resettable) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' - 1 ' }
Unit Delay With Preview Enabled Resettable External RV (Unit Delay With Preview Enabled Resettable External RV) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' - 1 ' }
Unit Delay With Preview Resettable (Unit Delay With Preview Resettable) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' -1 ' }
Unit Delay With Preview Resettable External RV (Unit Delay With Preview Resettable External RV) (masked subsystem)		
vinit	Initial condition	string — { '0.0 ' }
tsamp	Sample time	string — { ' - 1 ' }

Additional Discrete Block Library Parameters (Continued)

Additional Math: Increment - Decrement Block Parameters

Dialog Box Prompt	Values	
orld Value Decrement)(masked	l subsystem)	
Decrement Stored Integer (Stored Integer Value Decrement) (masked subsystem)		
Decrement Time To Zero (Decrement Time To Zero) (masked subsystem)		
Decrement To Zero (Decrement To Zero) (masked subsystem)		
Increment Real World (Real World Value Increment) (masked subsystem)		
Increment Stored Integer (Stored Integer Value Increment) (masked subsystem)		
	orld Value Decrement) (masked ed Integer Value Decrement) ment Time To Zero) (masked su To Zero) (masked subsystem) rld Value Increment) (masked	

Mask Parameters

In this section ...

"About Mask Parameters" on page 8-218

"Notes on Mask Parameter Storage" on page 8-223

About Mask Parameters

This section lists parameters that describe masked blocks. You can use these descriptive parameters with get_param and set_param to obtain and specify the properties of a block mask.

The descriptive mask parameters listed in this section apply to all masks, and provide access to all mask properties. Be careful not to confuse these descriptive mask parameters with the mask-specific parameters defined for an individual mask in the Mask Editor **Parameters** pane.

See "Working with Block Masks" for information about block masks and the Mask Editor.

Parameter	Description/Prompt	Values
Mask	Turns mask on or off.	{'on'} 'off'
MaskCallbackString	Mask parameter callbacks that are executed when the respective parameter is changed on the dialog. Set by the Dialog callback field on the Parameters pane of the Mask Editor dialog box.	pipe-delimited string { ' ' }
MaskCallbacks	Cell array version of MaskCallbackString.	cell array {'[]'}

Mask Parameters

Parameter	Description/Prompt	Values
MaskDescription	Block description. Set by the Mask description field on the Documentation pane of the Mask Editor dialog box.	<pre>string { ' ' }</pre>
MaskDisplay	Drawing commands for the block icon. Set by the Drawing commands field on the Icon & Ports pane of the Mask Editor dialog box.	<pre>string { ' ' }</pre>
MaskEditorHandle	For internal use only.	
MaskEnableString	Option that determines whether a parameter is greyed out in the dialog. Set by the Enable parameter check box on the Parameters pane of the Mask Editor dialog box.	pipe-delimited string { ' ' }
MaskEnables	Cell array version of MaskEnableString.	<pre>cell array of strings, each either 'on' or ''off' {'[]'}</pre>
MaskHelp	Block help. Set by the Mask help field on the Documentation pane of the Mask Editor dialog box.	<pre>string {''}</pre>
MaskIconFrame	Set the visibility of the icon frame (Visible is on, Invisible is off). Set by the Block Frame option on the Icon & Ports pane of the Mask Editor dialog box.	{'on'} 'off'

Parameter	Description/Prompt	Values
MaskIconOpaque	Set the transparency of the icon (Opaque is on, Transparent is off). Set by the Icon Transparency option on the Icon & Ports pane of the Mask Editor dialog box.	{'on'} 'off'
MaskIconRotate	Set the rotation of the icon (Rotates is on, Fixed is off). Set by the Icon Rotation option on the Icon & Ports pane of the Mask Editor dialog box.	'on' {'off'}
MaskIconUnits	Set the units for the drawing commands. Set by the Icon Units option on the Icon & Ports pane of the Mask Editor dialog box.	'pixel' {'autoscale'} 'normalized'
MaskInitialization	Initialization commands. Set by the Initialization commands field on the Initialization pane of the Mask Editor dialog box.	MATLAB command { ' ' }
MaskNames	Cell array of mask dialog parameter names. Set inside the Variable column in the Parameters pane of the Mask Editor dialog box.	matrix { ' [] ' }
MaskPortRotate	Specify the port rotation policy for the masked block. Set in the Port Rotation area on the Icon & Ports pane of the Mask Editor dialog box.	{'default} 'physical'

Parameter	Description/Prompt	Values
MaskPrompts	List of dialog parameter prompts (see below). Set inside the Dialog parameters area on the Parameters pane of the Mask Editor dialog box.	cell array of strings { '[] ' }
MaskPromptString	List of dialog parameter prompts (see below). Set inside the Dialog parameters area on the Parameters pane of the Mask Editor dialog box.	string {''} See Note 1.
MaskPropertyName String	Pipe-delimited version of MaskNames .	<pre>string { ' ' }</pre>
MaskRunInitForIconRedraw	For internal use only.	
MaskSelfModifiable	Indicates that the block can modify itself. Set by the Allow library block to modify its contents check box on the Initialization pane of the Mask Editor dialog box.	'on' {'off'}
MaskStyles	Determines whether the dialog parameter is a check box, edit field, or pop-up list. Set by the Type column in the Parameters pane of the Mask Editor dialog box.	cell array { '[] ' }
MaskStyleString	Comma-separated version of MaskStyles .	string { ' ' } See Note 2.
MaskTabNameString	For internal use only.	
MaskTabNames	For internal use only.	

Parameter	Description/Prompt	Values
MaskToolTipsDisplay	Determines which mask dialog parameters to display in the data tip for this masked block (see "Block Data Tips" in the Simulink documentation). Specify as a cell array of 'on' or 'off' values, each of which indicates whether to display the parameter named at the corresponding position in the cell array returned by MaskNames.	cell array of 'on' and 'off' {"}
MaskToolTipString	Comma-delimited version of MaskToolTipsDisplay.	<pre>string { ' ' }</pre>
MaskTunableValues	Allows the changing of mask dialog values during simulation. Set by the Tunable column in the Parameters pane of the Mask Editor dialog box.	cell array of strings { '[] ' }
MaskTunableValueString	Comma-delimited string version of MaskTunableValues.	delimited string { ' ' }
MaskType	Mask type. Set by the Mask type field on the Documentation pane of the Mask Editor dialog box.	<pre>string {'Stateflow'}</pre>
MaskValues	Dialog parameter values.	cell array { '[] '}
MaskValueString	Delimited string version of MaskValues.	delimited string { ' ' } See Note 3.

Parameter	Description/Prompt	Values
MaskVarAliases	Specify aliases for a block's mask parameters. The aliases must appear in the same order as the parameters appear in the block's MaskValues parameter.	cell array {'[]'}
MaskVarAliasString	For internal use only.	
MaskVariables	List of the dialog parameters' variables (see below). Set inside the Dialog parameters area on the Parameters pane of the Mask Editor dialog box.	string { ' ' } See Note 4.
MaskVisibilities	Specifies visibility of parameters. Set with the Show parameter check box in the Options for selected parameter area on the Parameters pane of the Mask Editor dialog box.	matrix {'[]'}
MaskVisibilityString	Delimited string version of MaskVisibilities.	<pre>string { ' ' }</pre>
MaskWSVariables	List of the variables defined in the mask workspace (read only).	matrix { '[] ' }

Notes on Mask Parameter Storage

1 The MaskPromptString parameter stores the **Prompt** field values for all mask dialog box parameters as a string, with individual values separated by vertical bars (|), for example:

```
"Slope:|Intercept:"
```

2 The MaskStyleString parameter stores the **Type** field values for all mask dialog box parameters as a string, with individual values separated by commas. The **Popup strings** values appear after the popup type, as shown in this example:

```
"edit,checkbox,popup(red|blue|green)"
```

3 The MaskValueString parameter stores the values of all mask dialog box parameters as a string, with individual values separated by a vertical bar (|). The order of the values is the same as the order in which the parameters appear on the dialog box, for example:

"2|5"

4 The MaskVariables parameter stores the Variable field values for all mask dialog box parameters as a string, with individual assignments separated by semicolons. A sequence number indicates the prompt that is associated with a variable. A special character preceding the sequence number indicates whether the parameter value is evaluated or used literally. An at-sign (@) indicates evaluation; an ampersand (&) indicates literal usage. For example:

"a=@1;b=&2;"

This string defines two Variable field values:

- The value entered in the first parameter field is evaluated in the MATLAB workspace, and the result is assigned to variable a in the mask workspace.
- The value entered in the second parameter field is not evaluated, but is assigned literally to variable b in the mask workspace.

Model File Format

Model File Contents

In this section ...

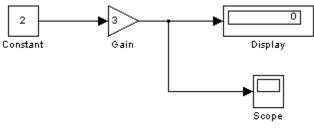
"About Model File Formats" on page 9-2
"Model Section" on page 9-4
"Simulink.ConfigSet Section" on page 9-5
"BlockDefaults Section" on page 9-6
"BlockParameterDefaults Section" on page 9-6
"AnnotationDefaults Section" on page 9-7
"LineDefaults Section" on page 9-8

Note Model file formatting is a topic for advanced users. The MathWorks does not recommend editing the model file. In the next release, The MathWorks will deprecate this chapter.

About Model File Formats

A model file is a structured ASCII file that contains keywords and parameter-value pairs that describe the model. The file describes model components in hierarchical order.

The structure of the model file is as follows.


```
Model {
    <Model Parameter Name> <Model Parameter Value>
    ...
    Array {
        Simulink.ConfigSet {
            $ObjectID <Object ID>
            <ConfigSet Parameter Name> <ConfigSet Parameter Value>
            ...
        }
    }
}
```

```
Simulink.ConfigSet {
  $PropName "ActiveConfigurationSet"
  $ObjectID <Object ID>
}
BlockDefaults {
  <Block Parameter Name> <Block Parameter Value>
  . . .
}
BlockParameterDefaults {
  Block {
    <Block Parameter Name> <Block Parameter Value>
    . . .
  }
}
AnnotationDefaults {
  <Annotation Parameter Name> <Annotation Parameter Value>
  . . .
}
LineDefaults {
  <Line Parameter Name> <Line Parameter Value>
  . . .
}
System {
  <System Parameter Name> <System Parameter Value>
  . . .
  Block {
    <Block Parameter Name> <Block Parameter Value>
    . . .
  }
  Line {
    <Line Parameter Name> <Line Parameter Value>
    . . .
    Branch {
      <Branch Parameter Name> <Branch Parameter Value>
      . . .
    }
  }
  Annotation {
    <Annotation Parameter Name> <Annotation Parameter Value>
    . . .
```

} } }

See Chapter 8, "Model and Block Parameters" for descriptions of model and block parameters.

This reference contains examples of each section, extracted from the model file of the following model:

This model generates...

Model Section

The Model section, located at the top of the model file, contains all other sections of the model file and defines the values for model-level parameters. These parameters include the model name, the version of Simulink software last used to modify the model, and configuration set parameters (see "Configuration Sets" in the online Simulink documentation) among others.

The following example shows parts of the Model section for a model.

```
Model {
  Name
                        "my_model"
  Version
                       6.4
  MdlSubVersion
                       0
  GraphicalInterface {
    NumRootInports
                              0
                              0
    NumRootOutports
                              пп
    ParameterArgumentNames
    ComputedModelVersion
                              "1.10"
    NumModelReferences
                              0
```

9-4

```
NumTestPointedSignals
                               0
  }
  SavedCharacterEncoding
                              "windows-1252"
  SaveDefaultBlockParams
                             on
  . . .
  Array {
                           "Handle"
    Туре
                           2
    Dimension
    Simulink.ConfigSet {
      $ObjectID
                           1
                           "1.2.0"
      Version
      Array {
         Туре
                           "Handle"
         Dimension
                           7
         Simulink.SolverCC {
         . . .
         }
       . . .
      }
    }
  }
  . . .
}
```

Simulink.ConfigSet Section

The Simulink.ConfigSet section appears after the configuration set parameters. This section identifies the active configuration set for the model (see "The Active Set" in the online Simulink documentation).

The following example shows the Simulink.ConfigSet section for a model.

```
Simulink.ConfigSet {
   $PropName "ActiveConfigurationSet"
   $ObjectID 1
}
```

BlockDefaults Section

The BlockDefaults section appears after the Simulink.ConfigSet section. This section defines the default values for common block parameters in the model. These values can be overridden by individual block parameters, defined in Block subsections of System sections.

The following example shows the BlockDefaults section for a model.

BlockDefaults {	
Orientation	"right"
ForegroundColor	"black"
BackgroundColor	"white"
DropShadow	off
NamePlacement	"normal"
FontName	"Arial"
FontSize	10
FontWeight	"normal"
FontAngle	"normal"
ShowName	on
}	

BlockParameterDefaults Section

The BlockParameterDefaults section appears after the BlockDefaults section. This section defines the default values for block-specific parameters using Block subsections. Each Block subsection defines the default parameter-value pairs for a particular type of block in the model. These values can be overridden by individual block parameters, defined in Block subsections of System sections.

The following example shows part of the BlockParameterDefaults section for a model.

```
BlockParameterDefaults {
Block {
BlockType Constant
}
Block {
BlockType Display
Format "short"
Decimation "10"
```

```
Floating off
SampleTime "-1"
}
...
}
```

AnnotationDefaults Section

The AnnotationDefaults section appears after the BlockParameterDefaults section. This section defines the default parameters for all annotations in the model (see Simulink.Annotation).

The following example shows the AnnotationDefaults section for a model.

```
AnnotationDefaults {
  HorizontalAlignment
                            "center"
  VerticalAlignment
                            "middle"
  ForegroundColor
                        "black"
  BackgroundColor
                        "white"
  DropShadow
                       off
  FontName
                        "Courier New"
  FontSize
                       10
                        "normal"
  FontWeight
  FontAngle
                       "normal"
}
```

LineDefaults Section

The LineDefaults section appears after the AnnotationDefaults section. This section defines the default parameters for all lines in the model.

The following example shows the LineDefaults section for a model.

```
LineDefaults {

FontName "Courier New"

FontSize 9

FontWeight "normal"

FontAngle "normal"

}
```

System Section

The top-level system and each subsystem in the model are described in a separate System section. Each System section defines system-level parameters and includes Block, Line, and Annotation sections for each block, line, and annotation in the system. Each Line that contains a branch point includes a Branch section that defines the branch line.

The following example shows parts of the System section for a model.

System { Name Location Open ModelBrowserVisibil: ModelBrowserWidth ScreenColor PaperOrientation	"my_model" [480, 85, 1206, 386] on ity off 200 "white" "landscape"
 Block { BlockType Name Position Value }	Constant "Constant" [65, 100, 95, 130] "2"
Line { SrcBlock SrcPort Points Branch { Points DstBlock DstPort } Branch { Points DstBlock	"Gain" 1 [25, 0] [0, 70] "Scope" 1 [20, 0] "Display"
DstPort }	1

```
}
...
Annotation {
    Name "This model generates..."
    Position [149, 234]
    UseDisplayTextAsClickCallback off
  }
}
```


10

Model Advisor Checks

Simulink Checks

In this section...

"Simulink Check Overview" on page 10-4 "Check model, local libraries, and referenced models for known upgrade issues" on page 10-5

"Identify unconnected lines, input ports, and output ports" on page 10-6

"Check root model Inport block specifications" on page 10-7

"Check optimization settings" on page 10-8

"Check for parameter tunability information ignored for referenced models" on page $10\mathchar`-11$

"Check for implicit signal resolution" on page 10-12

"Check for optimal bus virtuality" on page 10-13

"Check for Discrete-Time Integrator blocks with initial condition uncertainty" on page 10-14

"Identify disabled library links" on page 10-15

"Identify parameterized library links" on page 10-16

"Identify unresolved library links" on page 10-17

"Check for proper usage of Data Store Memory blocks" on page 10-18

"Check for proper bus usage" on page 10-20

"Check for potentially delayed function-call subsystem return values" on page $10\mathchar`22$

"Identify block output signals with continuous sample time and non-floating point data type" on page $10\mathchar`23$

"Check for proper Merge block usage" on page 10-24

"Check consistency of initialization parameters for Outport and Merge blocks" on page $10\mathchar`25$

"Check sample times of Data Store blocks" on page 10-38

"Check for non-continuous signals driving derivative ports" on page 10-39

In this section...

"Runtime diagnostics for Data Store blocks" on page 10-40

"Runtime diagnostics for S-functions" on page 10-41

Simulink Check Overview

Use the Simulink Model Advisor checks to configure your model for simulation.

See Also

- Consulting Model Advisor in the Simulink documentation.
- Real-Time Workshop Model Advisor Check Reference in the Real-Time Workshop documentation.
- Simulink Verification and Validation Model Advisor Check Reference in the Simulink Verification and Validation documentation.

Check model, local libraries, and referenced models for known upgrade issues

Uses the ${\tt slupdate}\xspace$ command analysis mode to check for common upgrade issues.

Description

Check blocks, settings, and references in the model for compatibility issues resulting from using a new version of Simulink software.

Results and Recommended Actions

Condition	Recommended Action
Referenced models recommended for update.	Run Simulink update tool, slupdate on the listed models.
Check library update status.	Verify that indicated libraries are valid.
Check update status for the Level 2 API S-functions.	Consider replacing Level 1 S-functions with Level 2.
Blocks have configuration sets or ports with undesired settings.	Run Simulink update tool, slupdate, in update mode.

See Also

- slupdate in the Simulink documentation.
- Writing S-Functions in the Simulink documentation.

Identify unconnected lines, input ports, and output ports

Check for unconnected lines or ports.

Description

This check lists unconnected lines or ports. These can have difficulty propagating signal attributes such as data type, sample time, and dimensions.

Note Ports connected to ground/terminator blocks will pass this test.

Results and Recommended Actions

Condition	Recommended Action
Lines, input ports, or output ports are unconnected.	Ensure all signals are connected. Double-click the list of unconnected items to locate failure.

Tips

Use the PortConnectivity command to obtain an array of structures describing block input or output ports.

See Also

"Common Block Parameters" on page 8-83 in the Simulink documentation for information on the PortConnectivity command.

Check root model Inport block specifications

Check that root model Inport blocks fully define dimensions, sample time, and data type.

Description

Using root model Inport blocks that do not fully define dimensions, sample time, or data type can lead to undesired simulation results. Simulink software back-propagates dimensions, sample times and data types from downstream blocks unless you explicitly assign them values.

Results and Recommended Actions

Condition	Recommended Action
Root-level Inport blocks have undefined attributes.	Fully define the attributes of all root-level Inport blocks.

See Also

- "Working with Data Types" in the Simulink documentation.
- "Determining Output Signal Dimensions" in the Simulink documentation.
- "How to Specify the Sample Time" in the Simulink documentation.

Check optimization settings

Check for optimizations that can lead to nonoptimal code generation and simulation.

Description

This check reviews the status of optimizations that can improve code efficiency and simulation time.

Condition	Recommended Action
The specified optimizations are off.	 Select the following optimization check boxes in the Optimization pane of the Configuration Parameters dialog box: "Block reduction"
	• "Conditional input branch execution"
	• "Inline parameters"
	 "Implement logic signals as boolean data (vs. double)"
	• "Enable local block outputs"
	• "Reuse block outputs"
	 "Eliminate superfluous local variables (Expression folding)"
	• "Use memset to initialize floats and doubles to 0.0"
	• "Ignore integer downcasts in folded expressions"
	 "Remove code from floating-point to integer conversions that wraps out-of-range values"
	• "Inline invariant signals"
	• "Remove root level I/O zero initialization"
	• "Remove internal data zero initialization"

Results and Recommended Actions

Condition	Recommended Action
	 "Use bitsets for storing state configuration" "Use bitsets for storing boolean data"
"Application lifespan (days)" is set as infinite. This could lead to expensive 64-bit counter usage.	Choose appropriate stop time if this is not intended.
The specified diagnostics, which can increase the time it takes to simulate your model, are set to warning or error.	 Select none for: Diagnostics > Solver > Solver data inconsistency Diagnostics > Data Validity > Array bounds exceeded Diagnostics > Data Validity > Simulation range checking
The specified Real-Time Workshop Embedded Coder parameters are off.	 If you have a Real-Time Workshop Embedded Coder license, and you are using an ERT-based system target file, select the following check boxes: Real-Time Workshop > Interface > "Single output/update function" Real-Time Workshop > General > "Ignore test point signals" Optimization > "Pass reusable subsystem outputs as"

Tips

If the system contains Model blocks and the referenced model is in Accelerator mode, simulating the model requires generating and compiling code.

See Also

- "Optimization Pane" in the Simulink documentation.
- "Optimizing a Model for Code Generation" in the Real-Time Workshop documentation.

• "Code Generation Options and Optimizations" in the Real-Time Workshop Embedded Coder documentation.

Check for parameter tunability information ignored for referenced models

Checks if parameter tunability information is included in the Model Parameter Configuration dialog box.

Description

Simulink software ignores tunability information specified in the Model Parameter Configuration dialog box. This check identifies those models containing parameter tunability information that Simulink software will ignore if the model is referenced by other models.

Results and Recommended Actions

Condition	Recommended Action
Model contains ignored parameter tunability information.	Click the links to convert to equivalent Simulink parameter objects in the MATLAB workspace.

See Also

"Parameter Storage, Interfacing, and Tuning" in the Simulink documentation.

Check for implicit signal resolution

Identify models that attempt to resolve named signals and states to Simulink.Signal objects.

Description

Requiring Simulink software to resolve all named signals and states is inefficient and slows incremental code generation and model reference. This check identifies those signals and states for which you may turn off implicit signal resolution and enforce resolution.

Results and Recommended Actions

Condition	Recommended Action
Not all signals and states are resolved.	Turn off implicit signal resolution and enforce resolution for each signal and state that successfully resolves.

See Also

"Resolving Signal Objects for Output Data" in the Simulink documentation.

Check for optimal bus virtuality

Identify virtual buses that could be made nonvirtual. Making these buses nonvirtual improves generated code efficiency.

Description

This check identifies blocks incorporating virtual buses that cross a model boundary. Changing these to nonvirtual improves generated code efficiency.

Results and Recommended Actions

Condition	Recommended Action
Blocks that specify a virtual bus crossing a model boundary.	Change the highlighted bus to nonvirtual.

- "Working with Signals" in the Simulink documentation.
- "Virtual and Nonvirtual Buses" in the Simulink documentation.

Check for Discrete-Time Integrator blocks with initial condition uncertainty

Identify Discrete-Time Integrator blocks with state ports and initial condition ports that are fed by neither an Initial Condition nor a Constant block.

Description

Discrete-Time Integrator blocks with state port and initial condition ports might not be properly initialized unless they are fed from an Initial Condition or Constant block. This is more likely to happen when Discrete-Time Integrator blocks are used to model second-order or higher-order dynamic systems.

Results and Recommended Actions

Condition	Recommended Action
Discrete-Time Integrator blocks are not initialized during the model initialization phase.	Add a Constant or Initial Condition block to feed the external Initial Condition port.

- IC block
- Discrete-Time Integrator block
- Constant block

Identify disabled library links

Search model for disabled library links.

Description

Disabled library links can cause unexpected simulation results. All disabled links should be resolved before a model is saved.

Note This check may overlap with "Check model, local libraries, and referenced models for known upgrade issues" on page 10-5.

Results and Recommended Actions

Condition	Recommended Action
Library links are disabled.	Use Restore Link from the Link Options setting in the context menu.

Tips

- Use the Model Browser to find library links.
- To enable a broken link, right-click a block in your model to display the context menu. Choose Link Options and click Restore Link.

See Also

"The Model Browser" in the Simulink documentation.

Identify parameterized library links

Search model for parameterized library links.

Description

Parameterized library links that are unintentional can result in unexpected parameter settings in your model. This can result in improper model operation.

Results and Recommended Actions

Condition	Recommended Action
Parameterized links are listed.	Verify that all parameterized links are intended.

Tips

- Right-click a block in your model to display the context menu. Choose Link Options and click Go To Library Block to see the original block from the library.
- To parameterize a library link, choose Look Under Mask, from the context menu and select the parameter.

See Also

"Working with Block Masks" in the Simulink documentation.

Identify unresolved library links

Search the model for unresolved library links, where the specified library block cannot be found.

Description

Check for unresolved library links. Models do not simulate while there are unresolved library links.

Results and Recommended Actions

Condition	Recommended Action
Library links are unresolved.	Locate missing library block or an alternative.

See Also

"Fixing Unresolved Library Links"

Check for proper usage of Data Store Memory blocks

Look for modeling issues related to Data Store Memory blocks.

Description

Checks shadowing of data stores of higher scope, strong typing, multitasking data integrity, and runtime diagnostics.

Condition	Recommended Action
Data Store blocks have duplicate names.	Give each Data Store block in the model a unique name.
Data Store blocks are not strongly typed.	Specify a data type other than Inherit: auto.
Multiple tasks access the same data store.	Change the model to avoid multitask data stores.
Reading and writing occur out of order.	Restructure and prioritize so enforce correct order.
Multiple writes occur within a single time step.	Change the model to write data only once per step.

Results and Recommended Actions

- "Working with Data Stores"
- "Storage Classes for Data Store Memory Blocks"
- Data Store Memory
- Data Store Read
- Data Store Write
- "Duplicate data store names"
- "Multitask data store"
- "Detect read before write"

- "Detect write after read"
- "Detect write after write"

Check for proper bus usage

Identify Mux blocks used as a bus creator and any bus signal that is treated as a vector.

Description

Models should not contain bus signals that Simulink software implicitly converts to vectors. Instead, either insert a Bus to Vector conversion block between the bus signal and the block input port that it feeds, or use the Simulink.BlockDiagram.addBusToVector command.

Note You should always run this check before running Check consistency of initialization parameters for Outport and Merge blocks.

Condition	Recommended Action
Identify signals used as vectors.	In the Configuration Parameters dialog box, set Mux blocks used to create bus signals to error.
Model uses buses properly.	In the Configuration Parameters dialog set Bus signal treated as vector to error.
Bus signals are implicitly converted to vectors.	Use Simulink.BlockDiagram.addBusToVector or insert a Bus to Vector block.

Results and Recommended Actions

Tips

The Bus to Vector conversion block is located in the Simulink/Signal Attributes library.

- Bus to Vector block
- "Mux blocks used to create bus signals"

- "Bus signal treated as vector"
- "Check consistency of initialization parameters for Outport and Merge blocks" on page 10-25
- Simulink.BlockDiagram.addBusToVector in the Simulink documentation.

Check for potentially delayed function-call subsystem return values

Identify function-call return values that might be delayed because Simulink software inserted an implicit Signal Conversion block.

Description

To ensure that signals reside in contiguous memory, Simulink software can automatically insert an implicit Signal Conversion block in front of function-call initiator block input ports. This can result in a one-step delay in returning signal values from calling function-call subsystems. The delay can be avoided by ensuring the signal originates from a signal block within the function-call system. Or, if the delay is acceptable, insert a Unit Delay block in front of the affected input ports.

Results and Recommended Actions

Condition	Recommended Action
The listed block input ports could have an implicit Signal Conversion block.	 Decide if a one-step delay in returning signal values is acceptable for the listed signals. If the delay is not acceptable, rework your model so that the input signal originates from within the calling subsystem. If the delay is acceptable, insert a Unit Delay block in front of each listed input
	 If the delay is not acceptable, rework your model so that the input signal originates from within the calling subsystem. If the delay is acceptable, insert a Unit Delay block

See Also

Signal Conversion block

Unit Delay block

Identify block output signals with continuous sample time and non-floating point data type

Find continuous sample time, non-floating-point output signals.

Description

Non-floating-point signals cannot properly represent continuous variables.

Results and Recommended Actions

Condition	Recommended Action
Signals with continuous sample times have a non-floating-point data type.	On the identified signals, either change the sample time to be discrete or fixed-in-minor-step ([0 1]).

See Also

"Working with Sample Times" in the Simulink documentation.

Check for proper Merge block usage

Analyze Merge blocks in the same tree as a group, and determine the possibility for them to execute at the same time step.

Description

Blocks that directly drive the same tree of Merge blocks should have mutually exclusive execution in each time step. This check identifies those blocks that drive the same tree of Merge blocks, and so are likely to execute at the same time step.

Input Parameters

Maximum analysis time (seconds)

Provide a maximum analysis time to execute the check.

Results and Recommended Actions

Condition	Recommended Action
	Rework your model so that no blocks drive the same tree of Merge blocks.

- Merge block
- "Check consistency of initialization parameters for Outport and Merge blocks" on page 10-25

Check consistency of initialization parameters for Outport and Merge blocks

Identify Outport and Merge blocks with parameter settings that can lead to unexpected initialization behavior, and migrate your model to simplified initialization mode.

Description

In R2008b or later, you can choose simplified initialization mode for conditionally executed subsystems, Merge blocks, subsystem elapsed time, and Discrete-Time Integrator blocks. Simplified initialization mode improves the consistency of simulation results, especially for models that do not specify initial conditions for conditionally executed subsystem output ports, and for models that have conditionally executed subsystem output ports connected to S-functions.

This Model Advisor check identifies settings in your model that can cause problems when using simplified initialization mode. There are two types of messages in this check, *errors* and *warnings*. Error messages identify issues that you need to address manually before the model can be migrated to simplified initialization mode. Warning messages identify issues or changes in behavior that may occur after migration.

Note Before running this check, run the check: **Check for proper bus usage** to ensure that Merge blocks are used correctly, and enable strict Merge run-time diagnostics.

After running this check, select the **Explore Result** button to access the blocks listed in each message, with the exception of library-linked blocks.

Once you have addressed all issues identified by the check, select **Proceed** to migrate your model to the simplified initialization mode.

Note Because it is difficult to undo these changes, save a backup copy of your model and libraries before migrating to simplified initialization mode.

Condition	Recommended Action
Error: Strict Bus Mode Must Be Enabled	 Run Check for proper bus usage in the Model Advisor to ensure that Mux blocks are used correctly in the model. In the model window, select Simulation > Configuration Parameters > Diagnostics > Connectivity. Set Mux blocks used to create bus signals to error.
	4 Set Bus signal treated as vector to error.
Error: Strict Merge Run-Time Diagnostics Must Be Enabled	 In the model window: 1 Select Simulation > Configuration Parameters > Diagnostics > Data Validity. 2 Set Detect multiple driving blocks executing at the same time step to error. 3 Ensure that the model simulates without errors before running this check again.
Error: Referenced Models Not Yet Migrated	Migrate the model referenced by the Model block to simplified initialization mode, then migrate the top-level model.

Results and Recommended Actions

Condition	Recommended Action
Error: Single-Input Merge Blocks	Replace both the Mux block used to produce the input signal and the Merge block with one multi-input Merge block. Single-input Merge blocks are not supported in simplified initialization mode.
Error: Root Merge Blocks With Unspecified Initial Output	Specify an explicit value for the Initial output parameter of the <i>root Merge block</i> . A root Merge block is any Merge block with an output port that does not connect to another Merge block.
Error: Merge Blocks With Non-zero Input Port Offsets	Deselect the Allow unequal port widths parameter of the Merge block.
	Note Consider using Merge blocks only for signal elements that require true merging. Other elements can be combined with merged elements using the Concatenate block.
Error: Merge Blocks With Unconnected Inputs or Inputs from Non-Conditionally Executed Subsystem	Set the Number of inputs parameter of the Merge block to the correct number of inputs, so that each input is connected to a signal. Ensure that the Merge block inputs are each driven by a conditionally executed subsystem. Merge blocks cannot be driven directly by an Iterator Subsystem or any block that is not a conditionally executed subsystem.

Condition	Recommended Action
Error: Merge Blocks With Inputs That Have Been Combined Or Reordered Outside of Conditionally Execute Subsystems	Ensure that any combination or reordering of Merge block input signals (using Mux, Bus Creator, or Selector blocks, for example) takes place within a conditionally executed subsystem.
Error: Merge Blocks With Inconsistent Input Sample Times	Ensure that each input signal has the same Sample time .
Error: Merge Blocks With Multiple Input Ports Driven By Same Source	Ensure that the Merge block does not have multiple input signals that are driven by the same conditionally executed subsystem or conditionally executed Model block.
Error: Outport Blocks With Conflicting Buffer Requirements	The Outport block has function-call trigger or function-call data dependency signal passing through it, along with regular signals. Some of the regular data signals require an explicit signal buffer to ensure correct initialization of the corresponding subsystem's output signal. However, buffering function-call related signals will lead to a function-call data dependency violation. Consider modifying the model to pass function-call related signals through a separate Outport. For examples of function-call data dependency violations, see the demo model s1_subsys_semantics.

Condition	Recommended Action
Error: Outports Requiring Explicit Bus Copy	An explicit copy of the bus signal driving the Outport block is needed to ensure correct initialization of the corresponding subsystem's output signal. Insert a Signal Conversion block before the Outport block, then set the Output parameter of the Signal Conversion block to Bus copy.
Error: Outport Blocks Being Merged But Can Reset When Disabled	Set the Output when disabled parameter of the Outport block to held. For more information, see the Outport block documentation.
Error: Outport Blocks With Unspecified Initial Output	Specify the Initial output parameter for the Outport block, unless you want the block to obtain its initial output value from its input signal. If you want the Outport block to obtain its initial output value from its input signal, ensure that all of its sources are valid initial output value sources. Outport blocks can inherit initial output value from Constant, Initial Condition, Merge (with initial output), or conditionally executed subsystem blocks.

Condition	Recommended Action
	Note If you are working with a conditionally executed subsystem Outport block that is driven directly by another conditionally executed subsystem Outport block, you should resolve this error message for the inner Outport block first, then run this Model Advisor check again to see if the problem is resolved for the outer Outport block.
Error: Outport Blocks With Automatic Rate Transitions	Simulink has inserted Rate Transition blocks on the input signals of the Outport block. If such rate transitions are needed, specify the Initial output parameter for each Outport block. Otherwise, perform the following procedure:
	 Select Simulation > Configuration Parameters > Solver. Deselect the option Automatically handle rate transition for data transfer.
	3 Run this Model Advisor check again.

Condition	Recommended Action
Error: Outport Blocks Require Explicit Initial Output	Specify the Initial output parameter for the Outport block.
	The Outport block cannot obtain initial output values from its input signals due to Simulink internal signal storage handling.
Error: Outport Blocks Reset When Disabled With Unspecified Initial Output	Specify the Initial output parameter of the Outport block. You must specify the initial output value for blocks that are configured to reset when disabled.
Error: Outport Blocks Passing Through Function-call Data Dependency Signal Must Not Have Initial Output Value	You cannot specify an Initial output value for the Outport block because function-call data dependency signals are passing through it. To set the initial output value:
	1 Set the Initial output parameter of the Outport block to [].
	2 Provide the initial value at the source of the data dependency signal rather than at the Outport block.

Condition	Recommended Action
Error: Blocks Requiring Elapsed Timer Will Not Be Allowed In Iterator Subsystem	Within an Iterator subsystem hierarchy, do not use blocks that require a service that maintains the time that has elapsed between two consecutive executions.Since Iterator subsystem can be executed multiple times at a given time step, the concept of elapsed time is not well-defined between two such executions. Using these blocks inside an Iterator subsystem can cause unexpected behavior.
Warning: Outport Blocks Initial Output Value Can No Longer Be Specified By Signal Objects	Ensure that the following behavior is acceptable. The Initial output parameter of the Outport block cannot be specified by signal objects. You can initialize the input or output signals for an Outport block using signal objects, but the initialization results may be overwritten by that from the Outport block.
Warning: Outport Blocks Being Merged But Is Unconnected Or Connected To Ground Block	Ensure that the following behavior is acceptable. The Outport block is driving a Merge block, but its inputs are either unconnected or connected to Ground blocks. In classic initialization mode, unconnected or grounded outports do not update the merge signal even when their parent conditionally executed subsystems are executing. In simplified initialization mode, however, these outports will update the merge signal with zero value when their parent conditionally executed subsystems are executing.

Condition	Recommended Action
Warning: Merge Blocks Initial Output Value Can No Longer Be	Ensure that the following behavior is acceptable.
Specified By Signal Objects	The Initial output parameter of the Merge block cannot be specified by signal objects. You can initialize the input or output signals for a Merge block using signal objects, but the initialization results may be overwritten by that from the Merge block.
Warning: Outport Blocks Will Obtain Initial Output Value from	Ensure that the following behavior is acceptable.
Input Signal When Migrated	The Initial output parameter of the Outport block is not specified. Simplified initialization mode will assume that the initial output value for the Outport block is derived from the input signal, which may result in different initialization behavior.
Warning: Outer Outport Blocks With Explicit Initial Output	Ensure that the following behavior is acceptable.
	The Initial output and Output when disabled parameters of the Outport block are currently required to match those of their source Outport blocks. This constraint is not required in simplified initialization mode.
	However, this flexibility means that nested Outport blocks with explicit initial output values cannot share signal storage.
	You can regain this signal storage efficiency by setting Initial output to [] (empty matrix), and Output

Condition	Recommended Action
	when disabled to held, so that the Outports derive their initial output value, and can therefore share signal storage with their input signals.
Warning: Conditionally Executed Subsystems Propagating Execution	Ensure that the following behavior is acceptable.
Context Across Output Boundary	Propagate execution context across subsystem boundary is selected for the subsystem. Propagating execution context across an output boundary can cause unpredictable initialization behavior, and therefore is not supported in simplified initialization mode. Execution context will still be propagated across input boundaries.
Warning: Initialization Behavior Changes for Discrete-Time	Ensure that the following behavior is acceptable.
Integrators	The initialization behavior of the Discrete-Time Integrator block has been changed to be more consistent and robust in simplified initialization mode. These changes include:
	• Elimination of the Use initial condition as initial and reset value for parameter
	• Application of the Initial condition parameter only to the integrator output.
	• Simplified enable/disable behavior
	See the Discrete-Time Integrator block documentation for more information on simplified

Condition	Recommended Action
	Discrete-Time Integrator initialization.
Warning: Blocks Will Not Be Allowed To Read Input From Conditionally Executed Subsystems During Initialization	Ensure that the following behavior is acceptable. Some blocks, such as the Discrete-Time Integrator block, currently read their inputs from conditionally executed subsystems during initialization. This is done as an optimization.
	This optimization is not allowed in simplified initialization mode because the output of a conditionally executed subsystem at the first time step after initialization may be different than the initial value declared in the corresponding Outport block. In particular, this occurs if the subsystem is active at the first time step.
Error: Library Blocks With Instances That Cannot Be Migrated	Examine the error messages for each block to determine a proper corrective action.
Warning: Library Blocks With Instances That Have Warning Messages	Examine the warning messages for each block before migrating.
Message: Outport Blocks Will Use Dialog Initial Output Value After Migration	No action required. The Outport block will maintain its current settings and use its specified Initial output value.

Condition	Recommended Action
Message: Outport Blocks Will Use	No action required.
Initial Output Value From Input Signal After Migration	The Outport block currently specifies an Initial output of [] (empty matrix), and Output when disabled as held. This means that each outport does not perform initialization, but implicitly relies on source blocks to initialize its input signal.
	After migration, the parameter Source of initial output value will be set to Input signal to reflect this behavior.
Message: Outport Blocks To Use	No action required.
SimEvents Initialization Semantics	The Outport block will continue to use an Initial output of [] (empty matrix), and Output when disabled as held, because their parent conditionally executed subsystems are connected to SimEvents blocks.

- Consulting Model Advisor
- Simulink Checks
- "Check for proper bus usage" on page 10-20
- Merge block
- Discrete-Time Integrator block
- Outport block
- "Mux blocks used to create bus signals"
- "Bus signal treated as vector"

- "Detect multiple driving blocks executing at the same time step"
- "Underspecified initialization detection"

Check sample times of Data Store blocks

Identify Data Store blocks whose sample times cause modeling errors.

Description

Multitasking Data Store blocks often indicate a modeling problem using Data Store blocks.

e 11-1	.
Condition	Recommended Action
Data Store blocks in your model have continuous or zero-order-hold sample times.	Consider making the listed blocks discrete or replacing them with Memory or Goto and From blocks.
The compile time diagnostic Multitask data store is set to none.	Consider setting Multitask data store to warning or error in the Configuration Parameters > Diagnostics > Data Validity pane.

Results and Recommended Actions

- "Working with Data Stores".
- Data Store Memory
- Data Store Read
- Data Store Write

Check for non-continuous signals driving derivative ports

Identify noncontinuous signals that drive derivative ports.

Description

Noncontinuous signals that drive derivative ports cause the solver to reset every time the signal changes value, which slows down simulation.

Condition	Recommended Action
There are noncontinuous signals in the model driving derivative ports.	• Make the specified signals continuous.
	• Replace the continuous blocks receiving these signals with discrete state versions of the blocks.

Results and Recommended Actions

See Also

"How Simulink Works" in the Simulink documentation.

Runtime diagnostics for Data Store blocks

Verify that read and write order checking is on if there are Data Store blocks in the model.

Description

Results are unpredictable if read and write order checking is off.

Condition	Recommended Action
Detect read before write checking is disabled.	Consider enabling Detect read before write in the Configuration Parameters > Diagnostics > Data Validity pane.
Detect write after read checking is disabled.	Consider enabling Detect write after read in the Configuration Parameters > Diagnostics > Data Validity pane.
Detect write after write checking is disabled.	Consider enabling Detect write after write in the Configuration Parameters > Diagnostics > Data Validity pane.

Results and Recommended Actions

Tips

The runtime diagnostics might slow down simulations considerably. Set them to Disable all once you have verified that Simulink does not generate any warnings or errors during simulation.

- "Working with Data Stores"
- Data Store Memory
- Data Store Read
- Data Store Write

Runtime diagnostics for S-functions

Check array bounds and solver consistency if S-Function blocks are in the model.

Description

Validates whether S-Function blocks adhere to the ODE solver consistency rules that Simulink applies to its built-in blocks.

Condition	Recommended Action
Solver data inconsistency is set to none.	Set Solver data inconsistency in the Configuration Parameters > Diagnostics pane to warning or error.
Array bounds exceeded is set to none.	Set Array bounds exceeded in the Configuration Parameters > Diagnostics > Data Validity pane to warning or error

Results and Recommended Actions

See Also

Writing S-Functions in the Simulink documentation

11

Simulink Limits

The following table documents some limits on the size and complexity of Simulink models.

Model Feature	Limit
Maximum number of levels in a block diagram	1024
Maximum number of branches in a line	1024
Maximum length of a parameter name	256
Maximum length of a parameter string value	32768
Maximum value of a model window coordinate	32768
Maximum number of bytes of logged simulation data	2 ³¹⁻¹ bytes on 32-bit systems, 2 ⁴⁸⁻¹ bytes on 64-bit systems
Maximum length of integer and fixed-point data types	128 bits

Index

A

Abs block 2-2 absolute tolerance simset parameter 4-173 specifying for a block state 2-554 absolute value generating 2-2 Accumulator Resettable block 2-6 Accumulator Resettable Limited block 2-6 Action Port block 2-7 Action subsystems creating 2-7 with If block 2-493 with SwitchCase block 2-1066 Add block 2-1001 add block command 3-2 4-2add line command 4-6 add param command 4-8 Additional Discrete block library block parameters 8-214 Additional Math: Increment - Decrement block library block parameters 8-217 addterms command 4-9 Algebraic Constraint block 2-11 algebraic equations modeling 2-11 algebraic loops integrator block reset or IC port 2-322 analysis functions perturbing model 2-510 animate 6-4 AnnotationDefaults section of mdl file 9-7 annotations annotation block. See Model Info block ashow debug command 6-5 Assert block 2-14 Assignment block 2-17 Atomic Subsystem block 2-971 atrace debug command 6-6

attachConfigSet command 4-10 attachConfigSetCopy command 4-12 automatic scaling 4-62 and Look-Up Table (2D) block 2-618 autoscale safety margin 4-79 to 4-80 fixptbestprec 4-57 autoscaling fixptbestprec 4-57 autoscaling Scope axes 2-905

B

Backlash block 2-23 Backward Euler method 2-319 Backward Rectangular method 2-319 Band-Limited White Noise block 2-30 bdclose command 4-14 bdIsLoaded command 4-15 bdroot command 4-16 bits clear 2-41 mask 2-41 set 2-41 block dialog boxes closing 4-17 opening 4-135 block parameters Additional Discrete library 8-214 Additional Math: Increment - Decrement library 8-217 changing during simulation 4-147 common 8-83 Continuous library 8-97 **Discontinuities library 8-100** Discrete library 8-104 Logic and Bit Operations library 8-117 Lookup Tables library 8-122 Math library 8-131 Model Verification block library 8-151 Model-Wide Utilities library 8-155

Ports & Subsystems library 8-157 Signal Attributes library 8-186 Signal Routing library 8-193 Sinks library 8-200 Sources library 8-205 User-defined functions library 8-213 Block Support Table block 2-46 BlockDefaults section of mdl file 9-6 BlockParameterDefaults section of mdl file 9-6 blocks 8-96 Accumulator Resettable 2-6 Accumulator Resettable Limited 2-6 adding to model 3-2 4-2 Compare To Zero 2-118 Counter Limited 2-158 current 4-100 Data Type Propagation 2-208 Decrement Stored Integer 2-228 Decrement Time To Zero 2-229 Decrement To Zero 2-230 deleting delete block command 4-21 Detect Decrease 2-245 Detect Fall Negative 2-247 Detect Fall Nonpositive 2-248 Detect Increase 2-250 Detect Rise Nonnegative 2-252 Detect Rise Positive 2-254 Filter Direct Form II 2-1095 Filter Direct Form II Time Varying 2-1098 Filter First Order 2-1101 Filter Lead or Lag 2-1103 Filter Real Zero 2-1106 handle of current 4-101 Increment Stored Integer 2-507 Index Vector 2-508 Interval Test Dynamic 2-585 Repeating Sequence Stair 2-862 Sample Time Divide 2-1188 Sample Time Multiply 2-1189

Sample Time Probe 2-1189 Sample Time Subtract 2-1189 Unit Delay Enabled External IC 2-1143 Unit Delay Enabled Resettable 2-1146 Unit Delay Enabled Resettable External IC 2-1149 Unit Delay External IC 2-1152 Unit Delay Resettable 2-1154 Unit Delay Resettable External IC 2-1157 Unit Delay With Preview Enabled 2-1159 Unit Delay With Preview Enabled Resettable 2-1162 Unit Delay With Preview Enabled Resettable External RV 2-1165 Unit Delay With Preview Resettable 2-1168 Unit Delay With Preview Resettable External RV 2-1171 See also block parameters bode function 4-123Boolean expressions modeling 2-110 break debug command 6-9 bshow debug command 6-11 Bus Assignment block 2-47 Bus Creator block 2-50 Bus Selector block 2-62 Bus to Vector block 2-68 buses 2-511

С

capping unconnected blocks using the Terminator block 2-1075 character encoding, model 4-222 Check Discrete Gradient block 2-71 Check Dynamic Gap block 2-74 Check Dynamic Lower Bound block 2-77 Check Dynamic Range block 2-80 Check Dynamic Upper Bound block 2-83 Check Input Resolution block 2-86 Check Static Gap block 2-89 Check Static Lower Bound block 2-93 Check Static Range block 2-97 Check Static Upper Bound block 2-101 Chirp Signal block 2-105 clear debug command 6-12 clearing bits 2-41 Clock block 2-108 close system command 4-17 closeDialog command 4-20 clutch demo 2-487 code generation scaling 2-202 color command 5-1 5-2 Combinatorial Logic block 2-110 combining input lines into vector line 2-705 commands, simulation Simulink.Block.getSampleTimes 4-183 Simulink.BlockDiagram.getChecksum 4-196 Simulink.BlockDiagram.getInitialState 4-199 Simulink.BlockDiagram.getSampleTimes 4-201 Simulink.SubSystem.getChecksum 4-216 Compare To Zero block 2-118 Complex to Magnitude-Angle block 2-120 Complex to Real-Imag block 2-122 Configurable Subsystem block 2-124 configuration parameters closing dialog 4-20 opening dialog 4-138 pane Bus object: 2-59 Inputs 2-56 Number of inputs: 2-55 Output as bus 2-66 Output as nonvirtual bus 2-60 Rename selected signal: 2-57 Selected signals 2-65 Signals in the bus 2-64 Specify properties via bus object 2-58

UNLABELED CONTROL TAG: inheritCombo 2-54 configuration reference activating 4-149 attaching 4-10 copying and attaching 4-12 detaching 4-24 obtaining 4-108 active 4-106 list of names 4-109 configuration set activating 4-149 attaching 4-10 copying and attaching 4-12 detaching 4-24 obtaining 4-108 active 4-106 list of names 4-109 connecting buses to root-level inports 2-511 Constant Constant value 2-134 Frame period 2-138 Sample time 2-137 Sampling mode 2-529 Constant block 2-130 constant value generating 2-130 continue debug command 6-13 Continuous block library block parameters 8-97 control flow diagrams Action subsystem 2-7 do-while While Iterator block 2-1193 for For Iterator block 2-421 if-else If block 2-493 switch

Switch Case block 2-1066 while While Iterator block 2-1193 Cosine block 2-947 Coulomb and Viscous Friction block 2-154 Coulomb friction 2-154 Counter Limited block 2-158 Create Subsystem menu item 2-971 current block getting pathname 4-100 handle 4-101 current system getting pathname 4-102

D

Data Store Memory block 2-160 Data Store Read block 2-170 Data Store Write block 2-173 Data Type Conversion block 2-176 Data Type Propagation block 2-208 data types propagation 2-208 DataTypeConversion Input and output to have equal 2-182 Dead Zone block 2-221 deadband 2-23 debug simset parameter 4-173 debug commands ashow 6-5atrace 6-6 break 6-9 bshow 6-11 clear 6-12 continue 6-13 disp 6-14 emode 6-20etrace 6-21 help 6-22

nanbreak 6-23 next 6-24 probe 6-25 quit 6-27 run 6-29 states 6-32 status 6-33 step 6-34 stop 6-37 strace 6-38 systems 6-40 tbreak 6-41 trace 6-42 undisp 6-43 untrace 6-44 xbreak 6-47 zcbreak 6-48 zclist 6-49 decimation factor 4-173 decision tables modeling 2-110 Decrement Stored Integer block 2-228 Decrement Time To Zero block 2-229 Decrement To Zero block 2-230 delaying input by variable amount 2-1174 delete block command 4-21 delete line command 4-22 delete param command 4-23 demos hardstop 2-487 sldemo clutch 2-487 Demux Bus selection mode 2-239 Display option 2-238 Number of outputs 2-237 Demux block 2-231 Derivative block 2-240 accuracy of 2-240 derivatives calculating 2-240

limiting 2-814 detachConfigSet command 4-24 Detect Decrease block 2-245 Detect Fall Negative block 2-247 Detect Fall Nonpositive block 2-248 Detect Increase block 2-250 Detect Rise Nonnegative block 2-252 Detect Rise Positive block 2-254 differential-algebraic systems modeling 2-11 Digital Clock block 2-260 Discontinuities block library block parameters 8-100 Discrete block library block parameters 8-104 Discrete Filter block 2-274 Discrete FIR Filter block 2-292 **Discrete Integrator** External reset 2-338 Gain value 2-337 Integrator method 2-336 State name 2-353 Use initial condition as initial and reset value for 2-341 Discrete State-Space block 2-313 discrete state-space model 4-123 Discrete Transfer Fcn block 2-371 Discrete Zero-Pole block 2-376 Discrete-Time Integrator block 2-318 discrete-time systems linearization 4-122 disp command 5-1 5-4 disp debug command 6-14 Display block 2-381 as floating display 2-383 displaying signals graphically 2-902 dlinmod function 4-119 DocBlock block 2-388 Dot Product block 2-391

dpoly command 5-5 droots command 5-5

E

eigenvalues of linearized matrix 4-123 emode debug command 6-20 Enable block 2-401 Enabled and Triggered Subsystem block 2-403 Enabled Subsystem block 2-404 enabled subsystems Enable block 2-401 etrace debug command 6-21 expressions applying to block inputs 2-411 MATLAB Fcn block 2-654 external inputs flag 4-128 from workspace 2-510 ut 4-163

F

Fen block 2-411 compared to Math Function block 2-647 compared to Rounding Function block 2-871 compared to Trigonometric Function block 2-1123 fig files annotating for printing 4-59 files reading from 2-432 writing to To File block 2-1080 Filter Direct Form II block 2-1095 Filter Direct Form II Time Varying block 2-1098 Filter First Order block 2-1101 Filter Lead or Lag block 2-1103 Filter Real Zero block 2-1106 find system command 4-31

finding objects 4-31 finite-state machines implementing 2-110 First-Order Hold block 2-415 fixdt function 4-37 fixed step size 4-174 fixed-point tool dialog pane Use simulation min/max if design min/max are not available 4-78 Fixed-Point Tool 4-62 dialog pane Apply accepted fraction lengths 4-77 Data type override 4-85 Exchange Active and Reference results 4-82 Logging mode 4-84 Overwrite or merge results 4-87 Percent safety margin for design min/max 4-80 Percent safety margin for simulation min/max 4-79 Propose fraction lengths 4-76 Run simulation and store Active results 4-83 Show autoscale information for selected result 4-81 dialog pane overview 4-74 main toolbar 4-88 results filter 4-88 fixpt interp1 function 4-41 fixpt_look1_func_approx function 4-43 fixpt_look1_func_plot function 4-51 fixpt_set_all function 4-53 fixptbestexp function 4-54 fixptbestprec function 4-56 autoscaling 4-57 flip-flops implementing 2-110 float function 4-58

floating scope definition 2-913 Floating scope axes lock 2-914 Floating Scope block 2-902 for control flow diagram creating 2-421 For Iterator block 2-421 For Iterator Subsystem block 2-428 For subsystems creating 2-421 format for exporting model states and outputs specifying via simset command 4-176 Forward Euler method 2-318 Forward Rectangular method 2-318 fprintf command 5-8 frames for printing 4-59 From block 2-429 From File block 2-432 From Workspace block 2-436 Function-Call Generator block 2-444 Function-Call Subsystem block 2-447 functions fixdt 4-37 fixpt_interp1 4-41 fixpt look1 func approx 4-43 fixpt_look1_func_plot 4-51 fixpt_set_all 4-53 fixptbestexp 4-54 fixptbestprec 4-56 float 4-58 fxptdlg 4-62 num2fixpt 4-132 sfix 4-150 sfrac 4-151 sint 4-219 ufix 4-246 ufrac 4-247 uint 4-248 fxptdlg function 4-62

G

gain varying during simulation 2-957 Gain block 2-448 gcb command 4-100 gcbh command 4-101 gcs command 4-102 get param command 4-103 getActiveConfigSet command 4-106 getConfigSet command 4-108 getConfigSets command 4-109 global Goto tag visibility 2-478 Goto block 2-478 Goto Tag Visibility block 2-483 graphics displaying on mask icon 5-12 Greek letters displaying on mask icons 5-4 using the text function 5-16 Ground block 2-485 GUI Fixed-Point Tool 4-62

Η

handle of current block 4-101 hardstop demo 2-487 help debug command 6-22 Hide Name menu item suppressing display of port label 2-710 Hit Crossing block 2-487 hybrid systems linearization 4-122

I

IC block 2-490 If Action Subsystem block 2-505 If block 2-493 if-else control flow diagram

creating 2-493 image displaying on mask icon 5-9 drawing on mask icon using patch 5-11 image command 5-9 Increment Stored Integer block 2-507 Index Vector block 2-508 inf values in mask plotting commands 5-12 inherited data types by backpropagation 2-208 scaling by backpropagation 2-208 initial conditions setting 2-490 initial states 4-174 initial step size 4-174 Inport Data type 2-532 Icon display 2-517 Interpolate data 2-521 Latch input by copying inside signal 2-519 Latch input by delaying outside signal 2-518 Output as nonvirtual bus 2-524 Port dimensions (-1 for inherited) 2-525 Signal type 2-528 Inport block 2-509 Inport blocks in subsystem 2-972 linmod function 4-122 inports root-level connecting to buses 2-511 input ports unconnected 2-485 inputs applying expressions to 2-411 applying MATLAB function to Fcn block 2-411

MATLAB Fcn block 2-654 combining into vector line 2-705 delaying by variable amount 2-1174 external 4-163 from outside system 2-509 from previous time step 2-662 from workspace 2-510 generating step between two levels 2-966 interpolated mapping 2-625 logical operations on 2-590 multiplying block inputs during simulation 2-957 outputting minimum or maximum 2-682 passing through stair-step function 2-807 piecewise linear mapping of two 2-616 plotting 2-1202 reading from file 2-432 width of 2-1199 integration block input 2-545 discrete-time 2-318 Integrator Absolute tolerance 2-564 Enable zero-crossing detection 2-566 External reset 2-556 Ignore limit and reset when linearizing 2-565 Integrator block 2-545 interpolated mapping 2-625 Interpolation Using Prelookup block 2-569 Interval Test Dynamic block 2-585

J

Jacobians 4-122

L

left-hand approximation 2-318 legacy_code function 4-111 limiting signals 2-873 limiting derivative of signal 2-814 limiting integral 2-547 linear models extracting linmod function 4-122 linearization discrete-time systems 4-122 linmod function 4-122 linearized matrix eigenvalues 4-123 LineDefaults section of mdl file 9-7 lines adding 4-6 deleting 4-22 linmod function 4-119 Transport Delay block 2-1109 linmod2 function 4-119 linmodv5 function 4-119 local Goto tag visibility 2-478 Logic Icon shape 2-598 Number of input ports 2-597 Operator 2-596 Output data type 2-601 Require all inputs and output to have the same data type 2-600 Logic and Bit Operations block library block parameters 8-117 logic circuits modeling 2-110 Logical Operator block 2-590 Look-Up Table (2-D) block 2-616 Look-Up Table (n-D) block 2-625 Lookup Table block 2-608 Lookup Tables block library block parameters 8-122

Μ

MACs propagating data type information for 2-213 Magnitude-Angle to Complex block 2-642 Manual Switch block 2-645 mask icon displaying graphics on 5-12 displaying image on 5-9 displaying port label on 5-14 displaying symbols and Greek letters on 5-16 displaying text on 5-1 5-4 displaying text using fprintf 5-8 displaying text using text 5-16 displaying transfer function on 5-5 specifying color of 5-1 5-2 using the patch function 5-11 mask icons changing plot colors on 5-2 displaying symbols and Greek letters on 5-4 question marks in 5-12 mask parameters undefined 5-6 masked blocks parameters 8-218 masked subsystems question marks in icon 5-12 masking bits 2-41 Math block library block parameters 8-131 Math Function block 2-646 mathematical functions performing Math Function block 2-646 Rounding Function block 2-870 Trigonometric Function block 2-1123 mathematical symbols displaying on mask icons 5-4 displaying on mask icons using text 5-16 MATLAB character encoding, changing 4-222 MATLAB Fcn block 2-654

MATLAB functions applying to block input Fcn block 2-411 MATLAB Fcn block 2-654 matrices writing to 2-1084 Matrix Concatenate block 2-657 maximum number of output rows 4-175 maximum order of ode15s solver 4-175 maximum step size simset command 4-175 mdl file 9-2 Memory block 2-662 memory region shared Data Store Memory block 2-160 Data Store Read block 2-170 Data Store Write block 2-173 Merge block 2-669 minimum step size simset command 4-175 MinMax block 2-682 model files 9-2 Model Info block 2-695 model parameters table 8-2 Model Verification block library block parameters 8-151 Model-Wide Utilities block library block parameters 8-155 models closing 4-14 creating new system command 4-130 getting name 4-16 parameters 8-2 replacing blocks 4-139 simulating 4-159 multiplying block inputs during simulation 2-957

Multiport Switch block 2-698 multirate systems linearization 4-122 Mux Display option 2-709 Number of inputs 2-708 Mux block 2-705

Ν

Nan values in mask plotting commands 5-12 nanbreak debug command 6-23 new_system command 4-130 next debug command 6-24 nonlinear systems spectral analysis of 2-105 normally distributed random numbers 2-811 num2fixpt function 4-132

0

objects finding 4-31 obsolete blocks, replacing 4-236 ode113 solver Memory block 2-662 ode14x solver extrapolation order 4-174 number of Newton iterations 4-175 ode15s solver maximum order property 4-175 Memory block 2-662 open system command 4-135 openDialog command 4-138 opening block dialog boxes 4-135 Simulink Library Browser 4-182 system windows 4-135 operating point 4-120

options structure getting values 4-165 setting values 4-172 Outport Data type 2-734 Initial output 2-722 Output as nonvirtual bus in parent model 2-725 Output when disabled 2-721 Port dimensions (-1 for inherited) 2-727 Sampling mode 2-731 Signal type 2-730 Source of initial output value 2-720 Outport block 2-710 Outport blocks in subsystem 2-972 linmod function 4-122 output maximum rows 4-175 outside system 2-710 refine factor 4-175 selected elements of input vector 2-920 selected information about the signal on input 2-760 specifying points 4-175 switching between two inputs 2-645 values displaying 2-381 variables 4-175 writing to file To File block 2-1080 writing to workspace To Workspace block 2-1084 zero within range 2-221 output ports capping unconnected 2-1075

Ρ

parameters

adding 4-8 block list 8-83 deleting 4-23 getting values of 4-103 masked blocks 8-218 model 8-2 setting values of set param command 4-147 patch command 5-11 phase-shifted wave 2-933 piecewise linear mapping two inputs 2-616 piecewise linear signal generating Signal Builder block 2-933 plot command 5-12 plotting input signals Scope block 2-902 XY Graph block 2-1202 plotting simulation data 4-167 port label displaying on mask icon 5-14 port labels suppressing display 2-710 port label command 5-14 Ports & Subsystems block library block parameters 8-157 precision best 4-54 maximum 4-56 print frames 4-59 printframe 4-59 PrintFrame Editor 4-59 printing borders 4-59 fig files with frames 4-59 with print frames 4-61 probe debug command 6-25 Product

Dimension 2-776 Multiplication 2-774 Multiply over 2-775 Number of inputs 2-772 Product block 2-764 programmable logic arrays modeling 2-110 propagation of data types 2-208 properties of Scope block 2-911 Pulse Generator block 2-801

Q

Quantizer block 2-807 question marks in mask icon 5-12 quit debug command 6-27

R

random noise generating 2-811 Random Number block 2-811 and Band-Limited White Noise block 2-30 compared to Band-Limited White Noise block 2-811 random numbers generating normally distributed 2-30 normally distributed 2-811 uniformly distributed 2-1128 Rate Limiter block 2-814 Rate Transition block 2-819 reading data from data store 2-170 from file 2-432 from workspace 2-436 Real-Imag to Complex block 2-829 refine factor simset command 4-175 region of zero output 2-221 regular expressions 4-34

RelationalOperator Output data type 2-841 Relational operator 2-837 relative tolerance 4-176 Relay block 2-848 Repeating Sequence block 2-854 Repeating Sequence Stair block 2-862 repeating signals 2-854 replace obsolete blocks 4-236 replace block command 4-139 replacing blocks in model 4-139 Reshape block 2-866 right-hand approximation 2-319 root-level inports connecting to buses 2-511 Rounding Function block 2-870 run debug command 6-29

S

S-Function block 2-925 S-Function Builder block 2-928 Sample Time Divide block 2-1188 Sample Time Multiply block 2-1189 Sample Time Probe block 2-1189 Sample Time Subtract block 2-1189 sample-and-hold applying to block input 2-662 sampling interval generating simulation time 2-260 Saturate Lower limit 2-878 Treat as gain when linearizing 2-879 Upper limit 2-877 Saturation block 2-873 save system command 4-141 sawtooth wave generating 2-937 Scope axes autoscaling 2-905

Scope block 2-902 properties 2-911 restoring axes settings 2-911 saving axes settings 2-911 Scope Block displaying multiple signals 2-903 trace colors 2-903 scoped Goto tag visibility 2-478 Selector block 2-920 separating vector signal 2-231 sequence of signals 2-801 sequential circuits implementing 2-112 set param command 4-147 setActiveConfigSet command 4-149 setting bits 2-41 setting parameter values 4-147 sfix function 4-150 sfrac function 4-151 shared data store Data Store Memory block 2-160 Data Store Read block 2-170 Data Store Write block 2-173 Sign block 2-931 Signal Attributes block library block parameters 8-186 Signal Generator block 2-937 Signal Inspection block 2-760 signal logging enabling simset command 4-177 signal logging name specifying simset command 4-177 Signal Routing block library block parameters 8-193 Signal Specification block 2-942 signals displaying graphically 2-902 displaying vector 2-903

displaying X-Y plot of 2-1202 generating pulses 2-801 limiting 2-873 limiting derivative of 2-814 passed from Goto block 2-429 passing to From block 2-478 plotting Scope block 2-902 XY Graph block 2-1202 repeating 2-854 sim command 4-159 simget command 4-165 simplot command plotting simulation data 4-167 simset command 4-172 simulating models 4-159 simulation parameters specifying using simset command 4-172 stopping Stop Simulation block 2-969 simulation commands Simulink.Block.getSampleTimes 4-183 Simulink.BlockDiagram.getChecksum 4-196 Simulink.BlockDiagram.getInitialState 4-199 Simulink.BlockDiagram.getSampleTimes 4-201 Simulink.SubSystem.getChecksum 4-216 simulation time generating at sampling interval 2-260 outputting 2-108 Simulink printing diagram with frames 4-59 simulink classes Simulink.AliasType 7-6 Simulink.Bus 7-33 Simulink.BusElement 7-37 Simulink.ModelDataLogs 7-88 Simulink.ModelWorkspace 7-92 Simulink.NumericType 7-114 Simulink.Parameter 7-122

Simulink, ParamRTWInfo 7-128 Simulink.Signal 7-143 Simulink.SignalRTWInfo 7-154 Simulink.StructElement 7-155 Simulink.StructType 7-157 Simulink.SubsysDataLogs 7-160 Simulink.TimeInfo 7-162 Simulink.TsArray 7-165 simulink command 4-182 Simulink Library Browser opening 4-182 Simulink.AliasType 7-6 Simulink.Block.getSampleTimes command description 4-183 Simulink.BlockDiagram.addBusToVector command 4-185 Simulink.BlockDiagram.copyContentsToSubSystem command 4-190 Simulink.BlockDiagram.createSubSystem command 4-192 Simulink.BlockDiagram.deleteContents command 4-195 Simulink.BlockDiagram.getChecksum command description 4-196 Simulink.BlockDiagram.getInitialState command description 4-199 Simulink.BlockDiagram.getSampleTimes command description 4-201 Simulink.Bus 7-33 Simulink.Bus.cellToObject command 4-203 Simulink.Bus.createObject command 4-204 Simulink.Bus.objectToCell command 4-206 Simulink.Bus.save command 4-208 Simulink.BusElement 7-37 Simulink.ConfigSet section of mdl file 9-5 Simulink.ModelDataLogs 7-88 Simulink.ModelWorkspace 7-92 Simulink.NumericType 7-114

Simulink, Parameter 7-122 Simulink.ParamRTWInfo 7-128 Simulink.Signal 7-143 Simulink.SignalRTWInfo 7-154 Simulink.StructElement 7-155 Simulink.StructType 7-157 Simulink.SubsysDataLogs 7-160 Simulink.SubSystem.convertToModelReference command 4-210 Simulink.SubSystem.copyContentsToBlockDiagram State-Space block 2-961 command 4-213 Simulink.SubSystem.deleteContents command 4-215 Simulink.SubSystem.getChecksum command description 4-216 Simulink.TimeInfo 7-162 Simulink.TsArray 7-165 Sine and Cosine block 2-947 Sine block 2-947 sine wave generating Signal Generator block 2-937 Sine Wave block 2-950 generating with increasing frequency Chirp Signal block 2-105 Sine Wave block 2-950 Sinks block library block parameters 8-200 sint function 4-219 Slider Gain block 2-957 slreplace mux command 4-234 slupdate command 4-236 solvers properties specifying 4-172 specifying using simset command 4-176 Sources block library block parameters 8-205 spectral analysis of nonlinear systems 2-105 square wave

generating 2-937 Squeeze block 2-959 ss2tf function 4-124 ss2zp function 4-124 stair-step function passing signal through 2-807 state derivatives setting to zero 4-238 state space in discrete system 2-313 Stateflow printing diagram with frames 4-59 states initial 4-174 outputting 4-175 resetting 2-548 saving at end of simulation 4-174 specifying absolute tolerance for 2-554 states debug command 6-32 status debug command 6-33 Step block 2-966 step debug command 6-34 stop debug command 6-37 Stop Simulation block 2-969 stopping simulation 2-969 strace debug command 6-38 SubSystem Function with separate data 2-990 Memory section for constants 2-995 Memory section for execution functions 2-993 Memory section for initialize/terminate functions 2-991 Memory section for internal data 2-997 Memory section for parameters 2-999 Minimize algebraic loop occurrences 2-979 Name of error callback function 2-976 Permit hierarchical resolution 2-977 Propagate execution context across subsystem boundary 2-980 Read/Write permissions 2-975

Real-Time Workshop file name (no extension) 2-989 Real-Time Workshop file name options 2-988 Real-Time Workshop function name 2-987 Real-Time Workshop function name options 2-986 Real-Time Workshop system code 2-984 Sample time (-1 for inherited) 2-982 Show port labels 2-974 Treat as atomic unit 2-978 Warn if function-call inputs are context-specific 2-981 Subsystem block 2-971 subsystems and Inport blocks 2-510 enabled 2-401 Subtract block 2-1001 Sum Dimension 2-1008 Icon shape 2-1005 List of signs 2-1006 Sum over 2-1007 Sum block 2-1001 Sum of Elements block 2-1001 Switch Criteria for passing first input 2-1042 Threshold 2-1044 Switch Case Action Subsystem block 2-1071 switch control flow diagram creating 2-1066 switching output between inputs Manual Switch block 2-645 switching output between two inputs 2-645 System section of mdl file 9-8 system windows closing 4-17 systems current 4-102 saving 4-141 systems debug command 6-40

T

Tapped Delay block 2-1072 tbreak debug command 6-41 Terminator block 2-1075 terminators adding 4-9 TeX formatting commands using in mask icon text 5-16 using with disp 5-4 text command 5-16 tf2ss utility converting Transfer Fcn to state-space form 2-1091 time delay simulating 2-1108 Time-Based Linearization block 2-1076 To File block 2-1080 To Workspace block 2-1084 Trace colors Scope Block 2-903 trace debug command 6-42 tracing facilities 4-176 Transfer Fcn block 2-1090 transfer function form converting to 4-124 transfer functions discrete 2-371 displaying on mask icon 5-5 linear 2-1090 poles and zeros 2-1208 discrete 2-376 Transport Delay block 2-1108 Trapezoidal method 2-320 Trigger block 2-1112 Trigger-Based Linearization block 2-1118 Triggered Subsystem block 2-1122 triggered subsystems Trigger block 2-1112 Trigonometric Function block 2-1123 trim function 4-238

truth tables implementing 2-110

U

ufix function 4-246 ufrac function 4-247 uint function 4-248 unconnected input ports 2-485 unconnected output ports using the Terminator block 2-1075 undisp debug command 6-43 Uniform Random Number block 2-1128 compared to Band-Limited White Noise block 2-1128 uniformly distributed random numbers 2-1128 Unit Delay Initial conditions 2-1133 Unit Delay block compared to Transport Delay block 2-1108 Unit Delay Enabled External IC block 2-1143 Unit Delay Enabled Resettable block 2-1146 Unit Delay Enabled Resettable External IC block 2-1149 Unit Delay External IC block 2-1152 Unit Delay Resettable block 2-1154 Unit Delay Resettable External IC block 2-1157 Unit Delay With Preview Enabled block 2-1159 Unit Delay With Preview Enabled Resettable block 2-1162 Unit Delay With Preview Enabled Resettable External RV block 2-1165 Unit Delay With Preview Resettable block 2-1168 Unit Delay With Preview Resettable External RV block 2-1171 untrace debug command 6-44 Update Diagram menu item changing block parameters during simulation 4-147 User-defined functions block library

block parameters 8-213

V

variable time delay 2-1174
Variable Time Delay block 2-1174
Variable Transport Delay block 2-1174
vdp model Scope block 2-904
Vector Concatenate block 2-657
vector signals displaying 2-903 generating from inputs 2-705 separating 2-231
viscous friction 2-154
visibility of Goto tag 2-483

W

while control flow diagram creating 2-1193 While Iterator block 2-1193 While Iterator Subsystem block 2-1198 While subsystems creating 2-1193 white noise generating 2-30 Width block 2-1199 workspace destination 4-174 reading data from 2-436 source 4-176 writing output to 2-1084 writing data to data store 2-173 writing output to file 2-1080 writing output to workspace 2-1084

Х

xbreak debug command 6-47 XY Graph block 2-1202

Z

zcbreak debug command 6-48 zclist debug command 6-49 zero crossings detecting Hit Crossing block 2-487 simset command 4-177 zero output in region generating 2-221 Zero-Pole block 2-1208 zero-pole form converting to 4-124 zooming in on displayed data 2-907